1
|
Ly TK, Chadili E, Palluel O, Le Menach K, Budzinski H, Tebby C, Hinfray N, Beaudouin R. PBK-TD modelling of the gonadotropic axis: Case study with two azole fungicides in female zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 283:107337. [PMID: 40158424 DOI: 10.1016/j.aquatox.2025.107337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
Endocrine disruptors (EDs) can disrupt the gonadotropic axis, which consists of the Hypothalamus-Pituitary-Gonads (HPG), notably by altering aromatase (cyp19a), a key enzyme regulating the endocrine system and reproductive function in fish. The effects of EDs can be predicted by integrating both toxicokinetic (TK) and toxicodynamic (TD) processes in order to relate adverse outcomes to external exposures. In this study, we developed a physiologically based kinetic-toxicodynamic model to simulate the disruption of the HPG axis (PBK-TD, hereafter named PBK-HPG) in female zebrafish exposed to either of two aromatase inhibitors, imazalil or prochloraz. The model was calibrated using Bayesian methods and supported by novel experimental data, including measurements of vitellogenin, 17β-estradiol, and 11-ketotestosterone levels, along with in vivo monitoring of the cyp19a1a gene in transgenic cyp19a1a-GFP ebrafish. Seamless integration of a PBK model within a TD model of the HPG-axis, provided the link between external exposure and internal levels of imazalil and prochloraz in key organs, allowing for mechanistic predictions of their inhibitory effects on gonadal aromatase. Our PBK-HPG model accurately predicted both baseline homeostasis and the effects of aromatase inhibition, with all endocrine endpoints including reproductive disruption, i.e., decreased egg production, falling within a twofold range of both experimental and literature data. Therefore, our PBK-HPG model could further support the development of a mechanistic qAOP with TK considerations. The model offers significant potential for improving environmental risk assessments of EDs and possibly other stressors across species.
Collapse
Affiliation(s)
- Tu-Ky Ly
- Experimental Toxicology and Modeling Unit, INERIS, Verneuil en Halatte 65550, France; UMR-I 02 SEBIO, INERIS, Université de Reims Champagne-Ardenne, Université Le Havre Normandie, Normandie Univ, Verneuil en Halatte 65550, France; Ecotoxicology of Substances and Environments Unit, INERIS, Verneuil-en-Halatte 65550, France
| | - Edith Chadili
- Ecotoxicology of Substances and Environments Unit, INERIS, Verneuil-en-Halatte 65550, France
| | - Olivier Palluel
- Ecotoxicology of Substances and Environments Unit, INERIS, Verneuil-en-Halatte 65550, France
| | - Karyn Le Menach
- UMR CNRS 5805 EPOC, Université de Bordeaux, Talence 33405, France
| | - Hélène Budzinski
- UMR CNRS 5805 EPOC, Université de Bordeaux, Talence 33405, France
| | - Cleo Tebby
- Experimental Toxicology and Modeling Unit, INERIS, Verneuil en Halatte 65550, France
| | - Nathalie Hinfray
- Ecotoxicology of Substances and Environments Unit, INERIS, Verneuil-en-Halatte 65550, France
| | - Rémy Beaudouin
- Experimental Toxicology and Modeling Unit, INERIS, Verneuil en Halatte 65550, France; UMR-I 02 SEBIO, INERIS, Université de Reims Champagne-Ardenne, Université Le Havre Normandie, Normandie Univ, Verneuil en Halatte 65550, France.
