1
|
Eliason EJ, Hardison EA. The impacts of diet on cardiac performance under changing environments. J Exp Biol 2024; 227:jeb247749. [PMID: 39392076 PMCID: PMC11491816 DOI: 10.1242/jeb.247749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Natural and anthropogenic stressors are dramatically altering environments, impacting key animal physiological traits, including cardiac performance. Animals require energy and nutrients from their diet to support cardiac performance and plasticity; however, the nutritional landscape is changing in response to environmental perturbations. Diet quantity, quality and options vary in space and time across heterogeneous environments, over the lifetime of an organism and in response to environmental stressors. Variation in dietary energy and nutrients (e.g. lipids, amino acids, vitamins, minerals) impact the heart's structure and performance, and thus whole-animal resilience to environmental change. Notably, many animals can alter their diet in response to environmental cues, depending on the context. Yet, most studies feed animals ad libitum using a fixed diet, thus underestimating the role of food in impacting cardiac performance and resilience. By applying an ecological lens to the study of cardiac plasticity, this Commentary aims to further our understanding of cardiac function in the context of environmental change.
Collapse
Affiliation(s)
- Erika J. Eliason
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Faculty of Science, Kwantlen Polytechnic University, Langley, BC, Canada, V3W 2M8
| | - Emily A. Hardison
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
2
|
Bhardwaj S, Thakur K, Sharma AK, Sharma D, Brar B, Mahajan D, Kumar S, Kumar R. Regulation of omega-3 fatty acids production by different genes in freshwater fish species: a review. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:1005-1016. [PMID: 37684550 DOI: 10.1007/s10695-023-01236-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
The present study aims to compare the gene expression of three different fish species (common carp, tilapia, and trout) with varying levels of fatty acids (FA). Based on transcriptome analysis and RNA sequencing, various genes and their associated metabolic pathways are identified. Pathways are categorized based on the genes they encode. Genes that were differentially expressed and their promoter's methylation patterns were revealed by RNA-seq analysis in common carp. Furthermore, fatty acid-enriched pathways, such as ARA4 and adipocytokine signaling, were also identified. Many genes and pathways may influence tilapia's growth and omega-3 content. Using the mTOR pathway, trout with differential expression were discovered to be involved in producing omega-3 fatty acids. This study revealed major pathways in fish species to produce omega-3 fatty acids.
Collapse
Affiliation(s)
- Shivani Bhardwaj
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, 176206, India
| | - Kushal Thakur
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, 176206, India
| | - Amit Kumar Sharma
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, 176206, India
| | - Dixit Sharma
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, 176206, India
| | - Bhavna Brar
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, 176206, India
| | - Danish Mahajan
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, 176206, India
| | - Sunil Kumar
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, 176206, India
| | - Rakesh Kumar
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, 176206, India.
| |
Collapse
|
3
|
Závorka L, Blanco A, Chaguaceda F, Cucherousset J, Killen SS, Liénart C, Mathieu-Resuge M, Němec P, Pilecky M, Scharnweber K, Twining CW, Kainz MJ. The role of vital dietary biomolecules in eco-evo-devo dynamics. Trends Ecol Evol 2023; 38:72-84. [PMID: 36182405 DOI: 10.1016/j.tree.2022.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 12/30/2022]
Abstract
The physiological dependence of animals on dietary intake of vitamins, amino acids, and fatty acids is ubiquitous. Sharp differences in the availability of these vital dietary biomolecules among different resources mean that consumers must adopt a range of strategies to meet their physiological needs. We review the emerging work on omega-3 long-chain polyunsaturated fatty acids, focusing predominantly on predator-prey interactions, to illustrate that trade-off between capacities to consume resources rich in vital biomolecules and internal synthesis capacity drives differences in phenotype and fitness of consumers. This can then feedback to impact ecosystem functioning. We outline how focus on vital dietary biomolecules in eco-eco-devo dynamics can improve our understanding of anthropogenic changes across multiple levels of biological organization.
