1
|
Zhao D, Chen J, Li X, Huang Y, Zhang Y, Zhao F, Liu D, Shan L, Mi Y, Shang L, Qu P. A prospective study of early pregnancy metal concentrations and gestational diabetes mellitus based on a birth cohort in Northwest China. BMC Pregnancy Childbirth 2025; 25:387. [PMID: 40175910 PMCID: PMC11967153 DOI: 10.1186/s12884-025-07336-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/17/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Exposure to metals during early pregnancy may affect maternal glucose metabolism. We were aimed to assess the associations between early pregnancy whole blood concentrations of copper (Cu), zinc (Zn), calcium (Ca), iron (Fe), and magnesium (Mg) with GDM later in the second trimester among pregnant women in Northwest China. METHODS This study included 5478 first-trimester pregnant women who participated in the birth cohort of the Northwest Women's and Children's Hospital between July 2018 and December 2023. Metal concentrations, basic demographic characteristics, lifestyle and behavior patterns were collected. An oral glucose tolerance test was performed in the second trimester. A generalized linear model was used to analyze the effects of metal concentrations on GDM. A two-piecewise regression model was adopted to examine the threshold effect and find out the turning point. Weighted Quantile Sum (WQS) regression was conducted using a dataset randomly split into training and validation sets at a 4:6 ratio to investigate the association between metal mixtures and GDM. RESULTS Compared to the lowest tertile, the middle (RR = 0.82, 95%CI = 0.71, 0.95) and highest (RR = 0.84, 95%CI = 0.73, 0.97) tertiles of Ca concentrations could decrease the risk of GDM. However, the highest tertile of Cu concentration could increase the risk of GDM (RR = 1.18, 95%CI = 1.01, 1.39). Additionally, a non-linear relationship between Ca concentration with GDM and FPG was observed. The risk of GDM (RR = 0.08, 95%CI: 0.02, 0.31) and FPG (β=-0.56, 95%CI: -0.99, -0.12) decreased with 1 unit increase in ln-transformed Ca concentration below the turning point. However, the WQS index of maternal mixed metals was not correlated with the incidence of GDM (RR = 1.08, 95%CI = 0.98, 1.19). CONCLUSIONS Higher Cu concentration during early pregnancy may increase the risk of GDM in mothers. Increased Ca concentration may reduce the risk of GDM and lower the concentration of FPG below the turning point. Our findings could provide an early marker for potentially modifiable risk factors associated with maternal glucose dysregulation during pregnancy.
Collapse
Affiliation(s)
- Doudou Zhao
- Translational Medicine Center, Northwest Women's and Children's Hospital, Xi'an, China
- Department of Health Statistics, Fourth Military Medical University, Xi'an, China
| | - Jie Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xiayang Li
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yishuai Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yu Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Fuyang Zhao
- School of Nursing, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi Province, China
| | - Danmeng Liu
- Translational Medicine Center, Northwest Women's and Children's Hospital, Xi'an, China
| | - Li Shan
- Department of Gynecology, Northwest Women's and Children's Hospital, Xi'an, China
| | - Yang Mi
- Department of Obstetrics, Northwest Women's and Children's Hospital, Xi'an, China.
| | - Lei Shang
- Department of Health Statistics, Fourth Military Medical University, Xi'an, China.
| | - Pengfei Qu
- Translational Medicine Center, Northwest Women's and Children's Hospital, Xi'an, China.
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Peng T, Liu C, Qian Y. Copper homeostasis and pregnancy complications: a comprehensive review. J Assist Reprod Genet 2025; 42:707-720. [PMID: 39792348 PMCID: PMC11950587 DOI: 10.1007/s10815-024-03375-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025] Open
Abstract
Pregnancy complications pose challenges for both pregnant women and obstetricians globally, with the pathogenesis of many remaining poorly understood. Recently coined as a mode of cell death, cuproptosis has been proposed but remains largely unexplored. This process involves copper overload, resulting in the accumulation of fatty acylated proteins and subsequent loss of iron-sulfur cluster proteins. This cascade induces proteotoxic stress, leading to cell death. In recent years, studies have indicated a connection between abnormal copper metabolism and several pregnancy-related diseases, including maternal placental dysplasia, gestational diabetes mellitus (GDM), gestational hypertension (PIH), preterm birth or abortion, as well as conditions in offspring such as intrauterine growth restriction (IUGR), allergic disease, Menkes disease, and Wilson's disease. Investigating the mechanism of cuproptosis and abnormal copper metabolism in these pregnancy-related diseases emerges as a critical research area. This article provides a concise review of cuproptosis mechanisms and emphasizes the association between abnormal copper metabolism and pregnancy-related diseases. Nevertheless, the doubtful viewpoints were also discussed.