| |
Collapse
|
2
|
Yvinec R, Crépieux P, Reiter E, Poupon A, Clément F. Advances in computational modeling approaches of pituitary gonadotropin signaling. Expert Opin Drug Discov 2018; 13:799-813. [DOI: 10.1080/17460441.2018.1501025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Romain Yvinec
- PRC, INRA, CNRS, IFCE, Université de Tours, Nouzilly, France
| | | | - Eric Reiter
- PRC, INRA, CNRS, IFCE, Université de Tours, Nouzilly, France
| | - Anne Poupon
- PRC, INRA, CNRS, IFCE, Université de Tours, Nouzilly, France
| | - Frédérique Clément
- Inria, Université Paris-Saclay, Palaiseau, France
- LMS, Ecole Polytechnique, CNRS, Université Paris-Saclay, Palaiseau, France
| |
Collapse
|
3
|
Basili D, Zhang JL, Herbert J, Kroll K, Denslow ND, Martyniuk CJ, Falciani F, Antczak P. In Silico Computational Transcriptomics Reveals Novel Endocrine Disruptors in Largemouth Bass ( Micropterus salmoides). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:7553-7565. [PMID: 29878769 DOI: 10.1021/acs.est.8b02805] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In recent years, decreases in fish populations have been attributed, in part, to the effect of environmental chemicals on ovarian development. To understand the underlying molecular events we developed a dynamic model of ovary development linking gene transcription to key physiological end points, such as gonadosomatic index (GSI), plasma levels of estradiol (E2) and vitellogenin (VTG), in largemouth bass ( Micropterus salmoides). We were able to identify specific clusters of genes, which are affected at different stages of ovarian development. A subnetwork was identified that closely linked gene expression and physiological end points and by interrogating the Comparative Toxicogenomic Database (CTD), quercetin and tretinoin (ATRA) were identified as two potential candidates that may perturb this system. Predictions were validated by investigation of reproductive associated transcripts using qPCR in ovary and in the liver of both male and female largemouth bass treated after a single injection of quercetin and tretinoin (10 and 100 μg/kg). Both compounds were found to significantly alter the expression of some of these genes. Our findings support the use of omics and online repositories for identification of novel, yet untested, compounds. This is the first study of a dynamic model that links gene expression patterns across stages of ovarian development.
Collapse
Affiliation(s)
- Danilo Basili
- Institute for Integrative Biology, University of Liverpool , L69 7ZB , Liverpool , United Kingdom
| | - Ji-Liang Zhang
- Henan Open Laboratory of Key Subjects of Environmental and Animal Products Safety, College of Animal Science and Technology , Henan University of Science and Technology , Henan 471003 , China
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine and UF Genetics Institute , University of Florida , Gainesville , Florida 32611 , United States
| | - John Herbert
- Institute for Integrative Biology, University of Liverpool , L69 7ZB , Liverpool , United Kingdom
| | - Kevin Kroll
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine and UF Genetics Institute , University of Florida , Gainesville , Florida 32611 , United States
| | - Nancy D Denslow
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine and UF Genetics Institute , University of Florida , Gainesville , Florida 32611 , United States
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine and UF Genetics Institute , University of Florida , Gainesville , Florida 32611 , United States
| | - Francesco Falciani
- Institute for Integrative Biology, University of Liverpool , L69 7ZB , Liverpool , United Kingdom
| | - Philipp Antczak
- Institute for Integrative Biology, University of Liverpool , L69 7ZB , Liverpool , United Kingdom
| |
Collapse
|
4
|
Lai KP, Li JW, Wang SY, Wan MT, Chan TF, Lui WY, Au DWT, Wu RSS, Kong RYC. Transcriptomic analysis reveals transgenerational effect of hypoxia on the neural control of testicular functions. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 195:41-48. [PMID: 29276994 DOI: 10.1016/j.aquatox.2017.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 06/07/2023]
Abstract
There are over 400 hypoxic zones in the ocean worldwide. Both laboratory and field studies have shown that hypoxia causes endocrine disruption and reproductive impairments in vertebrates. More importantly, our recent study discovered that parental (F0) hypoxia exposure resulted in the transgenerational impairment of sperm quality in the F2 generation through the epigenetic regulation of germ cells. In the present study, we aim to test the hypothesis that the brain, as the major regulator of the brain-pituitary-gonad (BPG) axis, is also involved in the observed transgenerational effect. Using comparative transcriptomic analysis on brain tissues of marine medaka Oryzias melastigma, 45 common differentially expressed genes caused by parental hypoxia exposure were found in the hypoxic group of the F0 and F2 generations, and the transgenerational groups of the F2 generation. The bioinformatic analysis on this deregulated gene cluster further highlighted the possible involvement of the brain in the transgenerational effect of hypoxia on testicular structure, including abnormal morphologies of the epididymis and the seminal vesicle, and degeneration of the seminiferous tubule. This finding is concordant to the result of hematoxylin and eosin staining, which showed the reduction of testicular lobular diameter in the F0 and F2 generations. Our study demonstrated for the first time the involvement of the brain in the transgenerational effect of hypoxia.
