1
|
Xiong Z, Chen X, Zou Z, Peng L, Zou L, Liu B, Li Q. Improving efficiency of bacterial degradation of polyethylene microplastics using atmospheric and room temperature plasma mutagenesis. BIORESOURCE TECHNOLOGY 2025; 418:131930. [PMID: 39631542 DOI: 10.1016/j.biortech.2024.131930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/25/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
In this study, the bacterium XZ-A was genetically modified using atmospheric and room temperature plasma mutagenesis (ARTP) to increase the degradation efficiency of polyethylene microplastics (PE-MPs) by up to 53.65 %. After 50 d of biodegradation, the mutagenized bacterium XZ-60S caused significant changes in the morphology, structure, thermal stability, and molecular weight of PE-MPs. The number average molecular weights and weight average molecular weights of the PE-MPs were significantly reduced by approximately 15.21 % and 4.80 %, respectively. Comparative genomic and transcriptomic analyses showed that XZ-60S had a total of 106 single nucleotide polymorphic sites, and the expression of genes encoding laccases was significantly increased; this may explain the improved degradation of PE-MPs by XZ-60S. In this study, the degradation of PE-MPs by bacteria was improved through ARTP mutagenesis, which provides a reference for selecting and breeding bacteria that are highly efficient at degrading PE-MPs.
Collapse
Affiliation(s)
- Zhuang Xiong
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, PR China
| | - Xiaodie Chen
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, PR China
| | - Ziping Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, PR China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, PR China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, PR China
| | - Bingliang Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, PR China.
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, PR China.
| |
Collapse
|
2
|
He Y, Fang C, Zeng Z, Fu B, Cui Z, Wang J, Yang H. Screening and isolation of polyethylene microplastic degrading bacteria from mangrove sediments in southern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 962:178488. [PMID: 39813845 DOI: 10.1016/j.scitotenv.2025.178488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/23/2024] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
Mangrove sediments in southern China are a large reservoir for microplastics (MPs). In particular, polyethylene microplastics (PE-MPs) are environmentally toxic and have accumulated in large quantities in these sediments, posing a potential threat to the overall mangrove and the organisms that inhabit it. We screened sediments from 5 mangrove sites and identified a potential source of PE-MP degrading bacteria. We purified the bacterial strains Acinetobacter venetianus E1-1, Serratia marcescens E1-2, Chryseobacterium cucumeris E1-3 and Bacillus albus E1-4 from P1 that were able to reduce the mass of the 75 μm PE-MPs substrate by 3.67 to 6.59 %, respectively and use it as a sole carbon source. The degradation was accompanied by surface deformation of the MPs and introduction of polar oxygen-containing carbonyl and carboxylic acid functional groups thereby decreasing the hydrophobicity of the substrate. Whole-genome sequencing of S. marcescens E1-2, the most effective degrader, revealed it possesses a variety of enzymes and metabolic pathways related to PE degradation. Our results indicated that the PE-MP degrading bacteria isolated from screened mangrove sediments represent an effective strategy for in situ MP pollution remediation and uncovering mechanisms associated with PE degradation.
Collapse
Affiliation(s)
- Yinglin He
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Chang Fang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Zeqian Zeng
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Bing Fu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Ziyi Cui
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Huirong Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China.
