1
|
Turner LA, Easton AA, Ferguson MM, Danzmann RG. Differences in gene expression between high and low tolerance rainbow trout (Oncorhynchus mykiss) to acute thermal stress. PLoS One 2025; 20:e0312694. [PMID: 39775350 PMCID: PMC11709236 DOI: 10.1371/journal.pone.0312694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 10/10/2024] [Indexed: 01/11/2025] Open
Abstract
Understanding the mechanisms that underlie the adaptive response of ectotherms to rising temperatures is key to mitigate the effects of climate change. We assessed the molecular and physiological processes that differentiate between rainbow trout (Oncorhynchus mykiss) with high and low tolerance to acute thermal stress. To achieve our goal, we used a critical thermal maximum trial in two strains of rainbow trout to elicit loss of equilibrium responses to identify high and low tolerance fish. We then compared the hepatic transcriptome profiles of high and low tolerance fish relative to untreated controls common to both strains to uncover patterns of differential gene expression and to gain a broad perspective on the interacting gene pathways and functional processes involved. We observed some of the classic responses to increased temperature (e.g., induction of heat shock proteins) but these responses were not the defining factors that differentiated high and low tolerance fish. Instead, high tolerance fish appeared to suppress growth-related functions, enhance certain autophagy components, better regulate neurodegenerative processes, and enhance stress-related protein synthesis, specifically spliceosomal complex activities, mRNA regulation, and protein processing through post-translational processes, relative to low tolerance fish. In contrast, low tolerance fish had higher transcript diversity and demonstrated elevated developmental, cytoskeletal, and morphogenic, as well as lipid and carbohydrate metabolic processes, relative to high tolerance fish. Our results suggest that high tolerance fish engaged in processes that supported the prevention of further damage by enhancing repair pathways, whereas low tolerance fish were more focused on replacing damaged cells and their structures.
Collapse
Affiliation(s)
- Leah A. Turner
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Anne A. Easton
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
- Ontario Aquaculture Research Centre, University of Guelph, Elora, Ontario, Canada
| | - Moira M. Ferguson
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Roy G. Danzmann
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
2
|
Rayamajhi N, Rivera-Colón AG, Minhas BF, Cheng CHC, Catchen JM. The genome of the cryopelagic Antarctic bald notothen, Trematomus borchgrevinki. G3 (BETHESDA, MD.) 2025; 15:jkae267. [PMID: 39549265 PMCID: PMC11708224 DOI: 10.1093/g3journal/jkae267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/18/2024]
Abstract
The Antarctic bald notothen, Trematomus borchgrevinki (family Nototheniidae) occupies a high latitude, ice-laden environment and represents an extreme example of cold-specialization among fishes. We present the first, high-quality, chromosome-scale genome of a female T. borchgrevinki individual comprised of 23 putative chromosomes, the largest of which is 65 megabasepairs (Mbp) in length. The total length of the genome 935.13 Mbp, composed of 2,094 scaffolds, with a scaffold N50 of 42.67 Mbp. Annotation yielded 22,192 protein-coding genes while 54.75% of the genome was occupied by repetitive elements; an analysis of repeats demonstrated that an expansion occurred in recent time. Conserved synteny analysis revealed that the genome architecture of T. borchgrevinki is largely maintained with other members of the notothenioid clade, although several significant translocations and inversions are present, including the fusion of orthologous chromosomes 8 and 11 into a single element. This genome will serve as a cold-specialized model for comparisons to other members of the notothenioid adaptive radiation.
Collapse
Affiliation(s)
- Niraj Rayamajhi
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Angel G Rivera-Colón
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, United States
| | - Bushra Fazal Minhas
- Informatics Program, University of Illinois at Urbana-Champaign, Urbana, IL 61820, United States
| | - C H Christina Cheng
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Julian M Catchen
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| |
Collapse
|
3
|
Dowd WW, Kültz D. Lost in translation? Evidence for a muted proteomic response to thermal stress in a stenothermal Antarctic fish and possible evolutionary mechanisms. Physiol Genomics 2024; 56:721-740. [PMID: 39250150 DOI: 10.1152/physiolgenomics.00051.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/06/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024] Open
Abstract
Stenothermal Antarctic notothenioid fishes are noteworthy for their history of isolation in extreme cold and their corresponding lack of the canonical heat shock response. Despite extensive transcriptomic studies, the mechanistic basis for stenothermy has not been fully elucidated. Given that the proteome better represents an organism's physiology, the possibility exists that some aspects of stenothermy arise posttranscriptionally. Here, Antarctic emerald rockcod (Trematomus bernacchii) were sampled after exposure to chronic and/or acute high temperatures, followed by a thorough assessment of proteomic responses in the brain, gill, and kidney. Few cellular stress response proteins were induced, and overall responses were modest in terms of the numbers of differentially expressed proteins and their fold changes. Inconsistencies in protein induction across treatments and tissues are suggestive of dysregulation, rather than an adaptive response. Changes in regulation of the translational machinery in Antarctic notothenioids could explain these patterns. Some components of translational regulatory pathways are highly conserved [e.g., Ser-52, eukaryotic translation initiation factor 2α (eIF2α)], but other proteins comprising the cellular "integrated stress response," specifically, the eIF2α kinases general control nonderepressible 2 (GCN2) and PKR-like endoplasmic reticulum kinase (PERK), may have evolved along different trajectories in Antarctic fishes. Taken together, these observations suggest a novel hypothesis for stenothermy and the absence of a coordinated cellular stress response in Antarctic fishes.NEW & NOTEWORTHY Antarctic fishes have some of the lowest known heat tolerances among vertebrates, but the molecular mechanisms underlying this pattern are not fully understood. By combining detailed analyses of protein expression patterns in several tissues under various heat treatments with a broader evolutionary perspective, this study offers a novel hypothesis to explain the narrow range of temperature tolerance in this extraordinary group of fishes.
Collapse
Affiliation(s)
- W Wesley Dowd
- School of Biological Sciences, Washington State University, Pullman, Washington, United States
| | - Dietmar Kültz
- Physiological Genomics Group, Department of Animal Science and Genome Center, University of California, Davis, California, United States
| |
Collapse
|
4
|
Xiao W, Guo B, Tan J, Liu C, Jiang D, Yu H, Geng Z. Transcriptomic Analysis of Hippocampus abdominalis Larvae Under High Temperature Stress. Genes (Basel) 2024; 15:1345. [PMID: 39457469 PMCID: PMC11507362 DOI: 10.3390/genes15101345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
OBJECTIVES Acute temperature stress was explored in Hippocampus abdominalis through a comprehensive RNA-seq analysis. METHODS RNA-seq was conducted on 20-day-old H. abdominalis after 24 h of temperature stress. Four experimental conditions were established: a control group (18 °C) and three temperature treatment groups (21, 24, and 27 °C). RESULTS Seahorse larvae were found to be unaffected by 21 °C and 24 °C and were able to survive for short periods of time during 24 h of incubation, whereas mortality approached 50% at 27 °C. The sequencing process produced 75.63 Gb of high-quality clean data, with Q20 and Q30 base percentages surpassing 98% and 96%, respectively. A total of 141, 333, and 1598 differentially expressed genes were identified in the 21, 24, and 27 °C groups vs. a control comparison group, respectively. Notably, the number of up-regulated genes was consistently higher than that of down-regulated genes across all comparisons. Gene Ontology functional annotation revealed that differentially expressed genes were predominantly associated with metabolic processes, redox reactions, and biosynthetic functions. In-depth KEGG pathway enrichment analysis demonstrated that down-regulated genes were significantly enriched in pathways related to steroid biosynthesis, terpenoid backbone biosynthesis, spliceosome function, and DNA replication. Up-regulated genes were enriched in pathways associated with the FoxO signaling pathway and mitophagy (animal). The results indicated that temperature stress induced extensive changes in gene expression in H. abdominalis, involving crucial biological processes such as growth, biosynthesis, and energy metabolism. CONCLUSIONS This study provided key molecular mechanisms in the response of H. abdominalis to temperature stress, offering a strong basis for future research aimed at understanding and mitigating the effects of environmental stressors on marine species.
Collapse
Affiliation(s)
- Wenjie Xiao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (W.X.); (J.T.); (D.J.); (H.Y.); (Z.G.)