Collapse
Affiliation(s)
- Keng Po Lai
- Department of Chemistry, The City University of Hong Kong, Hong Kong Special Administrative Region; State Key Laboratory in Marine Pollution, The City University of Hong Kong, Hong Kong Special Administrative Region.
| | - Jing Woei Li
- Department of Chemistry, The City University of Hong Kong, Hong Kong Special Administrative Region; School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| | - Simon Yuan Wang
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region.
| | - Miles Teng Wan
- Department of Chemistry, The City University of Hong Kong, Hong Kong Special Administrative Region.
| | - Ting Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| | - Wing Yee Lui
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Doris Wai-Ting Au
- Department of Chemistry, The City University of Hong Kong, Hong Kong Special Administrative Region; State Key Laboratory in Marine Pollution, The City University of Hong Kong, Hong Kong Special Administrative Region.
| | - Rudolf Shiu-Sun Wu
- State Key Laboratory in Marine Pollution, The City University of Hong Kong, Hong Kong Special Administrative Region; Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong Special Administrative Region.
| | - Richard Yuen-Chong Kong
- Department of Chemistry, The City University of Hong Kong, Hong Kong Special Administrative Region; State Key Laboratory in Marine Pollution, The City University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
5
|
Forbes VE, Galic N. Next-generation ecological risk assessment: Predicting risk from molecular initiation to ecosystem service delivery. ENVIRONMENT INTERNATIONAL 2016; 91:215-219. [PMID: 26985654 DOI: 10.1016/j.envint.2016.03.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/04/2016] [Accepted: 03/05/2016] [Indexed: 06/05/2023]
Abstract
Ecological risk assessment is the process of evaluating how likely it is that the environment may be impacted as the result of exposure to one or more chemicals and/or other stressors. It is not playing as large a role in environmental management decisions as it should be. A core challenge is that risk assessments often do not relate directly or transparently to protection goals. There have been exciting developments in in vitro testing and high-throughput systems that measure responses to chemicals at molecular and biochemical levels of organization, but the linkage between such responses and impacts of regulatory significance - whole organisms, populations, communities, and ecosystems - are not easily predictable. This article describes some recent developments that are directed at bridging this gap and providing more predictive models that can make robust links between what we typically measure in risk assessments and what we aim to protect.
Collapse
Affiliation(s)
- Valery E Forbes
- Department of Ecology, Evolution, and Behavior, College of Biological Sciences, 123 Snyder Hall, 1475 Gortner Ave, St. Paul, MN 55018, USA.
| | - Nika Galic
- Department of Ecology, Evolution, and Behavior, College of Biological Sciences, 123 Snyder Hall, 1475 Gortner Ave, St. Paul, MN 55018, USA.
