1
|
Agostini VO, Martinez ST, Muxagata E, Macedo AJ, Pinho GLL. Antifouling activity of isonitrosoacetanilides against microfouling and macrofouling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26435-26444. [PMID: 36367651 DOI: 10.1007/s11356-022-24016-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Biofouling is responsible for structural and economic damage to man-made surfaces. Antifouling paints with biocides have been applied to structures to avoid organism adhesion; however, they have high toxicity and are not able to prevent all biofouling processes, necessitating the periodic mechanical removal of organisms and paint reapplication. Thus, there is an urgent demand for novel, effective, and environmentally friendly antifouling alternatives. As isonitrosoacetanilide is the precursor for many compounds with antibacterial activity, we believe that it could have antifouling activity against microfouling and, consequently, against macrofouling. The aim of this work was to investigate the antifouling potential of six isonitrosoacetanilide compounds and their toxicity. The compounds were employed at different concentrations (0.625-1.25-2.5-5-10 µg mL-1) in this study. The biofilm and planktonic bacteria inhibition and biofilm eradication potential were evaluated by crystal violet assay, while Amphibalus amphitrite barnacle settlement was evaluated by cyprid settlement assay. Toxicity evaluation (LC50 and EC50) was performed with A. amphitrite nauplii II and cyprid larvae. At least one of the tested concentrations of 4-Br-INA, 4-CH3-INA, and 2-Br-INA compounds showed nontoxic antifouling activity against microfouling (antibiofilm) and macrofouling (antisettlement). However, only 4-CH3-INA and 2-Br-INA also showed biofilm eradication potential. These compounds with antibiofilm activity and nontoxic effects could be combined with acrylic base paint resin or added directly into commercial paints in place of toxicant biocides to cover artificial structures as friendly antifouling agents.
Collapse
Affiliation(s)
- Vanessa Ochi Agostini
- Regenera Moléculas do Mar, Centro de Biotecnologia da Universidade Federal do Rio Grande Do Sul (UFRGS), Av. Bento Gonçalves, 9500, Bairro Agronomia, Porto Alegre, RS, 91501-970, Brazil.
| | - Sabrina Teixeira Martinez
- Centro Interdisciplinar em Energia e Ambiente-CIEnAm, Universidade Federal da Bahia, Salvador, BA, 40170-115, Brazil
- Centro Universitário SENAI-CIMATEC, Salvador, BA, 41650-010, Brazil
| | - Erik Muxagata
- Laboratório de Zooplâncton, Instituto de Oceanografia da Universidade Federal do Rio Grande (FURG), Av. Itália, Km 8, Caixa Postal, 474, Rio Grande, RS, 96203-900, Brazil
| | - Alexandre José Macedo
- Laboratório de Biofilmes e Diversidade Microbiana, Centro de Biotecnologia da, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Bairro Agronomia, Porto Alegre, RS, 91501-900, Brazil
| | - Grasiela Lopes Leães Pinho
- Laboratório de Microcontaminantes Orgânicos e Ecotoxicologia Aquática, Instituto de Oceanografia da Universidade Federal do Rio Grande (FURG), Caixa Postal, 474, CEP, Rio Grande, RS, 96203-900, Brazil
| |
Collapse
|
2
|
Experimental evidence of antimicrobial activity in Antarctic seaweeds: ecological role and antibiotic potential. Polar Biol 2022. [DOI: 10.1007/s00300-022-03036-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
AbstractSeaweeds contain a wide range of secondary metabolites which serve multiple functions, including chemical and ecological mediation with microorganisms. Moreover, owing to their diverse bioactivity, including their antibiotic properties, they show potential for human use. Nonetheless, the chemical ecology of seaweeds is not equally understood across different regions; for example, Antarctic seaweeds are among the lesser studied groups. With the aim of improving our current understanding of the chemical ecology and potential bioactivity of Antarctic seaweeds, we performed a screening of antibiotic activity using crude extracts from 22 Antarctic macroalgae species. Extractions were performed separating lipophilic and hydrophilic fractions at natural concentrations. Antimicrobial activity assays were performed using the disk diffusion method against seven Antarctic bacteria and seven human pathogenic surrogates. Our results showed that red seaweeds (especially Delisea pulchra) inhibited a larger number of microorganisms compared with brown seaweeds, and that lipophilic fractions were more active than hydrophilic ones. Both types of bacteria tested (Gram negative and Gram positive) were inhibited, especially by butanolic fractions, suggesting a trend of non-specific chemical defence. However, Gram-negative bacteria and one pathogenic fungus showed greater resistance. Our study contributes to the evidence of antimicrobial chemical interactions between Antarctic seaweeds and sympatric microorganisms, as well as the potential of seaweed extracts for pharmacological applications.