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China;
| | - Baoying Guo
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China;
| | - Jie Tan
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (W.X.); (J.T.); (D.J.); (H.Y.); (Z.G.)
| | - Changlin Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (W.X.); (J.T.); (D.J.); (H.Y.); (Z.G.)
| | - Da Jiang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (W.X.); (J.T.); (D.J.); (H.Y.); (Z.G.)
| | - Hao Yu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (W.X.); (J.T.); (D.J.); (H.Y.); (Z.G.)
| | - Zhen Geng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (W.X.); (J.T.); (D.J.); (H.Y.); (Z.G.)
| |
Collapse
|
5
|
Saravia J, Nualart D, Paschke K, Pontigo JP, Navarro JM, Vargas-Chacoff L. Temperature and immune challenges modulate the transcription of genes of the ubiquitin and apoptosis pathways in two high-latitude Notothenioid fish across the Antarctic Polar Front. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1429-1443. [PMID: 38658493 DOI: 10.1007/s10695-024-01348-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
Thermal variations due to global climate change are expected to modify the distributions of marine ectotherms, with potential pathogen translocations. This is of particular concern at high latitudes where cold-adapted stenothermal fish such as the Notothenioids occur. However, little is known about the combined effects of thermal fluctuations and immune challenges on the balance between cell damage and repair processes in these fish. The aim of this study was to determine the effect of thermal variation on specific genes involved in the ubiquitination and apoptosis pathways in two congeneric Notothenioid species, subjected to simulated bacterial and viral infections. Adult fish of Harpagifer bispinis and Harpagifer antarcticus were collected from Punta Arenas (Chile) and King George Island (Antarctica), respectively, and distributed as follows: injected with PBS (control), LPS (2.5 mg/kg) or Poly I:C (2 mg/kg) and then submitted to 2, 5 and 8 °C. After 1 week, samples of gills, liver and spleen were taken to evaluate the expression by real-time PCR of specific genes involved in ubiquitination (E3-ligase enzyme) and apoptosis (BAX and SMAC/DIABLO). Gene expression was tissue-dependent and increased with increasing temperature in the gills and liver while showing an opposite pattern in the spleen. Studying a pair of sister species that occur across the Antarctic Polar Front can help us understand the particular pressures of intertidal lifestyles and the effect of temperature in combination with biological stressors on cell damage and repair capacity in a changing environment.
Collapse
Affiliation(s)
- Julia Saravia
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile.
- Laboratorio de Genómica y Ecología Molecular Antártica y Sub-Antártica (LAGEMAS), Universidad Austral de Chile, Valdivia, Chile.
- Centro Fondap de Investigación de Altas Latitudes (Fondap IDEAL), Universidad Austral de Chile, Valdivia, Chile.
- Millenium Institute Biodiversity of Antarctic and Subantarctic Ecosystems, BASE, Universidad Austral de Chile, Valdivia, Chile.
| | - Daniela Nualart
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
- Escuela de Graduados, Programa de Doctorado en Ciencias de La Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile
- Millenium Institute Biodiversity of Antarctic and Subantarctic Ecosystems, BASE, Universidad Austral de Chile, Valdivia, Chile
| | - Kurt Paschke
- Centro Fondap de Investigación de Altas Latitudes (Fondap IDEAL), Universidad Austral de Chile, Valdivia, Chile
- Instituto de Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile
| | - Juan Pablo Pontigo
- Laboratorio Institucional, Facultad de Ciencias de La Naturaleza, Universidad San Sebastián, Puerto Montt, Chile
| | - Jorge M Navarro
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
- Centro Fondap de Investigación de Altas Latitudes (Fondap IDEAL), Universidad Austral de Chile, Valdivia, Chile
| | - Luis Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile.
- Centro Fondap de Investigación de Altas Latitudes (Fondap IDEAL), Universidad Austral de Chile, Valdivia, Chile.
- Millenium Institute Biodiversity of Antarctic and Subantarctic Ecosystems, BASE, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
6
|
O'Brien KM, Rix AS, Jasmin A, Lavelle E. The hypoxia response pathway in the Antarctic fish Notothenia coriiceps is functional despite a poly Q/E insertion mutation in HIF-1α. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101218. [PMID: 38412701 PMCID: PMC11128347 DOI: 10.1016/j.cbd.2024.101218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 02/29/2024]
Abstract
Antarctic notothenioid fishes, inhabiting the oxygen-rich Southern Ocean, possess a polyglutamine and glutamic acid (poly Q/E) insertion mutation in the master transcriptional regulator of oxygen homeostasis, hypoxia- inducible factor-1α (HIF-1α). To determine if this mutation impairs the ability of HIF-1 to regulate gene expression in response to hypoxia, we exposed Notothenia coriiceps, with a poly Q/E insertion mutation in HIF-1α that is 9 amino acids long, to hypoxia (2.3 mg L-1 O2) or normoxia (10 mg L -1 O2) for 12 h. Heart ventricles, brain, liver, and gill tissue were harvested and changes in gene expression quantified using RNA sequencing. Levels of glycogen and lactate were also quantified to determine if anaerobic metabolism increases in response to hypoxia. Exposure to hypoxia resulted in 818 unique differentially expressed genes (DEGs) in liver tissue of N. coriiceps. Many hypoxic genes were induced, including ones involved in the MAP kinase and FoxO pathways, glycolytic metabolism, and vascular remodeling. In contrast, there were fewer than 104 unique DEGs in each of the other tissues sampled. Lactate levels significantly increased in liver in response to hypoxia, indicating that anaerobic metabolism increases in response to hypoxia in this tissue. Overall, our results indicate that the hypoxia response pathway is functional in N. coriiceps despite a poly Q/E mutation in HIF-1α, and confirm that Antarctic fishes are capable of altering gene expression in response to hypoxia.
Collapse
Affiliation(s)
- K M O'Brien
- University of Alaska Fairbanks, Institute of Arctic Biology and Department of Biology & Wildlife, Fairbanks, AK 99775, USA.
| | - A S Rix
- University of Alaska Fairbanks, Institute of Arctic Biology and Department of Biology & Wildlife, Fairbanks, AK 99775, USA.
| | - A Jasmin
- University of Alaska Fairbanks, Institute of Arctic Biology and Department of Biology & Wildlife, Fairbanks, AK 99775, USA
| | - E Lavelle
- National Center for Genome Resources, Santa Fe, NM 87505, USA.
| |
Collapse
|
7
|
Ryder D, Stone D, Minardi D, Riley A, Avant J, Cross L, Soeffker M, Davidson D, Newman A, Thomson P, Darby C, van Aerle R. De novo assembly and annotation of the Patagonian toothfish (Dissostichus eleginoides) genome. BMC Genomics 2024; 25:233. [PMID: 38438840 PMCID: PMC10910785 DOI: 10.1186/s12864-024-10141-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/19/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Patagonian toothfish (Dissostichus eleginoides) is an economically and ecologically important fish species in the family Nototheniidae. Juveniles occupy progressively deeper waters as they mature and grow, and adults have been caught as deep as 2500 m, living on or in just above the southern shelves and slopes around the sub-Antarctic islands of the Southern Ocean. As apex predators, they are a key part of the food web, feeding on a variety of prey, including krill, squid, and other fish. Despite its importance, genomic sequence data, which could be used for more accurate dating of the divergence between Patagonian and Antarctic toothfish, or establish whether it shares adaptations to temperature with fish living in more polar or equatorial climes, has so far been limited. RESULTS A high-quality D. eleginoides genome was generated using a combination of Illumina, PacBio and Omni-C sequencing technologies. To aid the genome annotation, the transcriptome derived from a variety of toothfish tissues was also generated using both short and long read sequencing methods. The final genome assembly was 797.8 Mb with a N50 scaffold length of 3.5 Mb. Approximately 31.7% of the genome consisted of repetitive elements. A total of 35,543 putative protein-coding regions were identified, of which 50% have been functionally annotated. Transcriptomics analysis showed that approximately 64% of the predicted genes (22,617 genes) were found to be expressed in the tissues sampled. Comparative genomics analysis revealed that the anti-freeze glycoprotein (AFGP) locus of D. eleginoides does not contain any AFGP proteins compared to the same locus in the Antarctic toothfish (Dissostichus mawsoni). This is in agreement with previously published results looking at hybridization signals and confirms that Patagonian toothfish do not possess AFGP coding sequences in their genome. CONCLUSIONS We have assembled and annotated the Patagonian toothfish genome, which will provide a valuable genetic resource for ecological and evolutionary studies on this and other closely related species.
Collapse
Affiliation(s)
- David Ryder
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Lowestoft, Suffolk, UK.
| | - David Stone
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Lowestoft, Suffolk, UK
| | - Diana Minardi
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Lowestoft, Suffolk, UK
| | - Ainsley Riley
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Lowestoft, Suffolk, UK
| | - Justin Avant
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Lowestoft, Suffolk, UK
| | - Lisa Cross
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Lowestoft, Suffolk, UK
| | - Marta Soeffker
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Lowestoft, Suffolk, UK
- Collaborative Centre for Sustainable Use of the Seas, University of East Anglia, Norwich, UK
| | | | | | | | - Chris Darby
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Lowestoft, Suffolk, UK
| | - Ronny van Aerle
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Lowestoft, Suffolk, UK
- Centre for Sustainable Aquaculture Futures , University of Exeter, Exeter, UK
| |
Collapse
|
8
|
O’Brien KM, Oldham CA, Sarrimanolis J, Fish A, Castellini L, Vance J, Lekanof H, Crockett EL. Warm acclimation alters antioxidant defences but not metabolic capacities in the Antarctic fish, Notothenia coriiceps. CONSERVATION PHYSIOLOGY 2022; 10:coac054. [PMID: 35935168 PMCID: PMC9346567 DOI: 10.1093/conphys/coac054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/14/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
The Southern Ocean surrounding the Western Antarctic Peninsula region is rapidly warming. Survival of members of the dominant suborder of Antarctic fishes, the Notothenioidei, will likely require thermal plasticity and adaptive capacity in key traits delimiting thermal tolerance. Herein, we have assessed the thermal plasticity of several cellular and biochemical pathways, many of which are known to be associated with thermal tolerance in notothenioids, including mitochondrial function, activities of aerobic and anaerobic enzymes, antioxidant defences, protein ubiquitination and degradation in cardiac, oxidative skeletal muscles and gill of Notothenia coriiceps warm acclimated to 4°C for 22 days or 5°C for 42 days. Levels of triacylglycerol (TAG) were measured in liver and oxidative and glycolytic skeletal muscles, and glycogen in liver and glycolytic muscle to assess changes in energy stores. Metabolic pathways displayed minimal thermal plasticity, yet antioxidant defences were lower in heart and oxidative skeletal muscles of warm-acclimated animals compared with animals held at ambient temperature. Despite higher metabolic rates at elevated temperature, energy storage depots of TAG and glycogen increase in liver and remain unchanged in muscle with warm acclimation. Overall, our studies reveal that N. coriiceps displays thermal plasticity in some key traits that may contribute to their survival as the Southern Ocean continues to warm.