| |
Collapse
|
6
|
Gillies K, Krone SM, Nagler JJ, Schultz IR. A Computational Model of the Rainbow Trout Hypothalamus-Pituitary-Ovary-Liver Axis. PLoS Comput Biol 2016; 12:e1004874. [PMID: 27096735 PMCID: PMC4838294 DOI: 10.1371/journal.pcbi.1004874] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 03/17/2016] [Indexed: 01/18/2023] Open
Abstract
Reproduction in fishes and other vertebrates represents the timely coordination of many endocrine factors that culminate in the production of mature, viable gametes. In recent years there has been rapid growth in understanding fish reproductive biology, which has been motivated in part by recognition of the potential effects that climate change, habitat destruction and contaminant exposure can have on natural and cultured fish populations. New approaches to understanding the impacts of these stressors are being developed that require a systems biology approach with more biologically accurate and detailed mathematical models. We have developed a multi-scale mathematical model of the female rainbow trout hypothalamus-pituitary-ovary-liver axis to use as a tool to help understand the functioning of the system and for extrapolation of laboratory findings of stressor impacts on specific components of the axis. The model describes the essential endocrine components of the female rainbow trout reproductive axis. The model also describes the stage specific growth of maturing oocytes within the ovary and permits the presence of sub-populations of oocytes at different stages of development. Model formulation and parametrization was largely based on previously published in vivo and in vitro data in rainbow trout and new data on the synthesis of gonadotropins in the pituitary. Model predictions were validated against several previously published data sets for annual changes in gonadotropins and estradiol in rainbow trout. Estimates of select model parameters can be obtained from in vitro assays using either quantitative (direct estimation of rate constants) or qualitative (relative change from control values) approaches. This is an important aspect of mathematical models as in vitro, cell-based assays are expected to provide the bulk of experimental data for future risk assessments and will require quantitative physiological models to extrapolate across biological scales. Reproduction in fishes and other vertebrates represents the timely coordination of many endocrine factors that culminate in the production of mature, viable gametes. Improving the ability to estimate reproductive performance in fish is important, due to the growth of the aquaculture industry and the need to maintain adequate broodstock and concerns over the effects of anthropogenic stressors on feral fish populations. We present here a quantitative, mathematical model of the female rainbow trout reproductive cycle. We show how the model is able to accurately describe experimentally measured data associated with pituitary, ovarian and liver reproductive performance. We also use the model to describe similar data sets collected in rainbow trout by other researchers. An important value of quantitative biological models is the ability to simulate various physiological conditions, real or hypothetical. We demonstrate this by predicting the effects of exposure to an endocrine disruptor on oocyte growth. The need to limit cost and animal usage will encourage future experimental studies to use in vitro methods. The model presented here can assist with the extrapolation of in vitro effects to the whole fish.
Collapse
Affiliation(s)
- Kendall Gillies
- Battelle, Pacific Northwest National Laboratory, Marine Sciences Laboratory, Sequim, Washington, United States of America
| | - Stephen M. Krone
- University of Idaho, Department of Mathematics, Moscow, Idaho, United States of America
| | - James J. Nagler
- University of Idaho, Department of Biological Sciences and Center for Reproductive Biology, Moscow, Idaho, United States of America
| | - Irvin R. Schultz
- Battelle, Pacific Northwest National Laboratory, Marine Sciences Laboratory, Sequim, Washington, United States of America
- * E-mail:
| |
Collapse
|
7
|
Chishti YZ, Feswick A, Martyniuk CJ. Progesterone increases ex vivo testosterone production and decreases the expression of progestin receptors and steroidogenic enzymes in the fathead minnow (Pimephales promelas) ovary. Gen Comp Endocrinol 2014; 199:16-25. [PMID: 24462459 DOI: 10.1016/j.ygcen.2014.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 11/27/2013] [Accepted: 01/08/2014] [Indexed: 11/24/2022]
Abstract
Progesterone (P4) is a metabolic precursor for a number of steroids, including estrogens and androgens. P4 also has diverse roles within the vertebrate ovary that include oocyte growth and development. The objectives of this study were to measure the effects of P4 on testosterone (T) and 17β-estradiol (E2) production in the fathead minnow (FHM) ovary and on the mRNA abundance of transcripts involved in steroidogenesis and steroid receptor signaling. Ovary explants were treated with P4 (10(-6)M) for 6 and 12h. P4 administration significantly increased T production ∼3-fold at both 6 and 12h, whereas E2 production was not affected, consistent with the hypothesis that excess P4 is not converted to terminal estrogens in the mature ovary. Nuclear progesterone receptor mRNA was decreased at 6h and membrane progesterone receptor gamma-2 mRNA was significantly down-regulated at both 6 and 12h; however there was no change in membrane progesterone receptor alpha or beta mRNA levels. Androgen receptor (ar) and estrogen receptor 2a (esr2a) mRNA were significantly reduced at 6h with P4 treatment, but there was no change in esr2b mRNA at either time point. Transcripts for enzymes in the steroid pathway (star, hsd11b2) were significantly lower at 6h compared to controls, whereas cyp17a and cyp19a mRNA abundance did not change with treatments at either time point. These data suggest that P4 incubation can lead to increased T production in the FHM ovary without a concomitant change in E2, and that the membrane bound progestin receptors are differentially regulated by P4 in the teleost ovary. As environmental progestins have received increased attention due to their suspected role as endocrine disruptors, mechanistic data on the role of exogenous P4 treatments in the male and female gonad is warranted.