Collapse
Affiliation(s)
- Tongyu Peng
- The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Chenglin Liu
- Chongqing Medical University, Chongqing, 400016, China
| | - Yuanmin Qian
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Petit P, Vuillerme N. Global research trends on the human exposome: a bibliometric analysis (2005-2024). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:7808-7833. [PMID: 40056347 PMCID: PMC11953191 DOI: 10.1007/s11356-025-36197-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/24/2025] [Indexed: 03/10/2025]
Abstract
Exposome represents one of the most pressing issues in the environmental science research field. However, a comprehensive summary of worldwide human exposome research is lacking. We aimed to explore the bibliometric characteristics of scientific publications on the human exposome. A bibliometric analysis of human exposome publications from 2005 to December 2024 was conducted using the Web of Science in accordance with PRISMA guidelines. Trends/hotspots were investigated with keyword frequency, co-occurrence, and thematic map. Sex disparities in terms of publications and citations were examined. From 2005 to 2024, 931 publications were published in 363 journals and written by 4529 authors from 72 countries. The number of publications tripled during the last 5 years. Publications written by females (51% as first authors and 34% as last authors) were cited fewer times (13,674) than publications written by males (22,361). Human exposome studies mainly focused on air pollution, metabolomics, chemicals (e.g., per- and polyfluoroalkyl substances (PFAS), endocrine-disrupting chemicals, pesticides), early-life exposure, biomarkers, microbiome, omics, cancer, and reproductive disorders. Social and built environment factors, occupational exposure, multi-exposure, digital exposure (e.g., screen use), climate change, and late-life exposure received less attention. Our results uncovered high-impact countries, institutions, journals, references, authors, and key human exposome research trends/hotspots. The use of digital exposome technologies (e.g., sensors, and wearables) and data science (e.g., artificial intelligence) has blossomed to overcome challenges and could provide valuable knowledge toward precision prevention. Exposome risk scores represent a promising research avenue.
Collapse
Affiliation(s)
- Pascal Petit
- AGEIS, Université Grenoble Alpes, 38000, Grenoble, France.
- Laboratoire AGEIS, Université Grenoble Alpes, Bureau 315, Bâtiment Jean Roget, UFR de Médecine, Domaine de La Merci, 38706, La Tronche Cedex, France.
| | - Nicolas Vuillerme
- AGEIS, Université Grenoble Alpes, 38000, Grenoble, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
4
|
Zha X, Fang M, Zhong W, Chen L, Feng H, Zhang M, Wang H, Zhang Y. Dose-, stage- and sex- difference of prenatal prednisone exposure on placental morphological and functional development. Toxicol Lett 2024; 402:68-80. [PMID: 39580039 DOI: 10.1016/j.toxlet.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 11/25/2024]
Abstract
Prednisone, a synthetic glucocorticoid, is commonly used to treat autoimmune diseases in pregnant women. However, some studies suggest that the use of prednisone during pregnancy may lead to adverse pregnancy outcomes. In this study, we established PPE mouse models at different doses (0.25, 0.5, 1.0 mg/kg·d) and different stages (whole pregnancy, early pregnancy and middle-late pregnancy) and determined outcomes on the placenta and fetus. The results of our study indicated that at the highest dose of 1 mg/kg PPE using a GD 0-18 dosing regime, PPE caused placental morphological changes measured as a decrease in placental weight relative to controls and a decrease in the placenta junctional zone (JZ)/labyrinth zone (LZ) ratio. No changes were observed on the fetuses for number of live, stillborn, and absorbed fetuses between the experimental groups and the control group. In the placentas at some doses, there were decreases in cell proliferation markers measured at the RNA and protein level by Western blot and increased apoptosis. Measures of gene expression at the mRNA level showed altered nutrients (including glucose, amino acid, and cholesterol) transport gene expressions with the most significant change associated with the male placentas at high-dose and whole pregnancy PPE group. It was further found that PPE led to the inhibition of the insulin-like growth factor 2 (IGF2)/insulin-like growth factor 1 receptor (IGF1R) signaling pathway, which was well correlated with the indicators of cell proliferation, syncytialization and nutrient (glucose and amino acid) transport indices. In conclusion, PPE can alter placental morphology and nutrient transport function, with differences in effect related to dose, stage and gender. Differential gene expressions measured for genes of the IGF2/IGF1R signaling pathway suggested this pathway may be involved in the effects seen with PPE. This study provides a theoretical and experimental basis for enhancing the understanding of the effects of prednisone use on placenta during human pregnancy but does not currently raise concerns for human use as effects were not seen on the fetuses and while the effects on cell proliferation are informative they were inconsistent and the differential effects on female and male placentas unexplained suggesting that further work is required to elucidate if these findings have relevance for human use of PPE during pregnancy.
Collapse
Affiliation(s)
- Xiaomeng Zha
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Man Fang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wen Zhong
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Liang Chen
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hui Feng
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Min Zhang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China; Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan 430071, China
| | - Hui Wang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China.
| | - Yuanzhen Zhang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China; Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan 430071, China.
| |
Collapse
|
5
|
Matus P, Urquidi C, Cárcamo M, Vidal V. Integrating the exposome and one health approach to national health surveillance: an opportunity for Latin American countries in health preventive management. Front Public Health 2024; 12:1376609. [PMID: 39211902 PMCID: PMC11359557 DOI: 10.3389/fpubh.2024.1376609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
The exposome approach, emphasizing lifelong environmental exposures, is a holistic framework exploring the intricate interplay between genetics and the environment in shaping health outcomes. Complementing this, the one health approach recognizes the interconnectedness of human and ecological health within a shared ecosystem, extending to planetary health, which encompasses the entire planet. Integrating Disease Surveillance Systems with exposome, one health, and planetary health signifies a paradigm shift in health management, fostering a comprehensive public health framework. This publication advocates for combining traditional health surveillance with exposome and one health/planetary health approach, proposing a three-step approach: ecological analysis, territorial intervention in identified issues, and an analytical phase for assessing interventions. Particularly relevant for Latin American countries facing a double burden of diseases, integrating the exposome into traditional health surveillance proves cost-effective by leveraging existing data and environmental measurements. In conclusion, the integration of exposome and one health approaches into traditional health surveillance presents a robust framework for monitoring population health, especially in regions like Latin America with complex health challenges. This innovative approach enables tailored interventions, disease outbreak predictions, and a holistic understanding of the intricate links between human health and the environment, offering substantial benefits for public health and disease prevention despite existing challenges.