Collapse
Affiliation(s)
- Kristin M O’Brien
- Institute of Arctic Biology, University of Alaska, Fairbanks, AK 99775 USA
| | - Corey A Oldham
- Institute of Arctic Biology, University of Alaska, Fairbanks, AK 99775 USA
| | - Jon Sarrimanolis
- Institute of Arctic Biology, University of Alaska, Fairbanks, AK 99775 USA
| | - Autumn Fish
- Institute of Arctic Biology, University of Alaska, Fairbanks, AK 99775 USA
| | - Luke Castellini
- Institute of Arctic Biology, University of Alaska, Fairbanks, AK 99775 USA
| | - Jenna Vance
- Department of Biological Sciences, Ohio University, Athens, OH 45701 USA
| | - Hayley Lekanof
- Institute of Arctic Biology, University of Alaska, Fairbanks, AK 99775 USA
| | | |
Collapse
|
9
|
Baag S, Mandal S. Combined effects of ocean warming and acidification on marine fish and shellfish: A molecule to ecosystem perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149807. [PMID: 34450439 DOI: 10.1016/j.scitotenv.2021.149807] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/06/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
It is expected that by 2050 human population will exceed nine billion leading to increased pressure on marine ecosystems. Therefore, it is conjectured various levels of ecosystem functioning starting from individual to population-level, species distribution, food webs and trophic interaction dynamics will be severely jeopardized in coming decades. Ocean warming and acidification are two prime threats to marine biota, yet studies about their cumulative effect on marine fish and shellfishes are still in its infancy. This review assesses existing information regarding the interactive effects of global environmental factors like warming and acidification in the perspective of marine capture fisheries and aquaculture industry. As climate change continues, distribution pattern of species is likely to be altered which will impact fisheries and fishing patterns. Our work is an attempt to compile the existing literatures in the biological perspective of the above-mentioned stressors and accentuate a clear outline of knowledge in this subject. We reviewed studies deciphering the biological consequences of warming and acidification on fish and shellfishes in the light of a molecule to ecosystem perspective. Here, for the first time impacts of these two global environmental drivers are discussed in a holistic manner taking into account growth, survival, behavioural response, prey predator dynamics, calcification, biomineralization, reproduction, physiology, thermal tolerance, molecular level responses as well as immune system and disease susceptibility. We suggest urgent focus on more robust, long term, comprehensive and ecologically realistic studies that will significantly contribute to the understanding of organism's response to climate change for sustainable capture fisheries and aquaculture.
Collapse
Affiliation(s)
- Sritama Baag
- Marine Ecology Laboratory, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India
| | - Sumit Mandal
- Marine Ecology Laboratory, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata 700073, India.
| |
Collapse
|
10
|
Saravia J, Paschke K, Oyarzún-Salazar R, Cheng CHC, Navarro JM, Vargas-Chacoff L. Effects of warming rates on physiological and molecular components of response to CTMax heat stress in the Antarctic fish Harpagifer antarcticus. J Therm Biol 2021; 99:103021. [PMID: 34420652 DOI: 10.1016/j.jtherbio.2021.103021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/25/2021] [Accepted: 05/30/2021] [Indexed: 12/28/2022]
Abstract
Maximum and minimum Critical thermal limits (CTMax and CTMin) have been studied extensively to assess thermal tolerance in ectotherms by means of ramping assays. Notothenioid fish have been proposed as particularly sensitive to temperature increases related to global climate change. However, there are large gaps in our understanding of the thermal responses of these extreme cold-adapted fish in assays with heating rates. We evaluated the effects of two commonly used heating rates (0.3 and 1 °C/min) on the cellular stress responses in the intertidal Antarctic fish Harpagifer antarcticus immediately after CTMax was reached, and at 2 and 4 h of recovery time in ambient water. We compared CTMax values, the relative transcript expression of genes relvant to heat shock response (Hsc70, Hsp70, Grp78), hypoxia (Hif1-α, LDHa, GR), ubiquitination (Ube2), and apoptosis (SMAC/DIABLO), and five plasma parameters - glucose, lactate, total protein, osmolality and cortisol. CTMax values between the two heating rates are not significantly different, and both rates elicited a similar stress response at molecular and physiological levels. We found a lack of up-regulated response of heat shock proteins, consistent with other Antarctic notothenioids. The general transcriptional pattern trended to downregulation, which was more evident in the slower 0.3 °C/min rate, and instances of upregulation were mainly related to ubiquitination. The faster 1 °C/min rate, rarely used for Antarctic fish, can be suitable for studying cold-adapted stenothermic fish without overestimating thermal tolerance or inducing damage from longer heat exposure.
Collapse
Affiliation(s)
- Julia Saravia
- Escuela de Graduados Programa de Doctorado en Ciencias de la Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile; Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (Fondap IDEAL), Universidad Austral de Chile, Valdivia, Chile.
| | - Kurt Paschke
- Centro Fondap de Investigación de Altas Latitudes (Fondap IDEAL), Universidad Austral de Chile, Valdivia, Chile; Instituto de Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile
| | - Ricardo Oyarzún-Salazar
- Escuela de Graduados Programa de Doctorado en Ciencias de la Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile; Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (Fondap IDEAL), Universidad Austral de Chile, Valdivia, Chile
| | - C-H Christina Cheng
- Department of Evolution, Ecology, and Behavior, University of Illinois, Urbana-Champaign, IL, 61801, USA
| | - Jorge M Navarro
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (Fondap IDEAL), Universidad Austral de Chile, Valdivia, Chile
| | - Luis Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (Fondap IDEAL), Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
11
|
O'Brien KM, Joyce W, Crockett EL, Axelsson M, Egginton S, Farrell AP. Resilience of cardiac performance in Antarctic notothenioid fishes in a warming climate. J Exp Biol 2021; 224:268390. [PMID: 34042975 DOI: 10.1242/jeb.220129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Warming in the region of the Western Antarctic Peninsula is occurring at an unprecedented rate, which may threaten the survival of Antarctic notothenioid fishes. Herein, we review studies characterizing thermal tolerance and cardiac performance in notothenioids - a group that includes both red-blooded species and the white-blooded, haemoglobinless icefishes - as well as the relevant biochemistry associated with cardiac failure during an acute temperature ramp. Because icefishes do not feed in captivity, making long-term acclimation studies unfeasible, we focus only on the responses of red-blooded notothenioids to warm acclimation. With acute warming, hearts of the white-blooded icefish Chaenocephalus aceratus display persistent arrhythmia at a lower temperature (8°C) compared with those of the red-blooded Notothenia coriiceps (14°C). When compared with the icefish, the enhanced cardiac performance of N. coriiceps during warming is associated with greater aerobic capacity, higher ATP levels, less oxidative damage and enhanced membrane integrity. Cardiac performance can be improved in N. coriiceps with warm acclimation to 5°C for 6-9 weeks, accompanied by an increase in the temperature at which cardiac failure occurs. Also, both cardiac mitochondrial and microsomal membranes are remodelled in response to warm acclimation in N. coriiceps, displaying homeoviscous adaptation. Overall, cardiac performance in N. coriiceps is malleable and resilient to warming, yet thermal tolerance and plasticity vary among different species of notothenioid fishes; disruptions to the Antarctic ecosystem driven by climate warming and other anthropogenic activities endanger the survival of notothenioids, warranting greater protection afforded by an expansion of marine protected areas.