Collapse
Affiliation(s)
- Yasmin Z Chishti
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada
| | - April Feswick
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada
| | - Christopher J Martyniuk
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada.
| |
Collapse
|
8
|
Yue H, Ye H, Chen X, Cao H, Li C. Molecular cloning of cDNA of gonadotropin-releasing hormones in the Chinese sturgeon (Acipenser sinensis) and the effect of 17β-estradiol on gene expression. Comp Biochem Physiol A Mol Integr Physiol 2013; 166:529-37. [DOI: 10.1016/j.cbpa.2013.08.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 08/16/2013] [Accepted: 08/21/2013] [Indexed: 10/26/2022]
|
9
|
Harding LB, Schultz IR, Goetz GW, Luckenbach JA, Young G, Goetz FW, Swanson P. High-throughput sequencing and pathway analysis reveal alteration of the pituitary transcriptome by 17α-ethynylestradiol (EE2) in female coho salmon, Oncorhynchus kisutch. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 142-143:146-163. [PMID: 24007788 DOI: 10.1016/j.aquatox.2013.07.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 07/26/2013] [Accepted: 07/31/2013] [Indexed: 06/02/2023]
Abstract
Considerable research has been done on the effects of endocrine disrupting chemicals (EDCs) on reproduction and gene expression in the brain, liver and gonads of teleost fish, but information on impacts to the pituitary gland are still limited despite its central role in regulating reproduction. The aim of this study was to further our understanding of the potential effects of natural and synthetic estrogens on the brain-pituitary-gonad axis in fish by determining the effects of 17α-ethynylestradiol (EE2) on the pituitary transcriptome. We exposed sub-adult coho salmon (Oncorhynchus kisutch) to 0 or 12 ng EE2/L for up to 6 weeks and effects on the pituitary transcriptome of females were assessed using high-throughput Illumina(®) sequencing, RNA-Seq and pathway analysis. After 1 or 6 weeks, 218 and 670 contiguous sequences (contigs) respectively, were differentially expressed in pituitaries of EE2-exposed fish relative to control. Two of the most highly up- and down-regulated contigs were luteinizing hormone β subunit (241-fold and 395-fold at 1 and 6 weeks, respectively) and follicle-stimulating hormone β subunit (-3.4-fold at 6 weeks). Additional contigs related to gonadotropin synthesis and release were differentially expressed in EE2-exposed fish relative to controls. These included contigs involved in gonadotropin releasing hormone (GNRH) and transforming growth factor-β signaling. There was an over-representation of significantly affected contigs in 33 and 18 canonical pathways at 1 and 6 weeks, respectively, including circadian rhythm signaling, calcium signaling, peroxisome proliferator-activated receptor (PPAR) signaling, PPARα/retinoid x receptor α activation, and netrin signaling. Network analysis identified potential interactions between genes involved in circadian rhythm and GNRH signaling, suggesting possible effects of EE2 on timing of reproductive events.