Collapse
Affiliation(s)
- Libor Závorka
- WasserCluster Lunz - Biologische Station, Inter-university Centre for Aquatic Ecosystem Research, A-3293 Lunz am See, Austria.
| | - Andreu Blanco
- Centro de Investigación Mariña, Universidade de Vigo, EcoCost, Campus de Vigo, As Lagoas, Marcosende, 36310, Vigo, Spain
| | - Fernando Chaguaceda
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, 750 07 Uppsala, Sweden
| | - Julien Cucherousset
- Laboratoire Evolution et Diversité Biologique (UMR 5174 EDB), CNRS, Université Paul Sabatier - Toulouse III, 31062 Toulouse, France
| | - Shaun S Killen
- School of Biodiversity, One Health & Veterinary Medicine, Graham Kerr Building, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Camilla Liénart
- Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, Hanko, 10900, Finland
| | - Margaux Mathieu-Resuge
- WasserCluster Lunz - Biologische Station, Inter-university Centre for Aquatic Ecosystem Research, A-3293 Lunz am See, Austria; Université de Brest, CNRS, IRD, Ifremer, LEMAR, 29280 Plouzané, Brittany, France; UMR DECOD (Ecosystem Dynamics and Sustainability), Ifremer, INRAE, Institut Agro, Plouzané, France
| | - Pavel Němec
- Department of Zoology, Faculty of Science, Charles University, CZ-12844 Prague, Czech Republic
| | - Matthias Pilecky
- WasserCluster Lunz - Biologische Station, Inter-university Centre for Aquatic Ecosystem Research, A-3293 Lunz am See, Austria; Danube University Krems, Dr. Karl Dorrek Straße 30, A-3500 Krems, Austria
| | - Kristin Scharnweber
- University of Potsdam, Plant Ecology and Nature Conservation, Am Mühlenberg 3, 14476 Potsdam, Germany
| | - Cornelia W Twining
- Department of Fish Ecology and Evolution, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, CH-6047 Kastanienbaum, Switzerland
| | - Martin J Kainz
- WasserCluster Lunz - Biologische Station, Inter-university Centre for Aquatic Ecosystem Research, A-3293 Lunz am See, Austria; Danube University Krems, Dr. Karl Dorrek Straße 30, A-3500 Krems, Austria
| |
Collapse
|
4
|
Závorka L, Wallerius ML, Kainz MJ, Höjesjö J. Linking omega-3 polyunsaturated fatty acids in natural diet with brain size of wild consumers. Oecologia 2022; 199:797-807. [PMID: 35960390 DOI: 10.1007/s00442-022-05229-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 07/20/2022] [Indexed: 01/27/2023]
Abstract
Omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) are key structural lipids and their dietary intake is essential for brain development of virtually all vertebrates. The importance of n-3 LC-PUFA has been demonstrated in clinical and laboratory studies, but little is known about how differences in the availability of n-3 LC-PUFA in natural prey influence brain development of wild consumers. Consumers foraging at the interface of aquatic and terrestrial food webs can differ substantially in their intake of n-3 LC-PUFA, which may lead to differences in brain development, yet this hypothesis remains to be tested. Here we use the previously demonstrated shift towards higher reliance on n-3 LC-PUFA deprived terrestrial prey of native brown trout Salmo trutta living in sympatry with invasive brook trout Salvelinus fontinalis to explore this hypothesis. We found that the content of n-3 LC-PUFA in muscle tissues of brown trout decreased with increasing consumption of n-3 LC-PUFA deprived terrestrial prey. Brain volume was positively related to the content of the n-3 LC-PUFA, docosahexaenoic acid, in muscle tissues of brown trout. Our study thus suggests that increased reliance on diets low in n-3 LC-PUFA, such as terrestrial subsidies, can have a significant negative impact on brain development of wild trout. Our findings provide the first evidence of how brains of wild vertebrate consumers response to scarcity of n-3 LC-PUFA content in natural prey.