Collapse
Affiliation(s)
- Patricia Matus
- Department of Epidemiology and Health Studies, Universidad de Los Andes, Santiago, Chile
| | | | | | | |
Collapse
|
6
|
Xia S, Ye Y, Liu J, Qiu H, Lin M, He Z, Huang L, Wang M, Luo Y. The Role of MALAT1 in Regulating the Proangiogenic Functions, Invasion, and Migration of Trophoblasts in Selective Fetal Growth Restriction. Biomolecules 2024; 14:988. [PMID: 39199376 PMCID: PMC11352967 DOI: 10.3390/biom14080988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/01/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
Epigenetic regulation is an important entry point to study the pathogenesis of selective fetal growth restriction (sFGR), and an understanding of the role of long noncoding RNAs (lncRNAs) in sFGR is lacking. Our study aimed to investigate the potential role of a lncRNA, metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), in sFGR using molecular biology experiments and gain- or loss-of-function assays. We found that the levels of MALAT1, ERRγ, and HSD17B1 were downregulated and that of miR-424 was upregulated in the placental shares of the smaller twins. Moreover, angiogenesis was impaired in the placental share of the smaller fetus and MALAT1 could regulate the paracrine effects of trophoblasts on endothelium angiogenesis and proliferation by regulating miR-424. In trophoblasts, MALAT1 could competitively bind to miR-424 to regulate the expression of ERRγ and HSD17B1, thus regulating trophoblast invasion and migration. MALAT1 overexpression could decrease apoptosis and promote proliferation, alleviating cell damage induced by hypoxia. Taken together, the downregulation of MALAT1 can reduce the expression of ERRγ and HSD17B1 by competitively binding to miR-424, impairing the proangiogenic effect of trophoblasts, trophoblast invasion and migration, and the ability of trophoblasts to compensate for hypoxia, which may be involved in the pathogenesis of sFGR through various aspects.
Collapse
Affiliation(s)
- Shuting Xia
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China; (S.X.); (Y.Y.); (J.L.); (H.Q.); (M.L.); (Z.H.); (L.H.); (M.W.)
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, China
| | - Yingnan Ye
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China; (S.X.); (Y.Y.); (J.L.); (H.Q.); (M.L.); (Z.H.); (L.H.); (M.W.)
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, China
| | - Jialiu Liu
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China; (S.X.); (Y.Y.); (J.L.); (H.Q.); (M.L.); (Z.H.); (L.H.); (M.W.)
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, China
| | - Hanfei Qiu
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China; (S.X.); (Y.Y.); (J.L.); (H.Q.); (M.L.); (Z.H.); (L.H.); (M.W.)
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, China
| | - Minhuan Lin
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China; (S.X.); (Y.Y.); (J.L.); (H.Q.); (M.L.); (Z.H.); (L.H.); (M.W.)
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, China
| | - Zhiming He
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China; (S.X.); (Y.Y.); (J.L.); (H.Q.); (M.L.); (Z.H.); (L.H.); (M.W.)
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, China
| | - Linhuan Huang
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China; (S.X.); (Y.Y.); (J.L.); (H.Q.); (M.L.); (Z.H.); (L.H.); (M.W.)
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, China
| | - Malie Wang
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China; (S.X.); (Y.Y.); (J.L.); (H.Q.); (M.L.); (Z.H.); (L.H.); (M.W.)
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, China
| | - Yanmin Luo
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China; (S.X.); (Y.Y.); (J.L.); (H.Q.); (M.L.); (Z.H.); (L.H.); (M.W.)
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou 510080, China
| |
Collapse
|
7
|
Lorigo M, Quintaneiro C, Breitenfeld L, Cairrao E. Exposure to UV-B filter octylmethoxycinnamate and human health effects: Focus on endocrine disruptor actions. CHEMOSPHERE 2024; 358:142218. [PMID: 38704047 DOI: 10.1016/j.chemosphere.2024.142218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Human skin is the first line of photoprotection against UV radiation. However, despite having its defence mechanisms, the photoprotection that the skin exerts is not enough. To protect human skin, the inclusion of UV filters in the cosmetic industry has grown significantly as a photoprotection strategy. Octylmethoxycinnamate, also designated by octinoxate, or 2-ethylhexyl-4-methoxycinnamate (CAS number: 5466-77-3) is one of the most widely used UV-B filter in the cosmetic industry. The toxic effects of OMC have alarmed the public, but there is still no consensus in the scientific community about its use. This article aims to provide an overview of the UV filters' photoprotection, emphasizing the OMC and the possible negative effects it may have on the public health. Moreover, the current legislation will be addressed. In summary, the recommendations should be rethought to assess their risk-benefit, since the existing literature warns us to endocrine-disrupting effects of OMC. Further studies should be focus on the toxicity of OMC alone, in mixture and should consider its degradation products, to improve the knowledge of its risk assessment as EDC.
Collapse
Affiliation(s)
- Margarida Lorigo
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal.
| | - Carla Quintaneiro
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Luiza Breitenfeld
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal.