Collapse
Affiliation(s)
- Louisa B Harding
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Breen M, Villeneuve DL, Ankley GT, Bencic DC, Breen MS, Watanabe KH, Lloyd AL, Conolly RB. Developing Predictive Approaches to Characterize Adaptive Responses of the Reproductive Endocrine Axis to Aromatase Inhibition: II. Computational Modeling. Toxicol Sci 2013; 133:234-47. [DOI: 10.1093/toxsci/kft067] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
11
|
Watanabe KH, Andersen ME, Basu N, Carvan MJ, Crofton KM, King KA, Suñol C, Tiffany-Castiglioni E, Schultz IR. Defining and modeling known adverse outcome pathways: Domoic acid and neuronal signaling as a case study. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:9-21. [PMID: 20963854 DOI: 10.1002/etc.373] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
An adverse outcome pathway (AOP) is a sequence of key events from a molecular-level initiating event and an ensuing cascade of steps to an adverse outcome with population-level significance. To implement a predictive strategy for ecotoxicology, the multiscale nature of an AOP requires computational models to link salient processes (e.g., in chemical uptake, toxicokinetics, toxicodynamics, and population dynamics). A case study with domoic acid was used to demonstrate strategies and enable generic recommendations for developing computational models in an effort to move toward a toxicity testing paradigm focused on toxicity pathway perturbations applicable to ecological risk assessment. Domoic acid, an algal toxin with adverse effects on both wildlife and humans, is a potent agonist for kainate receptors (ionotropic glutamate receptors whose activation leads to the influx of Na(+) and Ca²(+)). Increased Ca²(+) concentrations result in neuronal excitotoxicity and cell death, primarily in the hippocampus, which produces seizures, impairs learning and memory, and alters behavior in some species. Altered neuronal Ca²(+) is a key process in domoic acid toxicity, which can be evaluated in vitro. Furthermore, results of these assays would be amenable to mechanistic modeling for identifying domoic acid concentrations and Ca²(+) perturbations that are normal, adaptive, or clearly toxic. In vitro assays with outputs amenable to measurement in exposed populations can link in vitro to in vivo conditions, and toxicokinetic information will aid in linking in vitro results to the individual organism. Development of an AOP required an iterative process with three important outcomes: a critically reviewed, stressor-specific AOP; identification of key processes suitable for evaluation with in vitro assays; and strategies for model development.
Collapse
|
12
|
Nichols JW, Breen M, Denver RJ, Distefano JJ, Edwards JS, Hoke RA, Volz DC, Zhang X. Predicting chemical impacts on vertebrate endocrine systems. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:39-51. [PMID: 20963851 DOI: 10.1002/etc.376] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Animals have evolved diverse protective mechanisms for responding to toxic chemicals of both natural and anthropogenic origin. From a governmental regulatory perspective, these protective responses complicate efforts to establish acceptable levels of chemical exposure. To explore this issue, we considered vertebrate endocrine systems as potential targets for environmental contaminants. Using the hypothalamic-pituitary-thyroid (HPT), hypothalamic-pituitary-gonad (HPG), and hypothalamic-pituitary-adrenal (HPA) axes as case examples, we identified features of these systems that allow them to accommodate and recover from chemical insults. In doing so, a distinction was made between effects on adults and those on developing organisms. This distinction was required because endocrine system disruption in early life stages may alter development of organs and organ systems, resulting in permanent changes in phenotypic expression later in life. Risk assessments of chemicals that impact highly regulated systems must consider the dynamics of these systems in relation to complex environmental exposures. A largely unanswered question is whether successful accommodation to a toxic insult exerts a fitness cost on individual animals, resulting in adverse consequences for populations. Mechanistically based mathematical models of endocrine systems provide a means for better understanding accommodation and recovery. In the short term, these models can be used to design experiments and interpret study findings. Over the long term, a set of validated models could be used to extrapolate limited in vitro and in vivo testing data to a broader range of untested chemicals, species, and exposure scenarios. With appropriate modification, Tier 2 assays developed in support of the U.S. Environmental Protection Agency's Endocrine Disruptor Screening Program could be used to assess the potential for accommodation and recovery and inform the development of mechanistically based models.
Collapse
Affiliation(s)
- John W Nichols
- U.S. Environmental Protection Agency, Duluth, Minnesota, USA.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Time course analysis of microarray data for the pathway of reproductive development in female rainbow trout. Stat Anal Data Min 2009. [DOI: 10.1002/sam.10047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Chattoraj A, Seth M, Basu A, Shrivastav TG, Porta S, Maitra SK. Temporal relationship between the circulating profiles of melatonin and ovarian steroids under natural photo-thermal conditions in an annual reproductive cycle in carpCatla catla. BIOL RHYTHM RES 2009. [DOI: 10.1080/09291010802404218] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Watanabe KH, Li Z, Kroll KJ, Villeneuve DL, Garcia-Reyero N, Orlando EF, Sepúlveda MS, Collette TW, Ekman DR, Ankley GT, Denslow ND. A Computational Model of the Hypothalamic-Pituitary-Gonadal Axis in Male Fathead Minnows Exposed to 17α-Ethinylestradiol and 17β-Estradiol. Toxicol Sci 2009; 109:180-92. [DOI: 10.1093/toxsci/kfp069] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|