1
|
Strople LC, Vieweg I, Yadetie F, Odei DK, Thorsen A, Karlsen OA, Goksøyr A, Sørensen L, Sarno A, Hansen BH, Frantzen M, Hansen ØJ, Puvanendran V, Nahrgang J. Spawning time in adult polar cod ( Boreogadus saida) altered by crude oil exposure, independent of food availability. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2025; 88:43-66. [PMID: 37395093 DOI: 10.1080/15287394.2023.2228535] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Fish early life stages are well known for their sensitivity to crude oil exposure. However, the effect of crude oil exposure on adults and their gametes during their spawning period is not well studied. Polar cod, a key arctic fish, may be at risk for crude oil exposure during this potentially sensitive life stage. Additionally, this species experiences lower food availability during their spawning season, with unknown combined consequences. In the present study, wild-caught polar cod were exposed to decreasing levels of a water-soluble fraction (WSF) of crude oil or control conditions and fed either at a low or high feed ration to assess the combined effect of both stressors. Samples were taken during late gonadal development, during active spawning (spawning window), and in the post-spawning period. Histology analysis of gonads from fish sampled during the spawning window showed that oil-exposed polar cod were more likely to have spawned compared to controls. Oil-exposed females had 947 differentially regulated hepatic genes, and their eggs had a higher polycyclic aromatic hydrocarbon body burden compared to controls. Feed ration did not consistently affect polar cod's response to oil exposure for the endpoints measured, however, did alone result in decreases in some sperm motility parameters. These results suggest that polar cod's spawning period is a sensitive life event to crude oil exposure, while feed limitation may play a minor role for this supposedly capital breeder. The effects of adult exposure to crude oil on gamete quality and the next generation warrant further investigation.
Collapse
Affiliation(s)
- Leah C Strople
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ireen Vieweg
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Fekadu Yadetie
- Department of Biological Sciences, University of Bergen, Tromsø, Norway
| | - Derrick Kwame Odei
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | | | - Odd André Karlsen
- Department of Biological Sciences, University of Bergen, Tromsø, Norway
| | - Anders Goksøyr
- Department of Biological Sciences, University of Bergen, Tromsø, Norway
| | - Lisbet Sørensen
- Department of Climate and Environment, SINTEF Ocean, Trondheim, Norway
| | - Antonio Sarno
- Department of Climate and Environment, SINTEF Ocean, Trondheim, Norway
| | | | | | | | | | - Jasmine Nahrgang
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
2
|
Wang X, Li X, Xiong D, Ren H, Chen H, Ju Z. Exposure of adult sea urchin Strongylocentrotus intermedius to stranded heavy fuel oil causes developmental toxicity on larval offspring. PeerJ 2022; 10:e13298. [PMID: 35462773 PMCID: PMC9029359 DOI: 10.7717/peerj.13298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/28/2022] [Indexed: 01/13/2023] Open
Abstract
Heavy fuel oil (HFO) spills pose serious threat to coastlines and sensitive resources. Stranded HFO that occurs along the coastline could cause long-term and massive damage to the marine environment and indirectly affect the survival of parental marine invertebrates. However, our understanding of the complex associations within invertebrates is primarily limited, particularly in terms of the toxicity effects on the offspring when parents are exposed to stranded HFO. Here, we investigated the persistent effects on the early development stage of the offspring following stranded HFO exposure on the sea urchin Strongylocentrotus intermedius. After 21 d exposure, sea urchins exhibited a significant decrease in the reproductive capacity; while the reactive oxygen species level, 3-nitrotyrosine protein level, protein carbonyl level, and heat shock proteins 70 expression in the gonadal tissues and gametes significantly increased as compared to the controls, indicating that HFO exposure could cause development toxicity on offspring in most traits of larval size. These results suggested that the stranded HFO exposure could increase oxidative stress of gonadal tissues, impair reproductive functions in parental sea urchins, and subsequently impact on development of their offspring. This study provides valuable information regarding the persistent toxicity effects on the offspring following stranded HFO exposure on sea urchins.
Collapse
|