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal.
| |
Collapse
|
8
|
Xu J, Zhang Y, Huang Y, Nie H, Yan J, Ruan L, Zhang C. The association between pulse wave velocity and pregnancy-associated diseases: A systematic review and meta-analysis. Heliyon 2024; 10:e29281. [PMID: 38707450 PMCID: PMC11066146 DOI: 10.1016/j.heliyon.2024.e29281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/03/2024] [Indexed: 05/07/2024] Open
Abstract
Background Maintaining healthy vascular structure and function is important for a healthy pregnancy. Obesity is a well-known predictor for poor postoperative outcomes of vascular surgery. However, the association between pulse wave velocity (PWV), a well-recognized parameter for arterial stiffness assessment, and pregnancy-associated diseases is still unclear. Therefore, we conducted this systematic review, and a meta-analysis was performed to assess the relevant associations. Methods We systematically searched the Web of Science and PubMed databases to obtain articles on PWV and pregnancy-associated diseases published before April 2023. The mean with standard deviation was used to assess the differences in PWV in pregnant women with or without relevant diseases. Subgroup analysis was conducted according to specific types of PWV. The Newcastle‒Ottawa Scale was used to evaluate the quality of the enrolled studies. Results A total of 6488 individuals from 21 studies were included. All enrolled studies were high-quality. Overall, the PWV was elevated in pregnant women who suffered from preeclampsia (mean difference (MD) = 0.67, 95 % confidence interval (CI): 0.51,0.83, P < 0.00001), hypertension (MD = 1.04, 95 % CI: 1.00,1.08, P < 0.00001), gestational diabetes mellitus (MD = 0.34, 95%CI: 0.19,0.48, P < 0.00001), and diabetes (MD = 0.49, 95%CI: 0.27,0.70, P < 0.00001). Subgroup analysis based on specific types of PWV showed similar results. Conclusion In our study, PWV is elevated in pregnancy-associated diseases, including preeclampsia, hypertension, and diabetes. The PWV assessment should be regarded as a clinical routine for pregnant women to prevent and manage cardiovascular diseases during pregnancy.
Collapse
Affiliation(s)
| | | | - Yue Huang
- Department of Geriatrics, Institute of Gerontology, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hao Nie
- Department of Geriatrics, Institute of Gerontology, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jinhua Yan
- Department of Geriatrics, Institute of Gerontology, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lei Ruan
- Department of Geriatrics, Institute of Gerontology, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Cuntai Zhang
- Department of Geriatrics, Institute of Gerontology, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
9
|
Wu R, Duan M, Zong D, Li Z. Effect of arsenic on the risk of gestational diabetes mellitus: a systematic review and meta-analysis. BMC Public Health 2024; 24:1131. [PMID: 38654206 PMCID: PMC11041030 DOI: 10.1186/s12889-024-18596-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is a complication of pregnancy associated with numerous adverse outcomes. There may be a potential link between GDM and arsenic (As) exposure, but this hypothesis remains controversial. This meta-analysis summarizes the latest studies evaluating the association between As and GDM. METHODS A comprehensive search of the PubMed, Embase, and Scopus databases up to September 2023 was performed. The pooled estimates with 95% CIs were presented using forest plots. Estimates were calculated with random effects models, and subgroup and sensitivity analyses were conducted to address heterogeneity. RESULTS A total of 13 eligible studies involving 2575 patients with GDM were included in this meta-analysis. The results showed that women exposed to As had a significantly increased risk of GDM (OR 1.47, 95% CI: 1.11 to 1.95, P = 0.007). Subgroup analyses suggested that the heterogeneity might be attributed to the years of publication. In addition, sensitivity analysis confirmed the robust and reliable results. CONCLUSIONS This analysis suggested that women exposed to As have a greater risk of GDM. However, the significant heterogeneity across studies requires careful interpretation. REGISTRATION The PROSPERO registration ID is CRD42023461820.
Collapse
Affiliation(s)
- Rui Wu
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, China
| | - Min Duan
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, China
| | - Dongsheng Zong
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, China.
| | - Zuojing Li
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
10
|
Yang X, QimeiZhong, Huang M, Li L, Tang C, Luo S, Wang L, Qi H. Causal relationship between gestational diabetes and preeclampsia: A bidirectional mendelian randomization analysis. Diabetes Res Clin Pract 2024; 210:111643. [PMID: 38548111 DOI: 10.1016/j.diabres.2024.111643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/01/2024]
Abstract
AIMS The study aimed to explore the potential causal link between gestational diabetes mellitus (GDM) and preeclampsia (PE) using a bidirectional mendelian randomization (MR) analysis. MATERIALS We conducted a bidirectional MR analysis to investigate the causal relationship between GDM and PE. Data from public genome-wide association studies (GWAS) for GDM and PE were obtained from the FinnGen consortium. Various MR methods were employed, including inverse-variance weighted (IVW), MR-Egger, and sensitivity analyses. Additionally, a knowledge-based approach identified genes underlying this potential connection. RESULTS The IVW method revealed a lack of significant association between GDM and PE (OR: 1.04, 95 % CI: 0.96-1.14; p = 0.275). Conversely, IVW analysis indicated a causal connection from PE to GDM (OR: 1.14, 95 % CI: 1.06-1.23; p < 0.001). Molecular pathway analysis identified 20 key genes, including ASAP2, central to the PE-GDM relationship. Tissue enrichment analysis showed pertinent gene expression in significant tissues. Moreover, lower ASAP2 expression was detected in PE patients' placentas. CONCLUSIONS Our bidirectional MR analysis offers evidence supporting a causal link between PE and GDM, elucidating their interconnected pathogenesis. Genetic and knowledge-based insights facilitate a deeper comprehension of these complex pregnancy complications.