Collapse
Affiliation(s)
- Kristin M O'Brien
- Institute of Arctic Biology , University of Alaska Fairbanks, Fairbanks, AK 99775-7000, USA
| | - William Joyce
- Department of Biology - Zoophysiology, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Michael Axelsson
- Department of Biological and Environmental Sciences, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Stuart Egginton
- School of Biomedical Sciences , University of Leeds, Leeds LS2 9JT, UK
| | - Anthony P Farrell
- Department of Zoology, and Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| |
Collapse
|
12
|
Ansaloni F, Gerdol M, Torboli V, Fornaini NR, Greco S, Giulianini PG, Coscia MR, Miccoli A, Santovito G, Buonocore F, Scapigliati G, Pallavicini A. Cold Adaptation in Antarctic Notothenioids: Comparative Transcriptomics Reveals Novel Insights in the Peculiar Role of Gills and Highlights Signatures of Cobalamin Deficiency. Int J Mol Sci 2021; 22:ijms22041812. [PMID: 33670421 PMCID: PMC7918649 DOI: 10.3390/ijms22041812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 01/13/2023] Open
Abstract
Far from being devoid of life, Antarctic waters are home to Cryonotothenioidea, which represent one of the fascinating cases of evolutionary adaptation to extreme environmental conditions in vertebrates. Thanks to a series of unique morphological and physiological peculiarities, which include the paradigmatic case of loss of hemoglobin in the family Channichthyidae, these fish survive and thrive at sub-zero temperatures. While some of the distinctive features of such adaptations have been known for decades, our knowledge of their genetic and molecular bases is still limited. We generated a reference de novo assembly of the icefish Chionodraco hamatus transcriptome and used this resource for a large-scale comparative analysis among five red-blooded Cryonotothenioidea, the sub-Antarctic notothenioid Eleginops maclovinus and seven temperate teleost species. Our investigation targeted the gills, a tissue of primary importance for gaseous exchange, osmoregulation, ammonia excretion, and its role in fish immunity. One hundred and twenty genes were identified as significantly up-regulated in Antarctic species and surprisingly shared by red- and white-blooded notothenioids, unveiling several previously unreported molecular players that might have contributed to the evolutionary success of Cryonotothenioidea in Antarctica. In particular, we detected cobalamin deficiency signatures and discussed the possible biological implications of this condition concerning hematological alterations and the heavy parasitic loads typically observed in all Cryonotothenioidea.
Collapse
Affiliation(s)
- Federico Ansaloni
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.A.); (V.T.); (N.R.F.); (S.G.); (P.G.G.); (A.P.)
- International School for Advanced Studies, 34136 Trieste, Italy
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.A.); (V.T.); (N.R.F.); (S.G.); (P.G.G.); (A.P.)
- Correspondence:
| | - Valentina Torboli
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.A.); (V.T.); (N.R.F.); (S.G.); (P.G.G.); (A.P.)
| | - Nicola Reinaldo Fornaini
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.A.); (V.T.); (N.R.F.); (S.G.); (P.G.G.); (A.P.)
- Department of Cell Biology, Charles University, 12800 Prague, Czech Republic
| | - Samuele Greco
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.A.); (V.T.); (N.R.F.); (S.G.); (P.G.G.); (A.P.)
| | - Piero Giulio Giulianini
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.A.); (V.T.); (N.R.F.); (S.G.); (P.G.G.); (A.P.)
| | - Maria Rosaria Coscia
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, 80131 Naples, Italy;
| | - Andrea Miccoli
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (A.M.); (F.B.); (G.S.)
| | | | - Francesco Buonocore
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (A.M.); (F.B.); (G.S.)
| | - Giuseppe Scapigliati
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (A.M.); (F.B.); (G.S.)
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.A.); (V.T.); (N.R.F.); (S.G.); (P.G.G.); (A.P.)
- Anton Dohrn Zoological Station, 80122 Naples, Italy
- National Institute of Oceanography and Experimental Geophysics, 34010 Trieste, Italy
| |
Collapse
|
13
|
Li P, Liu Q, Li J, Wang F, Wen S, Li N. Transcriptomic responses to heat stress in gill and liver of endangered Brachymystax lenok tsinlingensis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 38:100791. [PMID: 33465733 DOI: 10.1016/j.cbd.2021.100791] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/21/2022]
Abstract
Global warming significantly affects fish, particularly cold-water fish, because increased temperature adversely impacts their abilities to grow or reproduce, and eventually influences their fitness or even causes death. To survive, fish may alter their distribution or behavior to avoid the stress, and perhaps acclimate or evolve resistance to the elevated temperature. Brachymystax lenok tsinlingensis is an endangered cold-water species in China, and it has been found to alter the altitudinal distribution, decrease swimming efficiency and develop resistance under heat exposure, which badly impact the continuing conservation work. To better protect them, it is essential to understand how they respond to thermal stress behaviorally and physiologically. Therefore, the fish were exposed to 24.5 °C and based on the time taken for them to lose equilibrium, they were separately sampled as sensitive and tolerant groups. Both gill and liver tissues were collected from both groups for transcriptome sequencing. Sequencing results demonstrated that control and tolerant groups were similar in transcriptomic patterns and sensitive groups differentially expressed more genes than tolerant ones, suggesting the gene expression of tolerant groups may return to base levels as exposure time increased. Tissue differences were the major factor affecting gene expression, and they also displayed different physiological responses to heat stress. Consistent with other studies, heat shock response, immune response, metabolic adjustment and ion transport were found to be triggered after exposed to elevated temperature. The findings would contribute to a better understanding of responding mechanisms of fish to thermal stress and provide guidance for future conservation programs.
Collapse
Affiliation(s)
- Ping Li
- Center for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Qigen Liu
- Center for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Feng Wang
- Yellow River Fisheries Research Institute, Chinese Academy of Fishery Science, Xi'an 710086, China
| | - Sien Wen
- Yellow River Fisheries Research Institute, Chinese Academy of Fishery Science, Xi'an 710086, China
| | - Ning Li
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
14
|
Giordano D, Corti P, Coppola D, Altomonte G, Xue J, Russo R, di Prisco G, Verde C. Regulation of globin expression in Antarctic fish under thermal and hypoxic stress. Mar Genomics 2020; 57:100831. [PMID: 33250437 DOI: 10.1016/j.margen.2020.100831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 01/27/2023]
Abstract
In the freezing waters of the Southern Ocean, Antarctic teleost fish, the Notothenioidei, have developed unique adaptations to cope with cold, including, at the extreme, the loss of hemoglobin in icefish. As a consequence, icefish are thought to be the most vulnerable of the Antarctic fish species to ongoing ocean warming. Some icefish also fail to express myoglobin but all appear to retain neuroglobin, cytoglobin-1, cytoglobin-2, and globin-X. Despite the lack of the inducible heat shock response, Antarctic notothenioid fish are endowed with physiological plasticity to partially compensate for environmental changes, as shown by numerous physiological and genomic/transcriptomic studies over the last decade. However, the regulatory mechanisms that determine temperature/oxygen-induced changes in gene expression remain largely unexplored in these species. Proteins such as globins are susceptible to environmental changes in oxygen levels and temperature, thus playing important roles in mediating Antarctic fish adaptations. In this study, we sequenced the full-length transcripts of myoglobin, neuroglobin, cytoglobin-1, cytoglobin-2, and globin-X from the Antarctic red-blooded notothenioid Trematomus bernacchii and the white-blooded icefish Chionodraco hamatus and evaluated transcripts levels after exposure to high temperature and low oxygen levels. Basal levels of globins are similar in the two species and both stressors affect the expression of Antarctic fish globins in brain, retina and gills. Temperature up-regulates globin expression more effectively in white-blooded than in red-blooded fish while hypoxia strongly up-regulates globins in red-blooded fish, particularly in the gills. These results suggest globins function as regulators of temperature and hypoxia tolerance. This study provides the first insights into globin transcriptional changes in Antarctic fish.
Collapse
Affiliation(s)
- Daniela Giordano
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, Napoli 80131, Italy; Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, Napoli 80121, Italy.
| | - Paola Corti
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Daniela Coppola
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, Napoli 80131, Italy; Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, Napoli 80121, Italy
| | - Giovanna Altomonte
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, Napoli 80131, Italy; Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy
| | - Jianmin Xue
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Roberta Russo
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, Napoli 80131, Italy
| | - Guido di Prisco
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, Napoli 80131, Italy
| | - Cinzia Verde
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, Napoli 80131, Italy; Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, Napoli 80121, Italy
| |
Collapse
|
15
|
Assas M, Qiu X, Chen K, Ogawa H, Xu H, Shimasaki Y, Oshima Y. Bioaccumulation and reproductive effects of fluorescent microplastics in medaka fish. MARINE POLLUTION BULLETIN 2020; 158:111446. [PMID: 32753222 DOI: 10.1016/j.marpolbul.2020.111446] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/04/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
This study was performed to elucidate the uptake and bioaccumulation of polystyrene microplastics (PS-MPs) in Japanese medaka (freshwater fish) and Java medaka (marine fish), and to assess its impacts on the survival, reproduction, and gene expression of Japanese medaka. Both species were exposed to 2-μm fluorescent PS-MPs (107 beads/L) for 3 weeks. The bioaccumulation factor of PS-MPs for Java medaka was calculated at about 4 × 102, higher than that for Japanese medaka (about 1 × 102). The exposure had no significant effects on the survival and reproduction of Japanese medaka. The mRNA sequencing analysis showed that the expression of a few genes involved in the cell adhesion, xenobiotic metabolic process, brain development, and other functions in medaka intestines significantly changed after exposure. These results suggest that virgin PS-MPs can potentially accumulate in medaka intestines, but has limited toxicity to Japanese medaka at the concentration up to 107 beads/L.