Collapse
|
3
|
Marine Terpenoids from Polar Latitudes and Their Potential Applications in Biotechnology. Mar Drugs 2020; 18:md18080401. [PMID: 32751369 PMCID: PMC7459527 DOI: 10.3390/md18080401] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 01/03/2023] Open
Abstract
Polar marine biota have adapted to thrive under one of the ocean’s most inhospitable scenarios, where extremes of temperature, light photoperiod and ice disturbance, along with ecological interactions, have selected species with a unique suite of secondary metabolites. Organisms of Arctic and Antarctic oceans are prolific sources of natural products, exhibiting wide structural diversity and remarkable bioactivities for human applications. Chemical skeletons belonging to terpene families are the most commonly found compounds, whereas cytotoxic antimicrobial properties, the capacity to prevent infections, are the most widely reported activities from these environments. This review firstly summarizes the regulations on access and benefit sharing requirements for research in polar environments. Then it provides an overview of the natural product arsenal from Antarctic and Arctic marine organisms that displays promising uses for fighting human disease. Microbes, such as bacteria and fungi, and macroorganisms, such as sponges, macroalgae, ascidians, corals, bryozoans, echinoderms and mollusks, are the main focus of this review. The biological origin, the structure of terpenes and terpenoids, derivatives and their biotechnological potential are described. This survey aims to highlight the chemical diversity of marine polar life and the versatility of this group of biomolecules, in an effort to encourage further research in drug discovery.
Collapse
|
4
|
Ciavatta ML, Lefranc F, Vieira LM, Kiss R, Carbone M, van Otterlo WAL, Lopanik NB, Waeschenbach A. The Phylum Bryozoa: From Biology to Biomedical Potential. Mar Drugs 2020; 18:E200. [PMID: 32283669 PMCID: PMC7230173 DOI: 10.3390/md18040200] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/31/2020] [Accepted: 04/06/2020] [Indexed: 01/06/2023] Open
Abstract
Less than one percent of marine natural products characterized since 1963 have been obtained from the phylum Bryozoa which, therefore, still represents a huge reservoir for the discovery of bioactive metabolites with its ~6000 described species. The current review is designed to highlight how bryozoans use sophisticated chemical defenses against their numerous predators and competitors, and which can be harbored for medicinal uses. This review collates all currently available chemoecological data about bryozoans and lists potential applications/benefits for human health. The core of the current review relates to the potential of bryozoan metabolites in human diseases with particular attention to viral, brain, and parasitic diseases. It additionally weighs the pros and cons of total syntheses of some bryozoan metabolites versus the synthesis of non-natural analogues, and explores the hopes put into the development of biotechnological approaches to provide sustainable amounts of bryozoan metabolites without harming the natural environment.
Collapse
Affiliation(s)
- Maria Letizia Ciavatta
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB), Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (M.L.C.); (M.C.)
| | - Florence Lefranc
- Service de Neurochirurgie, Hôpital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Leandro M. Vieira
- Departamento de Zoologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil;
| | - Robert Kiss
- Retired – formerly at the Fonds National de la Recherche Scientifique (FRS-FNRS), 1000 Brussels, Belgium;
| | - Marianna Carbone
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB), Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (M.L.C.); (M.C.)
| | - Willem A. L. van Otterlo
- Department of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa;
| | - Nicole B. Lopanik
- School of Earth and Atmospheric Sciences, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | | |
Collapse
|
5
|
Figuerola B, Avila C. The Phylum Bryozoa as a Promising Source of Anticancer Drugs. Mar Drugs 2019; 17:E477. [PMID: 31426556 PMCID: PMC6722838 DOI: 10.3390/md17080477] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/31/2022] Open
Abstract
Recent advances in sampling and novel techniques in drug synthesis and isolation have promoted the discovery of anticancer agents from marine organisms to combat this major threat to public health worldwide. Bryozoans, which are filter-feeding, aquatic invertebrates often characterized by a calcified skeleton, are an excellent source of pharmacologically interesting compounds including well-known chemical classes such as alkaloids and polyketides. This review covers the literature for secondary metabolites isolated from marine cheilostome and ctenostome bryozoans that have shown potential as cancer drugs. Moreover, we highlight examples such as bryostatins, the most known class of marine-derived compounds from this animal phylum, which are advancing through anticancer clinical trials due to their low toxicity and antineoplastic activity. The bryozoan antitumor compounds discovered until now show a wide range of chemical diversity and biological activities. Therefore, more research focusing on the isolation of secondary metabolites with potential anticancer properties from bryozoans and other overlooked taxa covering wider geographic areas is needed for an efficient bioprospecting of natural products.