Collapse
Affiliation(s)
- Xiaofeng Yang
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children, No.120 Longshan Road, Yubei District, Chongqing, 401147, China; Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No.120 Longshan Road, Yubei District, Chongqing, 401147, China
| | - QimeiZhong
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children, No.120 Longshan Road, Yubei District, Chongqing, 401147, China; Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No.120 Longshan Road, Yubei District, Chongqing, 401147, China
| | - Mengwei Huang
- Department of Obstetrics and Gynecology, Chengdu First People 's Hospital, No.18 Wanxiang North Road, Chengdu High-tech Zone, Sichuan Province 610095, China
| | - Li Li
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children, No.120 Longshan Road, Yubei District, Chongqing, 401147, China; Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No.120 Longshan Road, Yubei District, Chongqing, 401147, China
| | - Chunyan Tang
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children, No.120 Longshan Road, Yubei District, Chongqing, 401147, China; Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No.120 Longshan Road, Yubei District, Chongqing, 401147, China
| | - Shujuan Luo
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children, No.120 Longshan Road, Yubei District, Chongqing, 401147, China; Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No.120 Longshan Road, Yubei District, Chongqing, 401147, China
| | - Lan Wang
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children, No.120 Longshan Road, Yubei District, Chongqing, 401147, China; Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No.120 Longshan Road, Yubei District, Chongqing, 401147, China.
| | - Hongbo Qi
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children, No.120 Longshan Road, Yubei District, Chongqing, 401147, China; Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No.120 Longshan Road, Yubei District, Chongqing, 401147, China.
| |
Collapse
|
11
|
Calvo MJ, Parra H, Santeliz R, Bautista J, Luzardo E, Villasmil N, Martínez MS, Chacín M, Cano C, Checa-Ros A, D'Marco L, Bermúdez V, De Sanctis JB. The Placental Role in Gestational Diabetes Mellitus: A Molecular Perspective. TOUCHREVIEWS IN ENDOCRINOLOGY 2024; 20:10-18. [PMID: 38812661 PMCID: PMC11132656 DOI: 10.17925/ee.2024.20.1.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/01/2023] [Indexed: 05/31/2024]
Abstract
During pregnancy, women undergo several metabolic changes to guarantee an adequate supply of glucose to the foetus. These metabolic modifications develop what is known as physiological insulin resistance. When this process is altered, however, gestational diabetes mellitus (GDM) occurs. GDM is a multifactorial disease, and genetic and environmental factors play a crucial role in its aetiopathogenesis. GDM has been linked to both macroscopic and molecular alterations in placental tissues that affect placental physiology. This review summarizes the role of the placenta in the development of GDM from a molecular perspective, including hormonal and pro-inflammatory changes. Inflammation and hormonal imbalance, the characteristics dominating the GDM microenvironment, are responsible for placental changes in size and vascularity, leading to dysregulation in maternal and foetal circulations and to complications in the newborn. In conclusion, since the hormonal mechanisms operating in GDM have not been fully elucidated, more research should be done to improve the quality of life of patients with GDM and their future children.
Collapse
Affiliation(s)
- María José Calvo
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Heliana Parra
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Raquel Santeliz
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Jordan Bautista
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Eliana Luzardo
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Nelson Villasmil
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - María Sofía Martínez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Maricamen Chacín
- Facultad de Ciencias de la Salud, Barranquilla, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Clímaco Cano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Ana Checa-Ros
- Research Group on Cardiorenal and Metabolic Diseases, Departamento de Medicina y Cirugía, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Luis D'Marco
- Research Group on Cardiorenal and Metabolic Diseases, Departamento de Medicina y Cirugía, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Valmore Bermúdez
- Facultad de Ciencias de la Salud, Barranquilla, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
12
|
Peng X, Li H, Wang D, Wu L, Hu J, Ye F, Syed BM, Liu D, Zhang J, Liu Q. Intrauterine arsenic exposure induces glucose metabolism disorders in adult offspring by targeting TET2-mediated DNA hydroxymethylation reprogramming of HNF4α in developing livers, an effect alleviated by ascorbic acid. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133405. [PMID: 38185084 DOI: 10.1016/j.jhazmat.2023.133405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/09/2024]
Abstract
Exposure to arsenic during gestation has lasting health-related effects on the developing fetus, including an increase in the risk of metabolic disease later in life. Epigenetics is a potential mechanism involved in this process. Ten-eleven translocation 2 (TET2) has been widely considered as a transferase of 5-hydroxymethylcytosine (5hmC). Here, mice were exposed, via drinking water, to arsenic or arsenic combined with ascorbic acid (AA) during gestation. For adult offspring, intrauterine arsenic exposure exhibited disorders of glucose metabolism, which are associated with DNA hydroxymethylation reprogramming of hepatic nuclear factor 4 alpha (HNF4α). Further molecular structure analysis, by SEC-UV-DAD, SEC-ICP-MS, verified that arsenic binds to the cysteine domain of TET2. Mechanistically, arsenic reduces the stability of TET2 by binding to it, resulting in the decrease of 5hmC levels in Hnf4α and subsequently inhibiting its expression. This leads to the disorders of expression of its downstream key glucose metabolism genes. Supplementation with AA blocked the reduction of TET2 and normalized the 5hmC levels of Hnf4α, thus alleviating the glucose metabolism disorders. Our study provides targets and methods for the prevention of offspring glucose metabolism abnormalities caused by intrauterine arsenic exposure.