Collapse
Affiliation(s)
- Mona Assas
- Department of Bio-resources and Environmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan; Department of Fish Processing and Biotechnology, Faculty of Fisheries, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Xuchun Qiu
- Department of Bio-resources and Environmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan; Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Kun Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Hijiri Ogawa
- Department of Bio-resources and Environmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Hai Xu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Yohei Shimasaki
- Department of Bio-resources and Environmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Yuji Oshima
- Department of Bio-resources and Environmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan; Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, 920-1192, Japan.
| |
Collapse
|
16
|
Vasadia DJ, Zippay ML, Place SP. Characterization of thermally sensitive miRNAs reveals a central role of the FoxO signaling pathway in regulating the cellular stress response of an extreme stenotherm, Trematomus bernacchii. Mar Genomics 2019; 48:100698. [PMID: 31307923 DOI: 10.1016/j.margen.2019.100698] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 01/20/2023]
Abstract
Despite the lack of an inducible heat shock response (HSR), the Antarctic notothenioid fish, Trematomus bernacchii, has retained a level of physiological plasticity that can at least partially compensate for the effects of acute heat stress. Over the last decade, both physiological and transcriptomic studies have signaled these fish can mitigate the effects of acute heat stress by employing other aspects of the cellular stress response (CSR) that help confer thermotolerance as well as drive homeostatic mechanisms during long-term thermal acclimations. However, the regulatory mechanisms that determine temperature-induced changes in gene expression remain largely unexplored in this species. Therefore, this study utilized next generation sequencing coupled with an in silico approach to explore the regulatory role of microRNAs in governing the transcriptomic level response observed in this Antarctic notothenioid with respect to the CSR. Using RNAseq, we characterized the expression of 125 distinct miRNA orthologues in T. bernacchii gill tissue. Additionally, we identified 12 miRNAs that appear to be thermally responsive based on differential expression (DE) analyses performed between fish acclimated to control (-1.5 °C) and an acute heat stress (+4 °C). We further characterized the functional role of these DE miRNAs using bioinformatics pipelines to identify putative gene targets of the DE miRNAs and subsequent gene set enrichment analyses, which together suggest these miRNAs are involved in regulating diverse aspects of the CSR in T. bernacchii.
Collapse
Affiliation(s)
- Dipali J Vasadia
- Sonoma State University, Department of Biology, Rohnert Park, CA 94928, United States of America
| | - Mackenzie L Zippay
- Sonoma State University, Department of Biology, Rohnert Park, CA 94928, United States of America
| | - Sean P Place
- Sonoma State University, Department of Biology, Rohnert Park, CA 94928, United States of America.
| |
Collapse
|
17
|
Metabolic responses in Antarctic Nototheniidae brains subjected to thermal stress. Brain Res 2019; 1708:126-137. [PMID: 30527682 DOI: 10.1016/j.brainres.2018.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/08/2018] [Accepted: 12/04/2018] [Indexed: 12/23/2022]
Abstract
Antarctic Nototheniidae is an attractive group for studying metabolic and physiological responses at high temperatures. The present work investigated the metabolic responses of the carbohydrate metabolism and antioxidant system to thermal stress at 8 °C (for 2-144 h) in the brains of Notothenia rossii and Notothenia coriiceps. In N. coriiceps, glycogenolysis was essential in the first hours of exposure (2 h) at 8 °C and, in addition to inhibiting glucose-6-phosphatase activity, was important for activating the pentose phosphate pathway. In N. rossii, anaerobic metabolism was reduced in the first hours of exposure (2 and 6 h) at 8 °C, followed by reduced hexokinase activity, suggesting energy regulation between neurons and astrocytes. The antioxidant system results indicated the importance of the actions of the glutathione-dependent antioxidant enzymes glutathione-S-transferase and glutathione peroxidase as well as those of catalase in N. coriiceps and the action of glutathione-S-transferase, glutathione peroxidase and glutathione reductase in N. rossii, especially during the first 12 h of thermal stress exposure. These results indicate tissue-specific patterns and species-specific responses to this stress.
Collapse
|
18
|
Healy TM, Schulte PM. Patterns of alternative splicing in response to cold acclimation in fish. ACTA ACUST UNITED AC 2019; 222:jeb.193516. [PMID: 30692167 DOI: 10.1242/jeb.193516] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/23/2019] [Indexed: 12/26/2022]
Abstract
Phenotypic plasticity is an important aspect of an organism's response to environmental change that often requires the modulation of gene expression. These changes in gene expression can be quantitative, as a result of increases or decreases in the amounts of specific transcripts, or qualitative, as a result of the expression of alternative transcripts from the same gene (e.g. via alternative splicing of pre-mRNAs). Although the role of quantitative changes in gene expression in phenotypic plasticity is well known, relatively few studies have examined the role of qualitative changes. Here, we use skeletal muscle RNA-seq data from Atlantic killifish (Fundulus heteroclitus), threespine stickleback (Gasterosteus aculeatus) and zebrafish (Danio rerio) to investigate the extent of qualitative changes in gene expression in response to cold acclimation. Fewer genes demonstrated alternative splicing than differential expression as a result of cold acclimation; however, differences in splicing were detected for 426 to 866 genes depending on species, indicating that large numbers of qualitative changes in gene expression are associated with cold acclimation. Many of these alternatively spliced genes were also differentially expressed, and there was functional enrichment for involvement in muscle contraction among the genes demonstrating qualitative changes in response to cold acclimation. Additionally, there was a common group of 29 genes with cold-acclimation-mediated changes in splicing in all three species, suggesting that there may be a set of genes with expression patterns that respond qualitatively to prolonged exposure to cold temperatures across fishes.
Collapse
Affiliation(s)
- Timothy M Healy
- The University of British Columbia, Department of Zoology, 6270 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z4
| | - Patricia M Schulte
- The University of British Columbia, Department of Zoology, 6270 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
19
|
Berthelot C, Clarke J, Desvignes T, William Detrich H, Flicek P, Peck LS, Peters M, Postlethwait JH, Clark MS. Adaptation of Proteins to the Cold in Antarctic Fish: A Role for Methionine? Genome Biol Evol 2019; 11:220-231. [PMID: 30496401 PMCID: PMC6336007 DOI: 10.1093/gbe/evy262] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2018] [Indexed: 12/25/2022] Open
Abstract
The evolution of antifreeze glycoproteins has enabled notothenioid fish to flourish in the freezing waters of the Southern Ocean. Whereas successful at the biodiversity level to life in the cold, paradoxically at the cellular level these stenothermal animals have problems producing, folding, and degrading proteins at their ambient temperatures of -1.86 °C. In this first multi-species transcriptome comparison of the amino acid composition of notothenioid proteins with temperate teleost proteins, we show that, unlike psychrophilic bacteria, Antarctic fish provide little evidence for the mass alteration of protein amino acid composition to enhance protein folding and reduce protein denaturation in the cold. The exception was the significant overrepresentation of positions where leucine in temperate fish proteins was replaced by methionine in the notothenioid orthologues. We hypothesize that these extra methionines have been preferentially assimilated into the genome to act as redox sensors in the highly oxygenated waters of the Southern Ocean. This redox hypothesis is supported by analyses of notothenioids showing enrichment of genes associated with responses to environmental stress, particularly reactive oxygen species. So overall, although notothenioid fish show cold-associated problems with protein homeostasis, they may have modified only a selected number of biochemical pathways to work efficiently below 0 °C. Even a slight warming of the Southern Ocean might disrupt the critical functions of this handful of key pathways with considerable impacts for the functioning of this ecosystem in the future.
