1
|
Venkatachalam AB, Parmar MB, Wright JM. Evolution of the duplicated intracellular lipid-binding protein genes of teleost fishes. Mol Genet Genomics 2017; 292:699-727. [PMID: 28389698 DOI: 10.1007/s00438-017-1313-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 02/15/2017] [Indexed: 12/18/2022]
Abstract
Increasing organismal complexity during the evolution of life has been attributed to the duplication of genes and entire genomes. More recently, theoretical models have been proposed that postulate the fate of duplicated genes, among them the duplication-degeneration-complementation (DDC) model. In the DDC model, the common fate of a duplicated gene is lost from the genome owing to nonfunctionalization. Duplicated genes are retained in the genome either by subfunctionalization, where the functions of the ancestral gene are sub-divided between the sister duplicate genes, or by neofunctionalization, where one of the duplicate genes acquires a new function. Both processes occur either by loss or gain of regulatory elements in the promoters of duplicated genes. Here, we review the genomic organization, evolution, and transcriptional regulation of the multigene family of intracellular lipid-binding protein (iLBP) genes from teleost fishes. Teleost fishes possess many copies of iLBP genes owing to a whole genome duplication (WGD) early in the teleost fish radiation. Moreover, the retention of duplicated iLBP genes is substantially higher than the retention of all other genes duplicated in the teleost genome. The fatty acid-binding protein genes, a subfamily of the iLBP multigene family in zebrafish, are differentially regulated by peroxisome proliferator-activated receptor (PPAR) isoforms, which may account for the retention of iLBP genes in the zebrafish genome by the process of subfunctionalization of cis-acting regulatory elements in iLBP gene promoters.
Collapse
Affiliation(s)
- Ananda B Venkatachalam
- Department of Biology, Dalhousie University, 1355 Oxford Street, PO BOX 15000, Halifax, NS, B3H 4R2, Canada
| | - Manoj B Parmar
- Department of Biology, Dalhousie University, 1355 Oxford Street, PO BOX 15000, Halifax, NS, B3H 4R2, Canada
| | - Jonathan M Wright
- Department of Biology, Dalhousie University, 1355 Oxford Street, PO BOX 15000, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
2
|
Xu H, Zhang Y, Wang C, Wei Y, Zheng K, Liang M. Cloning and characterization of fatty acid-binding proteins (fabps) from Japanese seabass (Lateolabrax japonicus) liver, and their gene expressions in response to dietary arachidonic acid (ARA). Comp Biochem Physiol B Biochem Mol Biol 2017; 204:27-34. [DOI: 10.1016/j.cbpb.2016.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/04/2016] [Accepted: 11/14/2016] [Indexed: 11/16/2022]
|
3
|
Kaitetzidou E, Chatzifotis S, Antonopoulou E, Sarropoulou E. Identification, Phylogeny, and Function of fabp2 Paralogs in Two Non-Model Teleost Fish Species. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:663-677. [PMID: 26272429 DOI: 10.1007/s10126-015-9648-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/22/2015] [Indexed: 06/04/2023]
Abstract
Intestinal fatty-acid-binding protein (IFABP or FABP2) is a cytosolic transporter of long-chain fatty acids, which is mainly expressed in cells of intestinal tissue. Fatty acids in teleosts are an important source of energy for growth, reproduction, and swimming and a main ingredient in the yolk sac of embryos and larvae. The fabp2 paralogs, fabp2a and fabp2b, were identified for 26 teleost fish species including the paralogs for the two non-model teleost fish species, namely the gilthead sea bream (Sparus aurata) and the European sea bass (Dicentrarchus labrax). Despite the high similarity of fabp2 paralogs, as well as the identical organization in four exons, paralogs were mapped to different chromosomes/linkage groups supporting the hypothesis that the identified transcripts are true paralogs originating from a single ancestor gene after genome duplication. This was also confirmed by phylogenetic analysis using fabp2 sequences of 26 teleosts and by synteny analysis carried out with ten teleosts. Differential expression analysis of the gilthead sea bream and European sea bass fabp2 paralogs in the intestine after fasting and refeeding experiment further revealed their altered implication in metabolism. Additional expression studies in seven developmental stages of the two species detected fabp2 paralogs relatively early in the embryonic development as well as possible complementary or separated roles of the paralogs. The identification and characterization of the two fabp2 paralogs will contribute significantly to the understanding of the fabp2 evolution as well as of the divergences in fatty acid metabolism.