Collapse
Affiliation(s)
- Xiaoshan Peng
- Center for Global Health, China International Cooperation Center for Environment and Human Health, Jiangsu Safety Assessment and Research Center for Drug, Pesticide, and Veterinary Drug, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Han Li
- Center for Global Health, China International Cooperation Center for Environment and Human Health, Jiangsu Safety Assessment and Research Center for Drug, Pesticide, and Veterinary Drug, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Dapeng Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Lu Wu
- Suzhou Center for Disease Control and Prevention, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Suzhou 215004, Jiangsu, People's Republic of China
| | - Jiacai Hu
- Institute of Physical and Chemical Testing, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, Jiangsu, People's Republic of China
| | - Fuping Ye
- Center for Global Health, China International Cooperation Center for Environment and Human Health, Jiangsu Safety Assessment and Research Center for Drug, Pesticide, and Veterinary Drug, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Binafsha Manzoor Syed
- Medical Research Centre, Liaquat University of Medical & Health Sciences, Jamshoro 76090, Sindh, Pakistan
| | - Deye Liu
- Institute of Physical and Chemical Testing, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, Jiangsu, People's Republic of China
| | - Jingshu Zhang
- Center for Global Health, China International Cooperation Center for Environment and Human Health, Jiangsu Safety Assessment and Research Center for Drug, Pesticide, and Veterinary Drug, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.
| | - Qizhan Liu
- Center for Global Health, China International Cooperation Center for Environment and Human Health, Jiangsu Safety Assessment and Research Center for Drug, Pesticide, and Veterinary Drug, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Suzhou Center for Disease Control and Prevention, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Suzhou 215004, Jiangsu, People's Republic of China.
| |
Collapse
|
13
|
Scher MS. Interdisciplinary fetal-neonatal neurology training applies neural exposome perspectives to neurology principles and practice. Front Neurol 2024; 14:1321674. [PMID: 38288328 PMCID: PMC10824035 DOI: 10.3389/fneur.2023.1321674] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/07/2023] [Indexed: 01/31/2024] Open
Abstract
An interdisciplinary fetal-neonatal neurology (FNN) program over the first 1,000 days teaches perspectives of the neural exposome that are applicable across the life span. This curriculum strengthens neonatal neurocritical care, pediatric, and adult neurology training objectives. Teaching at maternal-pediatric hospital centers optimally merges reproductive, pregnancy, and pediatric approaches to healthcare. Phenotype-genotype expressions of health or disease pathways represent a dynamic neural exposome over developmental time. The science of uncertainty applied to FNN training re-enforces the importance of shared clinical decisions that minimize bias and reduce cognitive errors. Trainees select mentoring committee participants that will maximize their learning experiences. Standardized questions and oral presentations monitor educational progress. Master or doctoral defense preparation and competitive research funding can be goals for specific individuals. FNN principles applied to practice offer an understanding of gene-environment interactions that recognizes the effects of reproductive health on the maternal-placental-fetal triad, neonate, child, and adult. Pre-conception and prenatal adversities potentially diminish life-course brain health. Endogenous and exogenous toxic stressor interplay (TSI) alters the neural exposome through maladaptive developmental neuroplasticity. Developmental disorders and epilepsy are primarily expressed during the first 1,000 days. Communicable and noncommunicable illnesses continue to interact with the neural exposome to express diverse neurologic disorders across the lifespan, particularly during the critical/sensitive time periods of adolescence and reproductive senescence. Anomalous or destructive fetal neuropathologic lesions change clinical expressions across this developmental-aging continuum. An integrated understanding of reproductive, pregnancy, placental, neonatal, childhood, and adult exposome effects offers a life-course perspective of the neural exposome. Exosome research promises improved disease monitoring and drug delivery starting during pregnancy. Developmental origins of health and disease principles applied to FNN practice anticipate neurologic diagnoses with interventions that can benefit successive generations. Addressing health care disparities in the Global South and high-income country medical deserts require constructive dialogue among stakeholders to achieve medical equity. Population health policies require a brain capital strategy that reduces the global burden of neurologic diseases by applying FNN principles and practice. This integrative neurologic care approach will prolong survival with an improved quality of life for persons across the lifespan confronted with neurological disorders.
Collapse
Affiliation(s)
- Mark S. Scher
- Division of Pediatric Neurology, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
14
|
Li L, Xu J, Zhang W, Wang Z, Liu S, Jin L, Wang Q, Wu S, Shang X, Guo X, Huang Q, Deng F. Associations between multiple metals during early pregnancy and gestational diabetes mellitus under four statistical models. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:96689-96700. [PMID: 37578585 DOI: 10.1007/s11356-023-29121-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 07/29/2023] [Indexed: 08/15/2023]
Abstract
Gestational diabetes mellitus (GDM) is one of the most common complications of pregnancy. Metal exposure is an emerging factor affecting the risk of GDM. However, the effects of metal mixture on GDM and key metals within the mixture remain unclear. This study was aimed at investigating the association between metal mixture during early pregnancy and the risk of GDM using four statistical methods and further at identifying the key metals within the mixture associated with GDM. A nested case-control study including 128 GDM cases and 318 controls was conducted in Beijing, China. Urine samples were collected before 13 gestational weeks and the concentrations of 13 metals were measured. Single-metal analysis (unconditional logistic regression) and mixture analyses (Bayesian kernel machine regression (BKMR), quantile g-computation, and elastic-net regression (ENET) models) were applied to estimate the associations between exposure to multiple metals and GDM. Single-metal analysis showed that Ni was associated with lower risk of GDM, while positive associations of Sr and Sb with GDM were observed. Compared with the lowest quartile of Ni, the ORs of GDM in the highest quartiles were 0.49 (95% CI 0.24, 0.98). In mixture analyses, Ni and Mg showed negative associations with GDM, while Co and Sb were positively associated with GDM in BKMR and quantile g-computation models. No significant joint effect of metal mixture on GDM was observed. However, interestingly, Ni was identified as a key metal within the mixture associated with decreased risk of GDM by all three mixture methods. Our study emphasized that metal exposure during early pregnancy was associated with GDM, and Ni might have important association with decreased GDM risk.