Collapse
Affiliation(s)
- Camille Berthelot
- Laboratoire Dynamique et Organisation des Génomes (Dyogen), Institut de Biologie de l'Ecole Normale Supérieure – UMR 8197, INSERM U1024, Paris Cedex 05, France
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, United Kingdom
| | - Jane Clarke
- Department of Chemistry, University of Cambridge, United Kingdom
| | | | - H William Detrich
- Department of Marine and Environmental Sciences, Marine Science Center, Northeastern University
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, United Kingdom
| | - Lloyd S Peck
- British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom
| | - Michael Peters
- Department of Marine and Environmental Sciences, Marine Science Center, Northeastern University
| | | | - Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom
| |
Collapse
|
20
|
Bilyk KT, Vargas-Chacoff L, Cheng CHC. Evolution in chronic cold: varied loss of cellular response to heat in Antarctic notothenioid fish. BMC Evol Biol 2018; 18:143. [PMID: 30231868 PMCID: PMC6146603 DOI: 10.1186/s12862-018-1254-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 08/24/2018] [Indexed: 12/02/2022] Open
Abstract
Background Confined within the freezing Southern Ocean, the Antarctic notothenioids have evolved to become both cold adapted and cold specialized. A marked signature of cold specialization is an apparent loss of the cellular heat shock response (HSR). As the HSR has been examined in very few notothenioid species to-date, it remains unknown whether HSR loss pervades the Antarctic radiation, or whether the broader cellular responses to heat stress has sustained similar loss. Understanding the evolutionary status of these responses in this stenothermal taxon is crucial for evaluating its adaptive potential to ocean warming under climate change. Results In this study, we used an acute heat stress protocol followed by RNA-Seq analyses to study the evolution of cellular-wide transcriptional responses to heat stress across three select notothenioid lineages - the basal temperate and nearest non-Antarctic sister species Eleginops maclovinus serving as ancestral proxy, the cryopelagic Pagothenia borchgrevinki and the icefish Chionodraco rastrospinosus representing cold-adapted red-blooded and hemoglobinless Antarctic notothenioids respectively. E. maclovinus displayed robust cellular stress responses including the ER Unfolded Protein Response and the cytosolic HSR, cementing the HSR as a plesiomorphy that preceded Antarctic notothenioid radiation. While the transcriptional response to heat stress was minimal in P. borchgrevinki, C. rastrospinosus exhibited robust responses in the broader cellular networks especially in inflammatory responses despite lacking the classic HSR and UPR. Conclusion The disparate patterns observed in these two archetypal Antarctic species indicate the evolutionary status in cellular ability to mitigate acute heat stress varies even among Antarctic lineages, which may affect their adaptive potential in coping with a warming world. Electronic supplementary material The online version of this article (10.1186/s12862-018-1254-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kevin T Bilyk
- Department of Biology, Western Kentucky University, 1906 College Heights Blvd, Bowling Green, KY, 42101, USA. .,School of Integrative Biology, University of Illinois, Urbana-Champaign, USA.
| | - Luis Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Laboratorio de Fisiología de Peces, Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile
| | - C-H Christina Cheng
- School of Integrative Biology, University of Illinois, Urbana-Champaign, USA
| |
Collapse
|
21
|
Hypoxia-Inducible Factor-1α in Antarctic notothenioids contains a polyglutamine and glutamic acid insert that varies in length with phylogeny. Polar Biol 2018; 40:2537-2545. [PMID: 29430077 DOI: 10.1007/s00300-017-2164-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The long evolution of the Antarctic perciform suborder of Notothenioidei in the icy, oxygen-rich waters of the Southern Ocean may have reduced selective pressure to maintain a hypoxic response. To test this hypothesis, cDNA of the key transcriptional regulator of hypoxic genes, hypoxia-inducible factor-1α (HIF-1α), was sequenced in heart ventricles of the red-blooded notothenioid, Notothenia coriiceps, and the hemoglobinless icefish, Chaenocephalus aceratus. HIF-1α cDNA is 4500 base pairs (bp) long and encodes 755 amino acids in N. coriiceps, and in C. aceratus, HIF-1α is 3576 bp long and encodes 779 amino acids. All functional domains of HIF-1α are highly conserved compared to other teleosts, but HIF-1α contains a polyglutamine/glutamic acid (polyQ/E) insert 9 amino acids long in N. coriiceps and 34 amino acids long in C. aceratus. Sequencing of this region in four additional species, representing three families of notothenioids, revealed that the length of the polyQ/E insert varies with phylogeny. Icefishes, the crown family of notothenioids, contain the longest polyQ/E inserts, ranging between16 and 34 amino acids long, whereas the basal, cold-temperate notothenioid, Eleginops maclovinus, contains a polyQ/E insert only 4 amino acids long. PolyQ/E inserts may affect dimerization of HIF-1α and HIF-1β, HIF-1 translocation into the nucleus and/or DNA binding.
Collapse
|
22
|
Oomen RA, Hutchings JA. Transcriptomic responses to environmental change in fishes: Insights from RNA sequencing. Facets (Ott) 2017. [DOI: 10.1139/facets-2017-0015] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The need to better understand how plasticity and evolution affect organismal responses to environmental variability is paramount in the face of global climate change. The potential for using RNA sequencing (RNA-seq) to study complex responses by non-model organisms to the environment is evident in a rapidly growing body of literature. This is particularly true of fishes for which research has been motivated by their ecological importance, socioeconomic value, and increased use as model species for medical and genetic research. Here, we review studies that have used RNA-seq to study transcriptomic responses to continuous abiotic variables to which fishes have likely evolved a response and that are predicted to be affected by climate change (e.g., salinity, temperature, dissolved oxygen concentration, and pH). Field and laboratory experiments demonstrate the potential for individuals to respond plastically to short- and long-term environmental stress and reveal molecular mechanisms underlying developmental and transgenerational plasticity, as well as adaptation to different environmental regimes. We discuss experimental, analytical, and conceptual issues that have arisen from this work and suggest avenues for future study.
Collapse
Affiliation(s)
- Rebekah A. Oomen
- Department of Biology, Dalhousie University, Halifax, NS B3H 4J1, Canada
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0371 Oslo, Norway
- Institute of Marine Research, Flødevigen Research Station, 4817 His, Norway
| | - Jeffrey A. Hutchings
- Department of Biology, Dalhousie University, Halifax, NS B3H 4J1, Canada
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0371 Oslo, Norway
- Institute of Marine Research, Flødevigen Research Station, 4817 His, Norway
- Department of Natural Sciences, University of Agder, 4604 Kristiansand, Norway
| |
Collapse
|
23
|
Enzor LA, Hunter EM, Place SP. The effects of elevated temperature and ocean acidification on the metabolic pathways of notothenioid fish. CONSERVATION PHYSIOLOGY 2017; 5:cox019. [PMID: 28852515 PMCID: PMC5570038 DOI: 10.1093/conphys/cox019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 02/20/2017] [Accepted: 03/08/2017] [Indexed: 05/26/2023]
Abstract
The adaptations used by notothenioid fish to combat extreme cold may have left these fish poorly poised to deal with a changing environment. As such, the expected environmental perturbations brought on by global climate change have the potential to significantly affect the energetic demands and subsequent cellular processes necessary for survival. Despite recent lines of evidence demonstrating that notothenioid fish retain the ability to acclimate to elevated temperatures, the underlying mechanisms responsible for temperature acclimation in these fish remain largely unknown. Furthermore, little information exists on the capacity of Antarctic fish to respond to changes in multiple environmental variables. We have examined the effects of increased temperature and pCO2 on the rate of oxygen consumption in three notothenioid species, Trematomus bernacchii, Pagothenia borchgrevinki, and Trematomus newnesi. We combined these measurements with analysis of changes in aerobic and anaerobic capacity, lipid reserves, fish condition, and growth rates to gain insight into the metabolic cost associated with acclimation to this dual stress. Our findings indicated that temperature is the major driver of the metabolic responses observed in these fish and that increased pCO2 plays a small, contributing role to the energetic costs of the acclimation response. All three species displayed varying levels of energetic compensation in response to the combination of elevated temperature and pCO2. While P. borchgrevinki showed nearly complete compensation of whole animal oxygen consumption rates and aerobic capacity, T. newnesi and T. bernacchii displayed only partial compensation in these metrics, suggesting that at least some notothenioids may require physiological trade-offs to fully offset the energetic costs of long-term acclimation to climate change related stressors.
Collapse
Affiliation(s)
- Laura A. Enzor
- United States Environmental Protection Agency, Gulf Ecology Division, Gulf Breeze, FL 32561, USA
| | - Evan M. Hunter
- Department of Biological Sciences, University of South Carolina, Columbia, SC29208, USA
| | - Sean P. Place
- Department of Biology, Sonoma State University, Rohnert Park, CA94928, USA
| |
Collapse
|
24
|
Healy TM, Bryant HJ, Schulte PM. Mitochondrial genotype and phenotypic plasticity of gene expression in response to cold acclimation in killifish. Mol Ecol 2017; 26:814-830. [DOI: 10.1111/mec.13945] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 11/11/2016] [Accepted: 11/16/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Timothy M. Healy
- Department of Zoology; The University of British Columbia; 6270 University Blvd Vancouver BC Canada V6T 1Z4
| | - Heather J. Bryant
- Department of Zoology; The University of British Columbia; 6270 University Blvd Vancouver BC Canada V6T 1Z4
| | - Patricia M. Schulte
- Department of Zoology; The University of British Columbia; 6270 University Blvd Vancouver BC Canada V6T 1Z4
| |
Collapse
|
25
|
Papetti C, Lucassen M, Pörtner HO. Integrated studies of organismal plasticity through physiological and transcriptomic approaches: examples from marine polar regions. Brief Funct Genomics 2016; 15:365-72. [PMID: 27345433 DOI: 10.1093/bfgp/elw024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Transcriptomic methods are now widely used in functional genomic research. The vast amount of information received from these studies comes along with the challenge of developing a precise picture of the functional consequences and the characteristic regulatory mechanisms. Here we assess recent studies in marine species and their adaptation to polar (and seasonal) cold and explore how they have been able to draw reliable conclusions from transcriptomic patterns on functional consequences in the organisms. Our analysis indicates that the interpretation of transcriptomic data suffers from insufficient understanding of the consequences for whole organism performance and fitness and comes with the risk of supporting only preliminary and superficial statements.We propose that the functional understanding of transcriptomic data may be improved by their tighter integration into overarching physiological concepts that support the more specific interpretation of the 'omics' data and, at the same time, can be developed further through embedding the transcriptomic phenomena observed. Such possibilities have not been fully exploited.In the context of thermal adaptation and limitation, we explore preliminary evidence that the concept of oxygen and capacity limited thermal tolerance (OCLTT) may provide sufficient complexity to guide the integration of such data and the development of associated functional hypotheses. At the same time, we identify a lack of methodological approaches linking genes and function to higher levels of integration, in terms of organism and ecosystem functioning, at temporal and geographical scales, to support more reliable conclusions and be predictive with respect to the effects of global changes.