Collapse
Affiliation(s)
- Blanca Figuerola
- Institute of Marine Sciences (ICM-CSIC), Pg. Marítim de la Barceloneta 37-49, Barcelona 08003, Catalonia, Spain.
| | - Conxita Avila
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, and Biodiversity Research Institute (IrBIO), Faculty of Biology, University of Barcelona, Av. Diagonal 643, Barcelona 08028, Catalonia, Spain
| |
Collapse
|
6
|
Tripathi VC, Satish S, Horam S, Raj S, lal A, Arockiaraj J, Pasupuleti M, Dikshit DK. Natural products from polar organisms: Structural diversity, bioactivities and potential pharmaceutical applications. POLAR SCIENCE 2018; 18:147-166. [DOI: 10.1016/j.polar.2018.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
|
7
|
Bacteria Associated with Marine Benthic Invertebrates from Polar Environments: Unexplored Frontiers for Biodiscovery? DIVERSITY-BASEL 2018. [DOI: 10.3390/d10030080] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ecological function of bacteria-invertebrate interactions in Polar areas remains poorly understood, despite increasing evidence that microbial metabolites may play pivotal roles in host-associated chemical defense and in shaping the symbiotic community structure. The metabolic and physiological changes that these organisms undergo in response to adapting to extreme conditions result in the production of structurally and functionally novel biologically active molecules. Deepening our knowledge on the interactions between bacteria and their invertebrate host would be highly helpful in providing the rationale for why (e.g., competition or cooperative purpose) and which (whether secondary metabolites, enzymes, or proteins) bioactive compounds are produced. To date, cold-adapted bacteria associated with marine invertebrates from the Arctic and Antarctica have not been given the attention they deserve and the versatility of their natural products remains virtually unexplored, even if they could represent a new attractive frontier in the search for novel natural compounds. This review is aimed at showcasing the diversity of cold-adapted bacteria associated with benthic invertebrates from Polar marine areas, highlighting the yet unexplored treasure they represent for biodiscovery.
Collapse
|
8
|
López Y, Cepas V, Soto SM. The Marine Ecosystem as a Source of Antibiotics. GRAND CHALLENGES IN MARINE BIOTECHNOLOGY 2018. [DOI: 10.1007/978-3-319-69075-9_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
9
|
Hansen KØ, Isaksson J, Bayer A, Johansen JA, Andersen JH, Hansen E. Securamine Derivatives from the Arctic Bryozoan Securiflustra securifrons. JOURNAL OF NATURAL PRODUCTS 2017; 80:3276-3283. [PMID: 29220180 DOI: 10.1021/acs.jnatprod.7b00703] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Bryozoans belonging to the Flustridae family have proven to be a rich source of structurally unique secondary metabolites. As part of our continuing search for bioactive secondary metabolites from Arctic marine invertebrates, the organic extract of Securiflustra securifrons was examined. This resulted in the isolation of three new halogenated, hexacyclic indole-imidazole alkaloids, securamines H-J (1-3), together with the previously reported compounds securamines C (4) and E (5). The structures of the new compounds were elucidated by spectroscopic methods including 1D and 2D NMR and analysis of HRMS data. Through NMR and HRMS analysis, we were also able to prove that 1, 2, 4, and 5, when dissolved in MeOH, were converted into their corresponding artifacts, the securamine MeOH adducts m1, m2, m4, and m5. When redissolved in a non-nucleophilic solvent, the native variants were re-formed. We also found that 3 was a MeOH addition product of a native variant. Even though the structures of several securamines have been reported, their bioactivities were not examined. The securamines displayed various degrees of cytotoxicity against the human cancer cell lines A2058 (skin), HT-29 (colon), and MCF-7 (breast), as well as against nonmalignant human MRC-5 lung fibroblasts. Compounds 1, 2, and 5 were found to be active, with IC50 values against the cancer cell lines ranging from 1.4 ± 0.1 to 10 ± 1 μM. The cytotoxicity of 1 was further evaluated and found to be time-dependent.