Collapse
Affiliation(s)
- Luyi Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Jialin Xu
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| | - Wenlou Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Zhaokun Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Shan Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Lei Jin
- Institute of Reproductive and Child Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, 710061, Shaanxi, China
| | - Xuejun Shang
- Department of Andrology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China.
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| |
Collapse
|
15
|
Valero P, Cornejo M, Fuentes G, Wehinger S, Toledo F, van der Beek EM, Sobrevia L, Moore-Carrasco R. Platelets and endothelial dysfunction in gestational diabetes mellitus. Acta Physiol (Oxf) 2023; 237:e13940. [PMID: 36700365 DOI: 10.1111/apha.13940] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/06/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
The prevalence of gestational diabetes mellitus (GDM) has increased in recent years, along with the higher prevalence of obesity in women of reproductive age. GDM is a pathology associated with vascular dysfunction in the fetoplacental unit. GDM-associated endothelial dysfunction alters the transfer of nutrients to the foetus affecting newborns and pregnant women. Various mechanisms for this vascular dysfunction have been proposed, of which the most studied are metabolic alterations of the vascular endothelium. However, different cell types are involved in GDM-associated endothelial dysfunction, including platelets. Platelets are small, enucleated cell fragments that actively take part in blood haemostasis and thrombus formation. Thus, they play crucial roles in pathologies coursing with endothelial dysfunction, such as atherosclerosis, cardiovascular diseases, and diabetes mellitus. Nevertheless, platelet function in GDM is understudied. Several reports show a potential relationship between platelet volume and mass with GDM; however, platelet roles and signaling mechanisms in GDM-associated endothelial dysfunction are unclear. This review summarizes the reported findings and proposes a link among altered amount, volume, mass, reactivity, and function of platelets and placenta development, resulting in fetoplacental vascular dysfunction in GDM.
Collapse
Affiliation(s)
- Paola Valero
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, Department of Obstetrics, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Marcelo Cornejo
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, Department of Obstetrics, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Faculty of Health Sciences, Universidad de Talca, Talca, Chile
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands
- Biomedical Department, Faculty of Health Sciences, Universidad de Antofagasta, Antofagasta, Chile
| | - Gonzalo Fuentes
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, Department of Obstetrics, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Faculty of Health Sciences, Universidad de Talca, Talca, Chile
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands
| | - Sergio Wehinger
- Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Fernando Toledo
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, Department of Obstetrics, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillán, Chile
| | - Eline M van der Beek
- Department of Pediatrics, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
- Nestlé Institute for Health Sciences, Nestlé Research, Societé des Produits de Nestlé, Lausanne, Switzerland
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, Department of Obstetrics, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain
- Medical School (Faculty of Medicine), Sao Paulo State University (UNESP), São Paulo, Brazil
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, Queensland, Australia
- Tecnologico de Monterrey, Eutra, The Institute for Obesity Research (IOR), School of Medicine and Health Sciences, Monterrey, Mexico
| | | |
Collapse
|
16
|
Wu S, Liu K, Zhou B, Wu S. N6-methyladenosine modifications in maternal-fetal crosstalk and gestational diseases. Front Cell Dev Biol 2023; 11:1164706. [PMID: 37009476 PMCID: PMC10060529 DOI: 10.3389/fcell.2023.1164706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
As a medium among pregnant women, environment and fetus, placenta owns powerful and delicate epigenetic processes to regulate gene expression and maintain cellular homeostasis. N6-methyladenosine (m6A) is the most prevalent modification that determines the fate of RNA, and its dynamic reversibility indicates that m6A may serve as a sensitive responder to environmental stimuli. Emerging evidence suggests that m6A modifications play an essential role in placental development and maternal-fetal crosstalk, and are closely related to gestational diseases. Herein, we summarized the latest techniques for m6A sequencing and highlighted current advances of m6A modifications in maternal-fetal crosstalk and the underlying mechanisms in gestational diseases. Therefore, proper m6A modifications are important in placental development, but its disturbance mainly caused by various environmental factors can lead to abnormal placentation and function with possible consequences of gestational diseases, fetal growth and disease susceptibility in adulthood.
Collapse
Affiliation(s)
- Suqi Wu
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ketong Liu
- Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Bingyan Zhou
- Hubei Clinical Center of Hirschsprung’s Disease and Allied Disorders, Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Bingyan Zhou, ; Suwen Wu,
| | - Suwen Wu
- Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- *Correspondence: Bingyan Zhou, ; Suwen Wu,
| |
Collapse
|
17
|
Rudge MVC, Alves FCB, Hallur RLS, Oliveira RG, Vega S, Reyes DRA, Floriano JF, Prudencio CB, Garcia GA, Reis FVDS, Emanueli C, Fuentes G, Cornejo M, Toledo F, Valenzuela-Hinrichsen A, Guerra C, Grismaldo A, Valero P, Barbosa AMP, Sobrevia L. Consequences of the exposome to gestational diabetes mellitus. Biochim Biophys Acta Gen Subj 2023; 1867:130282. [PMID: 36436753 DOI: 10.1016/j.bbagen.2022.130282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/14/2022] [Accepted: 11/16/2022] [Indexed: 11/26/2022]
Abstract
The exposome is the cumulative measure of environmental influences and associated biological responses throughout the lifespan, including those from the environment, diet, behaviour, and endogenous processes. The exposome concept and the 2030 Agenda for the Sustainable Development Goals (SDGs) from the United Nations are the basis for understanding the aetiology and consequences of non-communicable diseases, including gestational diabetes mellitus (GDM). Pregnancy may be developed in an environment with adverse factors part of the immediate internal medium for fetus development and the external medium to which the pregnant woman is exposed. The placenta is the interface between maternal and fetal compartments and acts as a protective barrier or easing agent to transfer exposome from mother to fetus. Under and over-nutrition in utero, exposure to adverse environmental pollutants such as heavy metals, endocrine-disrupting chemicals, pesticides, drugs, pharmaceuticals, lifestyle, air pollutants, and tobacco smoke plays a determinant role in the development of GDM. This phenomenon is worsened by metabolic stress postnatally, such as obesity which increases the risk of GDM and other diseases. Clinical risk factors for GDM development include its aetiology. It is proposed that knowledge-based interventions to change the potential interdependent ecto-exposome and endo-exposome could avoid the occurrence and consequences of GDM.