Collapse
|
26
|
Beers JM, Jayasundara N. Antarctic notothenioid fish: what are the future consequences of 'losses' and 'gains' acquired during long-term evolution at cold and stable temperatures? ACTA ACUST UNITED AC 2016; 218:1834-45. [PMID: 26085661 DOI: 10.1242/jeb.116129] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Antarctic notothenioids dominate the fish fauna of the Southern Ocean. Evolution for millions of years at cold and stable temperatures has led to the acquisition of numerous biochemical traits that allow these fishes to thrive in sub-zero waters. The gain of antifreeze glycoproteins has afforded notothenioids the ability to avert freezing and survive at temperatures often hovering near the freezing point of seawater. Additionally, possession of cold-adapted proteins and membranes permits them to sustain appropriate metabolic rates at exceptionally low body temperatures. The notothenioid genome is also distinguished by the disappearance of traits in some species, losses that might prove costly in a warmer environment. Perhaps the best-illustrated example is the lack of expression of hemoglobin in white-blooded icefishes from the family Channichthyidae. Loss of key elements of the cellular stress response, notably the heat shock response, has also been observed. Along with their attainment of cold tolerance, notothenioids have developed an extreme stenothermy and many species perish at temperatures only a few degrees above their habitat temperatures. Thus, in light of today's rapidly changing climate, it is critical to evaluate how these extreme stenotherms will respond to rising ocean temperatures. It is conceivable that the remarkable cold specialization of notothenioids may ultimately leave them vulnerable to future thermal increases and threaten their fitness and survival. Within this context, our review provides a current summary of the biochemical losses and gains that are known for notothenioids and examines these cold-adapted traits with a focus on processes underlying thermal tolerance and acclimation capacity.
Collapse
Affiliation(s)
- Jody M Beers
- Hopkins Marine Station, Stanford University, 120 Ocean View Boulevard, Pacific Grove, CA 93950, USA
| | - Nishad Jayasundara
- Nicholas School of the Environment, Duke University, 450 Research Drive, Durham, NC 27708, USA
| |
Collapse
|
27
|
Logan CA, Buckley BA. Transcriptomic responses to environmental temperature in eurythermal and stenothermal fishes. ACTA ACUST UNITED AC 2016; 218:1915-24. [PMID: 26085668 DOI: 10.1242/jeb.114397] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Ectothermic species like fishes differ greatly in the thermal ranges they tolerate; some eurythermal species may encounter temperature ranges in excess of 25°C, whereas stenothermal species in polar and tropical waters live at essentially constant temperatures. Thermal specialization comes with fitness trade-offs and as temperature increases due to global warming, the physiological basis of specialization and thermal plasticity has become of great interest. Over the past 50 years, comparative physiologists have studied the physiological and molecular differences between stenothermal and eurythermal fishes. It is now well known that many stenothermal fishes have lost an inducible heat shock response (HSR). Recent advances in transcriptomics have now made it possible to examine genome-wide changes in gene expression (GE) in non-model ecologically important fish, broadening our view beyond the HSR to regulation of genes involved in hundreds of other cellular processes. Here, we review the major findings from transcriptomic studies of extreme eurythermal and stenothermal fishes in response to acute and long-term exposure to temperature, both time scales being critically important for predicting climate change responses. We consider possible molecular adaptations that underlie eurythermy and stenothermy in teleosts. Furthermore, we highlight the challenges that still face the field of comparative environmental genomics and suggest fruitful paths of future investigation.
Collapse
Affiliation(s)
- Cheryl A Logan
- Division of Science and Environmental Policy, California State University, Monterey Bay, Seaside, CA 93955, USA
| | - Bradley A Buckley
- Center for Life in Extreme Environments, Portland State University, Portland, OR 97207, USA
| |
Collapse
|
28
|
Transcriptomic Characterization of Tambaqui (Colossoma macropomum, Cuvier, 1818) Exposed to Three Climate Change Scenarios. PLoS One 2016; 11:e0152366. [PMID: 27018790 PMCID: PMC4809510 DOI: 10.1371/journal.pone.0152366] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/14/2016] [Indexed: 11/19/2022] Open
Abstract
Climate change substantially affects biodiversity around the world, especially in the Amazon region, which is home to a significant portion of the world’s biodiversity. Freshwater fishes are susceptible to increases in water temperature and variations in the concentrations of dissolved gases, especially oxygen and carbon dioxide. It is important to understand the mechanisms underlying the physiological and biochemical abilities of fishes to survive such environmental changes. In the present study, we applied RNA-Seq and de novo transcriptome sequencing to evaluate transcriptome alterations in tambaqui when exposed to five or fifteen days of the B1, A1B and A2 climate scenarios foreseen by the IPCC. The generated ESTs were assembled into 54,206 contigs. Gene ontology analysis and the STRING tool were then used to identify candidate protein domains, genes and gene families potentially responsible for the adaptation of tambaqui to climate changes. After sequencing eight RNA-Seq libraries, 32,512 genes were identified and mapped using the Danio rerio genome as a reference. In total, 236 and 209 genes were differentially expressed at five and fifteen days, respectively, including chaperones, energetic metabolism-related genes, translation initiation factors and ribosomal genes. Gene ontology enrichment analysis revealed that mitochondrion, protein binding, protein metabolic process, metabolic processes, gene expression, structural constituent of ribosome and translation were the most represented terms. In addition, 1,202 simple sequence repeats were detected, 88 of which qualified for primer design. These results show that cellular response to climate change in tambaqui is complex, involving many genes, and it may be controlled by different cues and transcription/translation regulation mechanisms. The data generated from this study provide a valuable resource for further studies on the molecular mechanisms involved in the adaptation of tambaqui and other closely related teleost species to climate change.
Collapse
|
29
|
Huth TJ, Place SP. RNA-seq reveals a diminished acclimation response to the combined effects of ocean acidification and elevated seawater temperature in Pagothenia borchgrevinki. Mar Genomics 2016; 28:87-97. [PMID: 26969095 DOI: 10.1016/j.margen.2016.02.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 02/11/2016] [Accepted: 02/11/2016] [Indexed: 02/02/2023]
Abstract
PURPOSE The IPCC has reasserted the strong influence of anthropogenic CO2 contributions on global climate change and highlighted the polar-regions as highly vulnerable. With these predictions the cold adapted fauna endemic to the Southern Ocean, which is dominated by fishes of the sub-order Notothenioidei, will face considerable challenges in the near future. Recent physiological studies have demonstrated that the synergistic stressors of elevated temperature and ocean acidification have a considerable, although variable, impact on notothenioid fishes. The present study explored the transcriptomic response of Pagothenia borchgrevinki to increased temperatures and pCO2 after 7, 28 and 56days of acclimation. We compared this response to short term studies assessing heat stress alone and foretell the potential impacts of these stressors on P. borchgrevinki's ability to survive a changing Southern Ocean. RESULTS P. borchgrevinki did demonstrate a coordinated stress response to the dual-stressor condition, and even indicated that some level of inducible heat shock response may be conserved in this notothenioid species. However, the stress response of P. borchgrevinki was considerably less robust than that observed previously in the closely related notothenioid, Trematomus bernacchii, and varied considerably when compared across different acclimation time-points. Furthermore, the molecular response of these fish under multiple stressors displayed distinct differences compared to their response to short term heat stress alone. CONCLUSIONS When exposed to increased sea surface temperatures, combined with ocean acidification, P. borchgrevinki demonstrated a coordinated stress response that has already peaked by 7days of acclimation and quickly diminished over time. However, this response is less dramatic than other closely related notothenioids under identical conditions, supporting previous research suggesting that this notothenioid species is less sensitive to environmental variation.