Collapse
Affiliation(s)
- Libor Závorka
- WasserCluster Lunz, Inter-university Centre for Aquatic Ecosystem Research, 3293, Lunz am See, Austria.
| | - Magnus Lovén Wallerius
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, 405 30, Gothenburg, Sweden
| | - Martin J Kainz
- WasserCluster Lunz, Inter-university Centre for Aquatic Ecosystem Research, 3293, Lunz am See, Austria
- Department of Biomedical Research, Danube University Krems, 3500, Krems, Austria
| | - Johan Höjesjö
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, 405 30, Gothenburg, Sweden
| |
Collapse
|
5
|
Voituron Y, Roussel D, Teulier L, Vagner M, Ternon Q, Romestaing C, Dubillot E, Lefrancois C. Warm Acclimation Increases Mitochondrial Efficiency in Fish: A Compensatory Mechanism to Reduce the Demand for Oxygen. Physiol Biochem Zool 2021; 95:15-21. [PMID: 34813413 DOI: 10.1086/716904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractIn ectotherms, it is well described that thermal acclimation induces compensatory adjustments maintaining mitochondrial functions across large shifts in temperature. However, until now, studies mostly focused on fluxes of oxygen without knowing whether mitochondrial efficiency to produce ATP (ATP/O ratio) is also dependent on temperature acclimation. We thus measured thermal reaction norms of oxidative phosphorylation activity and efficiency in isolated mitochondria from skeletal muscle of sea bass (Dicentrarchus labrax) juveniles acclimated at optimal (22°C), low (18°C), and high (26°C) temperatures. The mitochondrial fluxes (oxygen consumption and ATP synthesis) increased with increasing assay temperatures and were on the whole higher in fishes acclimated at 18°C than in the other two groups. However, these mitochondrial rates were not significantly different between experimental groups when they were compared at the acclimation temperature. In contrast, we show that acclimation to high, and not low, temperature improved mitochondrial efficiency (on average >15%). This higher efficiency in high-temperature-acclimated fishes is also apparent when compared at respective acclimation temperatures. This mitochondrial phenotype would favor an economical management of oxygen in response to harsh energetic constraints associated with warming water.
Collapse
|
6
|
Závorka L, Crespel A, Dawson NJ, Papatheodoulou M, Killen SS, Kainz MJ. Climate change‐induced deprivation of dietary essential fatty acids can reduce growth and mitochondrial efficiency of wild juvenile salmon. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13860] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Libor Závorka
- WasserCluster Lunz – Inter‐University Centre for Aquatic Ecosystem Research Lunz am See Austria
- Institute of Biodiversity Animal Health & Comparative Medicine Graham Kerr Building College of Medical, Veterinary & Life Sciences University of Glasgow Glasgow UK
| | - Amelie Crespel
- Institute of Biodiversity Animal Health & Comparative Medicine Graham Kerr Building College of Medical, Veterinary & Life Sciences University of Glasgow Glasgow UK
| | - Neal J. Dawson
- Institute of Biodiversity Animal Health & Comparative Medicine Graham Kerr Building College of Medical, Veterinary & Life Sciences University of Glasgow Glasgow UK
| | - Magdalene Papatheodoulou
- Institute of Biodiversity Animal Health & Comparative Medicine Graham Kerr Building College of Medical, Veterinary & Life Sciences University of Glasgow Glasgow UK
| | - Shaun S. Killen
- Institute of Biodiversity Animal Health & Comparative Medicine Graham Kerr Building College of Medical, Veterinary & Life Sciences University of Glasgow Glasgow UK
| | - Martin J. Kainz
- WasserCluster Lunz – Inter‐University Centre for Aquatic Ecosystem Research Lunz am See Austria
| |
Collapse
|