Collapse
Affiliation(s)
- Kine Ø Hansen
- Marbio, UiT The Arctic University of Norway , Breivika, N-9037 Tromsø, Norway
| | - Johan Isaksson
- Department of Chemistry, UiT The Arctic University of Norway , Breivika, N-9037 Tromsø, Norway
| | - Annette Bayer
- Department of Chemistry, UiT The Arctic University of Norway , Breivika, N-9037 Tromsø, Norway
| | - Jostein A Johansen
- Department of Chemistry, UiT The Arctic University of Norway , Breivika, N-9037 Tromsø, Norway
| | - Jeanette H Andersen
- Marbio, UiT The Arctic University of Norway , Breivika, N-9037 Tromsø, Norway
| | - Espen Hansen
- Marbio, UiT The Arctic University of Norway , Breivika, N-9037 Tromsø, Norway
| |
Collapse
|
10
|
Figuerola B, Angulo-Preckler C, Núñez-Pons L, Moles J, Sala-Comorera L, García-Aljaro C, Blanch AR, Avila C. Experimental evidence of chemical defence mechanisms in Antarctic bryozoans. MARINE ENVIRONMENTAL RESEARCH 2017; 129:68-75. [PMID: 28487162 DOI: 10.1016/j.marenvres.2017.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/19/2017] [Accepted: 04/26/2017] [Indexed: 06/07/2023]
Abstract
Bryozoans are among the most abundant and diverse members of the Antarctic benthos, however the role of bioactive metabolites in ecological interactions has been scarcely studied. To extend our knowledge about the chemical ecology of Antarctic bryozoans, crude ether extracts (EE) and butanol extracts (BE) obtained from two Antarctic common species (Cornucopina pectogemma and Nematoflustra flagellata), were tested for antibacterial and repellent activities. The extracts were screened for quorum quenching and antibacterial activities against four Antarctic bacterial strains (Bacillus aquimaris, Micrococcus sp., Oceanobacillus sp. and Paracoccus sp.). The Antarctic amphipod Cheirimedon femoratus and the sea star Odontaster validus were selected as sympatric predators to perform anti-predatory and substrate preference assays. No quorum quenching activity was detected in any of the extracts, while all EE exhibited growth inhibition towards at least one bacterium strain. Although the species were not repellent against the sea star, they caused repellence to the amphipods in both extracts, suggesting that defence activities against predation derive from both lipophilic and hydrophilic metabolites. In the substrate preference assays, one EE and one BE deriving from different specimens of the species C. pectogemma were active. This study reveals intraspecific variability of chemical defences and supports the fact that chemically mediated interactions are common in Antarctic bryozoans as means of protection against fouling and predation.
Collapse
Affiliation(s)
- Blanca Figuerola
- Department of Evolutionary Biology, Ecology, and Environmental Sciences and Biodiversity Research Institute (IrBIO), University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Catalonia, Spain.
| | - Carlos Angulo-Preckler
- Department of Evolutionary Biology, Ecology, and Environmental Sciences and Biodiversity Research Institute (IrBIO), University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Catalonia, Spain
| | - Laura Núñez-Pons
- Department of Biology and Evolution of Marine Organisms (BEOM) Stazione Zoologica 'Anton Dohrn' (SZN), Villa Comunale 80121, Naples, Italy; Smithsonian Tropical Research Institute (STRI), Bocas del Toro Labs, Panama
| | - Juan Moles
- Department of Evolutionary Biology, Ecology, and Environmental Sciences and Biodiversity Research Institute (IrBIO), University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Catalonia, Spain
| | - Laura Sala-Comorera
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Catalonia, Spain
| | - Cristina García-Aljaro
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Catalonia, Spain
| | - Anicet R Blanch
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Catalonia, Spain
| | - Conxita Avila
- Department of Evolutionary Biology, Ecology, and Environmental Sciences and Biodiversity Research Institute (IrBIO), University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
11
|
Kollar P, Šmejkal K, Salmonová H, Vlková E, Lepšová-Skácelová O, Balounová Z, Rajchard J, Cvačka J, Jaša L, Babica P, Pazourek J. Assessment of Chemical Impact of Invasive Bryozoan Pectinatella magnifica on the Environment: Cytotoxicity and Antimicrobial Activity of P. magnifica Extracts. Molecules 2016; 21:E1476. [PMID: 27827926 PMCID: PMC6272939 DOI: 10.3390/molecules21111476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 10/23/2016] [Accepted: 10/31/2016] [Indexed: 11/16/2022] Open
Abstract