Collapse
Affiliation(s)
- Troy J Huth
- University of South Carolina, Department of Biological Sciences, Columbia, SC 29208, USA.
| | - Sean P Place
- Sonoma State University, Department of Biology, Rohnert Park, CA 94928, USA.
| |
Collapse
|
30
|
Shibata M, Mekuchi M, Mori K, Muta S, Chowdhury VS, Nakamura Y, Ojima N, Saitoh K, Kobayashi T, Wada T, Inouye K, Kuhara S, Tashiro K. Transcriptomic features associated with energy production in the muscles of Pacific bluefin tuna and Pacific cod. Biosci Biotechnol Biochem 2016; 80:1114-24. [PMID: 26924100 DOI: 10.1080/09168451.2016.1151341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Bluefin tuna are high-performance swimmers and top predators in the open ocean. Their swimming is grounded by unique features including an exceptional glycolytic potential in white muscle, which is supported by high enzymatic activities. Here we performed high-throughput RNA sequencing (RNA-Seq) in muscles of the Pacific bluefin tuna (Thunnus orientalis) and Pacific cod (Gadus macrocephalus) and conducted a comparative transcriptomic analysis of genes related to energy production. We found that the total expression of glycolytic genes was much higher in the white muscle of tuna than in the other muscles, and that the expression of only six genes for glycolytic enzymes accounted for 83.4% of the total. These expression patterns were in good agreement with the patterns of enzyme activity previously reported. The findings suggest that the mRNA expression of glycolytic genes may contribute directly to the enzymatic activities in the muscles of tuna.
Collapse
Affiliation(s)
- Mami Shibata
- a Graduate School of Bioresource and Bioenvironmental Sciences , Kyushu University , Fukuoka , Japan
| | - Miyuki Mekuchi
- b Research Center for Aquatic Genomics, National Research Institute of Fisheries Science , Fisheries Research Agency , Yokohama , Japan
| | - Kazuki Mori
- c Biotechnology Research Institute for Drug Discovery , National Institute of Advanced Industrial Science and Technology (AIST) , Tokyo , Japan
| | - Shigeru Muta
- d Laboratory of Molecular Gene Techniques, Division of Molecular Biosciences, Department of Bioscience and Biotechnology, Faculty of Agriculture , Kyushu University , Fukuoka , Japan
| | - Vishwajit Sur Chowdhury
- e Division for Experimental Natural Science, Faculty of Arts and Science , Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University , Fukuoka , Japan
| | - Yoji Nakamura
- b Research Center for Aquatic Genomics, National Research Institute of Fisheries Science , Fisheries Research Agency , Yokohama , Japan
| | - Nobuhiko Ojima
- b Research Center for Aquatic Genomics, National Research Institute of Fisheries Science , Fisheries Research Agency , Yokohama , Japan
| | - Kenji Saitoh
- b Research Center for Aquatic Genomics, National Research Institute of Fisheries Science , Fisheries Research Agency , Yokohama , Japan
| | | | - Tokio Wada
- f Fisheries Research Agency , Yokohama , Japan
| | - Kiyoshi Inouye
- g Japan Fisheries Science and Technology Association , Tokyo , Japan
| | - Satoru Kuhara
- d Laboratory of Molecular Gene Techniques, Division of Molecular Biosciences, Department of Bioscience and Biotechnology, Faculty of Agriculture , Kyushu University , Fukuoka , Japan
| | - Kosuke Tashiro
- d Laboratory of Molecular Gene Techniques, Division of Molecular Biosciences, Department of Bioscience and Biotechnology, Faculty of Agriculture , Kyushu University , Fukuoka , Japan
| |
Collapse
|
31
|
Huth TJ, Place SP. Transcriptome wide analyses reveal a sustained cellular stress response in the gill tissue of Trematomus bernacchii after acclimation to multiple stressors. BMC Genomics 2016; 17:127. [PMID: 26897172 PMCID: PMC4761167 DOI: 10.1186/s12864-016-2454-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 02/09/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As global climate change progresses, the Southern Ocean surrounding Antarctica is poised to undergo potentially rapid and substantial changes in temperature and pCO2. To survive in this challenging environment, the highly cold adapted endemic fauna of these waters must demonstrate sufficient plasticity to accommodate these changing conditions or face inexorable decline. Previous studies of notothenioids have focused upon the short-term response to heat stress; and more recently the longer-term physiological response to the combined stress of increasing temperatures and pCO2. This inquiry explores the transcriptomic response of Trematomus bernacchii to increased temperatures and pCO2 at 7, 28 and 56 days, in an attempt to discern the innate plasticity of T. bernacchii available to cope with a changing Southern Ocean. RESULTS Differential gene expression analysis supported previous research in that T. bernacchii exhibits no inducible heat shock response to stress conditions. However, T. bernacchii did demonstrate a strong stress response to the multi-stressor condition in the form of metabolic shifts, DNA damage repair, immune system processes, and activation of apoptotic pathways combined with negative regulation of cell proliferation. This response declined in magnitude over time, but aspects of this response remained detectable throughout the acclimation period. CONCLUSIONS When exposed to the multi-stressor condition, T. bernacchii demonstrates a cellular stress response that persists for a minimum of 7 days before returning to near basal levels of expression at longer acclimation times. However, subtle changes in expression persist in fish acclimated for 56 days that may significantly affect the fitness T. bernacchii over time.
Collapse
Affiliation(s)
- Troy J Huth
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA.
| | - Sean P Place
- Department of Biology, Sonoma State University, Rohnert Park, CA, 94928, USA.
| |
Collapse
|
32
|
Smolina I, Kollias S, Jueterbock A, Coyer JA, Hoarau G. Variation in thermal stress response in two populations of the brown seaweed, Fucus distichus, from the Arctic and subarctic intertidal. ROYAL SOCIETY OPEN SCIENCE 2016; 3:150429. [PMID: 26909170 PMCID: PMC4736925 DOI: 10.1098/rsos.150429] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/01/2015] [Indexed: 06/05/2023]
Abstract
It is unclear whether intertidal organisms are 'preadapted' to cope with the increase of temperature and temperature variability or if they are currently at their thermal tolerance limits. To address the dichotomy, we focused on an important ecosystem engineer of the Arctic intertidal rocky shores, the seaweed Fucus distichus and investigated thermal stress responses of two populations from different temperature regimes (Svalbard and Kirkenes, Norway). Thermal stress responses at 20°C, 24°C and 28°C were assessed by measuring photosynthetic performance and expression of heat shock protein (HSP) genes (shsp, hsp90 and hsp70). We detected population-specific responses between the two populations of F. distichus, as the Svalbard population revealed a smaller decrease in photosynthesis performance but a greater activation of molecular defence mechanisms (indicated by a wider repertoire of HSP genes and their stronger upregulation) compared with the Kirkenes population. Although the temperatures used in our study exceed temperatures encountered by F. distichus at the study sites, we believe response to these temperatures may serve as a proxy for the species' potential to respond to climate-related stresses.
Collapse
Affiliation(s)
- Irina Smolina
- Faculty of Biosciences and Aquaculture, University of Nordland, Bodø 8049, Norway
| | - Spyros Kollias
- Faculty of Biosciences and Aquaculture, University of Nordland, Bodø 8049, Norway
| | - Alexander Jueterbock
- Faculty of Biosciences and Aquaculture, University of Nordland, Bodø 8049, Norway
| | - James A. Coyer
- Shoals Marine Laboratory, Cornell University, 400 Little Harbor Road, Portsmouth, NH 03801, USA
| | - Galice Hoarau
- Faculty of Biosciences and Aquaculture, University of Nordland, Bodø 8049, Norway
| |
Collapse
|
33
|
Huang X, Gao Y, Jiang B, Zhou Z, Zhan A. Reference gene selection for quantitative gene expression studies during biological invasions: A test on multiple genes and tissues in a model ascidian Ciona savignyi. Gene 2015; 576:79-87. [PMID: 26428313 DOI: 10.1016/j.gene.2015.09.066] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/16/2015] [Accepted: 09/25/2015] [Indexed: 12/20/2022]
Abstract
As invasive species have successfully colonized a wide range of dramatically different local environments, they offer a good opportunity to study interactions between species and rapidly changing environments. Gene expression represents one of the primary and crucial mechanisms for rapid adaptation to local environments. Here, we aim to select reference genes for quantitative gene expression analysis based on quantitative Real-Time PCR (qRT-PCR) for a model invasive ascidian, Ciona savignyi. We analyzed the stability of ten candidate reference genes in three tissues (siphon, pharynx and intestine) under two key environmental stresses (temperature and salinity) in the marine realm based on three programs (geNorm, NormFinder and delta Ct method). Our results demonstrated only minor difference for stability rankings among the three methods. The use of different single reference gene might influence the data interpretation, while multiple reference genes could minimize possible errors. Therefore, reference gene combinations were recommended for different tissues - the optimal reference gene combination for siphon was RPS15 and RPL17 under temperature stress, and RPL17, UBQ and TubA under salinity treatment; for pharynx, TubB, TubA and RPL17 were the most stable genes under temperature stress, while TubB, TubA and UBQ were the best under salinity stress; for intestine, UBQ, RPS15 and RPL17 were the most reliable reference genes under both treatments. Our results suggest that the necessity of selection and test of reference genes for different tissues under varying environmental stresses. The results obtained here are expected to reveal mechanisms of gene expression-mediated invasion success using C. savignyi as a model species.
Collapse
Affiliation(s)
- Xuena Huang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yangchun Gao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Bei Jiang
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fishery Science Research Institute, Dalian, Liaoning, China
| | - Zunchun Zhou
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fishery Science Research Institute, Dalian, Liaoning, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|