Collapse
Affiliation(s)
- Elisavet Kaitetzidou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Thalassocosmos, Gournes Pediados, P.O. Box 2214, 71003, Heraklion, Crete, Greece
| | | | | | | |
Collapse
|
4
|
Bayır M, Bayır A, Wright JM. Divergent spatial regulation of duplicated fatty acid-binding protein (fabp) genes in rainbow trout (Oncorhynchus mykiss). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2015; 14:26-32. [DOI: 10.1016/j.cbd.2015.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/10/2015] [Accepted: 02/12/2015] [Indexed: 12/14/2022]
|
5
|
Liu L, Li C, Su B, Beck BH, Peatman E. Short-term feed deprivation alters immune status of surface mucosa in channel catfish (Ictalurus punctatus). PLoS One 2013; 8:e74581. [PMID: 24023952 PMCID: PMC3762756 DOI: 10.1371/journal.pone.0074581] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 08/04/2013] [Indexed: 12/31/2022] Open
Abstract
Short-term feed deprivation (or fasting) is a common occurrence in aquacultured fish species whether due to season, production strategies, or disease. In channel catfish (Ictalurus punctatus) fasting impacts susceptibility to several bacterial pathogens including Flavobacterium columnare, the causative agent of columnaris disease. As columnaris gains entry through the gills and skin of fish, we examined here changes in transcriptional regulation induced in these surface mucosal tissues due to short-term (7 day) fasting. RNA-seq expression analysis revealed a total of 1,545 genes perturbed by fasting. Fasting significantly altered expression of critical innate immune factors in a manner consistent with lower immune fitness as well as dysregulating key genes involved in energy metabolism and cell cycling/proliferation. Downregulation of innate immune actors such as iNOS2b, Lysozyme C, and peptidoglycan recognition protein 6 is predicted to impact the delicate recognition/tolerance balance for commensal and pathogenic bacteria on the skin and gill. The highlighted expression profiles reveal potential mechanistic similarities between gut and surface mucosa and underscore the complex interrelationships between nutrition, mucosal integrity, and immunity in teleost fish.
Collapse
Affiliation(s)
- Lisa Liu
- Department of Chemistry and Chemical Biology, College of Arts and Sciences, Cornell University, Ithaca, New York, United States of America
| | - Chao Li
- Department of Fisheries and Allied Aquacultures, Auburn University, Auburn, Alabama, United States of America
| | - Baofeng Su
- Department of Fisheries and Allied Aquacultures, Auburn University, Auburn, Alabama, United States of America
| | - Benjamin H. Beck
- United States Department of Agriculture, Agricultural Research Service, Stuttgart National Aquaculture Research Center, Stuttgart, Arkansas, United States of America
| | - Eric Peatman
- Department of Fisheries and Allied Aquacultures, Auburn University, Auburn, Alabama, United States of America
- * E-mail:
| |
Collapse
|
6
|
Venold FF, Penn MH, Thorsen J, Gu J, Kortner TM, Krogdahl A, Bakke AM. Intestinal fatty acid binding protein (fabp2) in Atlantic salmon (Salmo salar): Localization and alteration of expression during development of diet induced enteritis. Comp Biochem Physiol A Mol Integr Physiol 2013; 164:229-40. [PMID: 23000355 DOI: 10.1016/j.cbpa.2012.09.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 09/14/2012] [Accepted: 09/14/2012] [Indexed: 01/28/2023]
Abstract