Pectinatella magnifica, an invasive bryozoan, might significantly affect ecosystem balance due to its massive occurrence in many areas in Europe and other parts of the world. Biological and chemical analyses are needed to get complete information about the impact of the animal on the environment. In this paper, we aimed to evaluate in vitro cytotoxic effects of five extracts prepared from P. magnifica using LDH assay on THP-1 cell line. Antimicrobial activities of extracts against 22 different bacterial strains were tested by microdilution method. Our study showed that all extracts tested, except aqueous portion, demonstrated LD50 values below 100 μg/mL, which indicates potential toxicity. The water extract of P. magnifica with LD50 value of 250 μg/mL also shows potentially harmful effects. Also, an environmental risk resulting from the presence and increasing biomass of potentially toxic benthic cyanobacteria in old colonies should not be underestimated. Toxicity of Pectinatella extracts could be partially caused by presence of Aeromonas species in material, since we found members of these genera as most abundant bacteria associated with P. magnifica. Furthermore, P. magnifica seems to be a promising source of certain antimicrobial agents. Its methanolic extract, hexane, and chloroform fractions possessed selective inhibitory effect on some potential pathogens and food spoiling bacteria in the range of MIC 0.5-10 mg/mL. Future effort should be made to isolate and characterize the content compounds derived from P. magnifica, which could help to identify the substance(s) responsible for the toxic effects of P. magnifica extracts.
Collapse
Affiliation(s)
- Peter Kollar
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackého tř. 1946/1, Brno 61242, Czech Republic.
| | - Karel Šmejkal
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackého tř. 1946/1, Brno 61242, Czech Republic.
| | - Hana Salmonová
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 16521, Czech Republic.
| | - Eva Vlková
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 16521, Czech Republic.
| | - Olga Lepšová-Skácelová
- Department of Botany, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 31, České Budějovice 37005, Czech Republic.
| | - Zuzana Balounová
- Department of Biological Studies, Faculty of Agriculture, University of South Bohemia in České Budějovice, Studentská 13, České Budějovice 37005, Czech Republic.
| | - Josef Rajchard
- Department of Biological Studies, Faculty of Agriculture, University of South Bohemia in České Budějovice, Studentská 13, České Budějovice 37005, Czech Republic.
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, Prague 16610, Czech Republic.
| | - Libor Jaša
- RECETOX-Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 753/5, Brno 60200, Czech Republic.
- Department of Experimental Phycology and Ecotoxicology, Institute of Botany, Academy of Sciences of the Czech Republic, Lidická 25/27, Brno 60200, Czech Republic.
| | - Pavel Babica
- RECETOX-Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 753/5, Brno 60200, Czech Republic.
- Department of Experimental Phycology and Ecotoxicology, Institute of Botany, Academy of Sciences of the Czech Republic, Lidická 25/27, Brno 60200, Czech Republic.
| | - Jiří Pazourek
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackého tř. 1946/1, Brno 61242, Czech Republic.
| |
Collapse
|
12
|
Avila C. Biological and chemical diversity in Antarctica: from new species to new natural products. ACTA ACUST UNITED AC 2016. [DOI: 10.1080/14888386.2016.1176957] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Conxita Avila
- Department of Animal Biology, Biodiversity Research Institute, University of Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
13
|
Núñez-Pons L, Avila C. Natural products mediating ecological interactions in Antarctic benthic communities: a mini-review of the known molecules. Nat Prod Rep 2015; 32:1114-30. [PMID: 25693047 DOI: 10.1039/c4np00150h] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Out of the many bioactive compounds described from the oceans, only a small fraction have been studied for their ecological significance. Similarly, most chemically mediated interactions are not well understood, because the molecules involved remain unrevealed. In Antarctica, this gap in knowledge is even more acute in comparison to tropical or temperate regions, even though polar organisms are also prolific producers of chemical defenses, and pharmacologically relevant products are being reported from the Southern Ocean. The extreme and unique marine environments surrounding Antarctica along with the numerous unusual interactions taking place in benthic communities are expected to select for novel functional secondary metabolites. There is an urgent need to comprehend the evolutionary role of marine derived substances in general, and particularly at the Poles, since molecules of keystone significance are vital in species survival, and therefore, in structuring the communities. Here we provide a mini-review on the identified marine natural products proven to have an ecological function in Antarctic ecosystems. This report recapitulates some of the bibliography from original Antarctic reviews, and updates the new literature in the field from 2009 to the present.
Collapse
|