Collapse
Affiliation(s)
- Marilza V C Rudge
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil.
| | - Fernanda C B Alves
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil
| | - Raghavendra L S Hallur
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil; Centre for Biotechnology, Pravara Institute of Medical Sciences (DU), Loni-413736, Rahata Taluk, Ahmednagar District, Maharashtra, India
| | - Rafael G Oliveira
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil
| | - Sofia Vega
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrician, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - David R A Reyes
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil
| | - Juliana F Floriano
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil
| | - Caroline B Prudencio
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil
| | - Gabriela A Garcia
- São Paulo State University (UNESP), School of Sciences, Postgraduate Program in Materials Science and Technology (POSMAT), 17033-360 Bauru, São Paulo, Brazil
| | - Fabiana V D S Reis
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Gonzalo Fuentes
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713GZ Groningen, The Netherlands; Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrician, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Marcelo Cornejo
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713GZ Groningen, The Netherlands; Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile; Faculty of Health Sciences, Universidad de Antofagasta, Antofagasta 02800, Chile; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrician, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Fernando Toledo
- Faculty of Basic Sciences, Universidad del Bío-Bío, Chillán 3780000, Chile; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrician, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Andrés Valenzuela-Hinrichsen
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrician, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Catalina Guerra
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrician, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Adriana Grismaldo
- Tecnologico de Monterrey, Eutra, The Institute for Obesity Research (IOR), School of Medicine and Health Sciences, Monterrey, Nuevo León 64710, Mexico; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrician, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Paola Valero
- Faculty of Health Sciences, Universidad de Talca, Talca 3460000, Chile; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrician, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Angelica M P Barbosa
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil; Department of Physiotherapy and Occupational Therapy, School of Philosophy and Sciences, São Paulo State University (UNESP), 17525-900 Marília, São Paulo, Brazil
| | - Luis Sobrevia
- Department of Gynaecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), 18618-687 Botucatu, São Paulo, Brazil; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713GZ Groningen, The Netherlands; Tecnologico de Monterrey, Eutra, The Institute for Obesity Research (IOR), School of Medicine and Health Sciences, Monterrey, Nuevo León 64710, Mexico; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston QLD 4029, Queensland, Australia; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrician, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| |
Collapse
|
18
|
Molecular aspects of exposome and metabolic diseases. Mol Aspects Med 2022; 87:101102. [PMID: 35728427 DOI: 10.1016/j.mam.2022.101102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Tocantins C, Diniz MS, Grilo LF, Pereira SP. The birth of cardiac disease: Mechanisms linking gestational diabetes mellitus and early onset of cardiovascular disease in offspring. WIREs Mech Dis 2022; 14:e1555. [PMID: 35304833 DOI: 10.1002/wsbm.1555] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/10/2022] [Accepted: 03/09/2022] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease (CVD) is the biggest killer worldwide, composing a major economic burden for health care systems. Obesity and diabetes are dual epidemics on the rise and major risk factors predisposing for CVD. Increased obesity- and diabetes-related incidence is now observed among children, adolescents, and young adults. Gestational diabetes mellitus (GDM) is the most common metabolic pregnancy disorder, and its prevalence is rapidly increasing. During pregnancies complicated by GDM, the offspring are exposed to a compromised intrauterine environment characterized by hyperglycemic periods. Unfavorable in utero conditions at critical periods of fetal cardiac development can produce developmental adaptations that remodel the cardiovascular system in a way that can contribute to adult-onset of heart disease due to the programming during fetal life. Epidemiological studies have reported increased cardiovascular complications among GDM-descendants, highlighting the urgent need to investigate and understand the mechanisms modulated during fetal development of in utero GDM-exposed offspring that predispose an individual to increased CVD during life. In this manuscript, we overview previous studies in this area and gather evidence linking GDM and CVD development in the offspring, providing new insights on novel mechanisms contributing to offspring CVD programming by GDM, from the role of maternal-fetal interactions to their impact on fetal cardiovascular development, how the perpetuation of cardiac programming is maintained in postnatal life, and advance the intergenerational implications contributing to increased CVD premature origin. Understanding the perpetuation of CVD can be the first step to manage and reverse this leading cause of morbidity and mortality. This article is categorized under: Reproductive System Diseases > Molecular and Cellular Physiology Cardiovascular Diseases > Molecular and Cellular Physiology Metabolic Diseases > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Carolina Tocantins
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Mariana S Diniz
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Luís F Grilo
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Susana P Pereira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Laboratory of Metabolism and Exercise (LametEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, Porto, Portugal
| |
Collapse
|