In the present study full-length cDNAs corresponding to three isoforms of intestinal fatty acid binding protein (fabp2) in Atlantic salmon were cloned and characterized. Gene expression of fabp2 was observed in all tissues investigated, although differences were observed between isoforms. The highest fabp2a1, fabp2a2, and fabp2b expression was in the intestine. A 15kDa protein, corresponding to putative Fabp2 protein, was identified by immunoblotting using anti-human Fabp2 antibody. Immunoblotting and immunohistochemistry confirmed that Fabp2 protein was present in most Atlantic salmon tissues. Similar to gene expression, intestinal tissues had the highest Fabp2 protein levels, decreasing gradually from proximal to distal intestine. During development of distal intestinal inflammation caused by dietary soybean meal from 0 to 21days, Fabp2 decreased significantly on both transcriptional and protein levels. The reduction in Fabp2 was preceded by a down regulation of peroxisome proliferator activated receptor (ppar) alpha and gamma, fabp2's presumed regulatory proteins, and followed by a progressive increase in proliferating cell nuclear antigen (Pcna) staining. Results illustrate that the early decline of distal intestinal fabp2 was likely caused by a down regulation of their regulatory proteins, but at later time points reduced Fabp2 may largely be due to a less mature enterocyte population resulting from rapid cell turnover.
Collapse
Affiliation(s)
- Fredrik F Venold
- Department of Basic Sciences and Aquatic Medicine, Norwegian School of Veterinary Science, P.O. Box 8146 Dep, NO-0033 Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
7
|
Lai YY, Lubieniecki KP, Koop BF, Davidson WS. Characterization of the Atlantic salmon (Salmo salar) brain-type fatty acid binding protein (fabp7) genes reveals the fates of teleost fabp7 genes following whole genome duplications. Gene 2012; 504:253-61. [DOI: 10.1016/j.gene.2012.04.089] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 04/23/2012] [Accepted: 04/30/2012] [Indexed: 12/21/2022]
|
8
|
Chen XW, Jiang S, Shi ZY. Identification and expression analysis of fabp2 gene from common carp Cyprinus carpio. JOURNAL OF FISH BIOLOGY 2012; 80:679-691. [PMID: 22380561 DOI: 10.1111/j.1095-8649.2011.03203.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Two complementary (c)DNA fragments, including the complete open reading frame of fabp2 from the common carp Cyprinus carpio, were cloned by reverse-transcription polymerase chain reaction (RT-PCR). Both were putative intestinal-type fabp genes, named fabp2a and fabp2b. fabp2b was mainly expressed in the intestine and the brain. This gene, however, was nearly not expressed in the liver, heart, pancreas and muscle. fabp2a was only expressed at a very low level in the intestine. Western blot also showed that Fabp2 is relatively highly expressed in the intestine and the brain. Immunohistochemical analysis revealed that Fabp2 is widely distributed in the mucosa of the intestine. These findings provide novel insights into the fabp2 gene molecular evolution, as well as its potential features in the intestine and the brain.
Collapse
Affiliation(s)
- X W Chen
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | | | | |
Collapse
|
9
|
Davidson WS, Koop BF, Jones SJM, Iturra P, Vidal R, Maass A, Jonassen I, Lien S, Omholt SW. Sequencing the genome of the Atlantic salmon (Salmo salar). Genome Biol 2010; 11:403. [PMID: 20887641 PMCID: PMC2965382 DOI: 10.1186/gb-2010-11-9-403] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The International Collaboration to Sequence the Atlantic Salmon Genome (ICSASG) will produce a genome sequence that identifies and physically maps all genes in the Atlantic salmon genome and acts as a reference sequence for other salmonids.
Collapse
Affiliation(s)
- William S Davidson
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby BC, V5A 1S6, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|