| |
Collapse
|
3
|
Adjeroud M, Kecha M, Escuder-Rodríguez JJ, Becerra M, González-Siso MI. AMWEst, a new thermostable and detergent-tolerant esterase retrieved from the Albian aquifer. Appl Microbiol Biotechnol 2024; 108:114. [PMID: 38204131 PMCID: PMC10781878 DOI: 10.1007/s00253-023-12844-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 01/12/2024]
Abstract
A fosmid library was constructed with the metagenomic DNA from the high-temperature sediment-rich water of the Albian aquifer (Algeria). Functional screening of this library was subsequently done looking for genes encoding lipolytic enzymes. We identified a novel gene named AMWEst (1209 base pairs) encoding a protein of 402 amino acids with a predicted molecular weight of 43.44 kDa and conferring esterase activity. AMWEst was successfully overexpressed in the yeast mesophilic host Saccharomyces cerevisiae, and the expression system used proved to be efficient and produced sufficient activity for its biochemical characterization. Multiple sequence alignment indicated that AMWEst contained a conserved pentapeptide motif (Gly120-His121-Ser122-Gln123-Gly124). The optimum pH and temperature of the recombinant esterase AMWEst were 8 and 80 °C, respectively. Additionally, AMWEst showed higher activity towards short carbon substrates and showed maximum activity for p-nitrophenyl hexanoate (C6). Notably, AMWEst has a remarkable thermostability, and the enzyme retains almost maximum activity at 70 °C after incubation for 1 h. Moreover, enzyme activity was enhanced by high concentrations of SDS and Triton X-100 detergents. KEY POINTS: • A novel thermostable esterase has been retrieved through functional metagenomics • The esterase is detergent-tolerant, which is attractive for some applications • The esterase can be expressed in a yeast mesophilic host to enhance its yield.
Collapse
Affiliation(s)
- Moussa Adjeroud
- Laboratoire de Mycologie, Département de Biologie Appliquée, de Biotechnologie Et de L'Activité Microbienne (LaMyBAM), Faculté Des Sciences de La Nature Et de La Vie, Université Des Frères Mentouri Constantine 1, 25000, Constantine, Algeria
- University of A Coruña, Grupo EXPRELA, Facultade de Ciencias, Centro Interdisciplinar de Química e Bioloxía (CICA), A Coruña, Spain
| | - Mouloud Kecha
- Laboratoire de Microbiologie Appliquée, Faculté Des Sciences de La Nature Et de La Vie, Département de Microbiologie, Université de Bejaia, Campus Targa Ouzemmour, 6000, Bejaia, Algeria
| | - Juan-José Escuder-Rodríguez
- University of A Coruña, Grupo EXPRELA, Facultade de Ciencias, Centro Interdisciplinar de Química e Bioloxía (CICA), A Coruña, Spain
| | - Manuel Becerra
- University of A Coruña, Grupo EXPRELA, Facultade de Ciencias, Centro Interdisciplinar de Química e Bioloxía (CICA), A Coruña, Spain.
| | - María-Isabel González-Siso
- University of A Coruña, Grupo EXPRELA, Facultade de Ciencias, Centro Interdisciplinar de Química e Bioloxía (CICA), A Coruña, Spain.
| |
Collapse
|
4
|
Gates EG, Crook N. The biochemical mechanisms of plastic biodegradation. FEMS Microbiol Rev 2024; 48:fuae027. [PMID: 39500541 PMCID: PMC11644497 DOI: 10.1093/femsre/fuae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 10/23/2024] [Accepted: 11/02/2024] [Indexed: 12/15/2024] Open
Abstract
Since the invention of the first synthetic plastic, an estimated 12 billion metric tons of plastics have been manufactured, 70% of which was produced in the last 20 years. Plastic waste is placing new selective pressures on humans and the organisms we depend on, yet it also places new pressures on microorganisms as they compete to exploit this new and growing source of carbon. The limited efficacy of traditional recycling methods on plastic waste, which can leach into the environment at low purity and concentration, indicates the utility of this evolving metabolic activity. This review will categorize and discuss the probable metabolic routes for each industrially relevant plastic, rank the most effective biodegraders for each plastic by harmonizing and reinterpreting prior literature, and explain the experimental techniques most often used in plastic biodegradation research, thus providing a comprehensive resource for researchers investigating and engineering plastic biodegradation.
Collapse
Affiliation(s)
- Ethan G Gates
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27606, United States
| | - Nathan Crook
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27606, United States
| |
Collapse
|
5
|
Atakpa EO, Yan B, Okon SU, Liu Q, Zhang D, Zhang C. Asynchronous application of modified biochar and exogenous fungus Scedosporium sp. ZYY for enhanced degradation of oil-contaminated intertidal mudflat sediment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20637-20650. [PMID: 38383925 DOI: 10.1007/s11356-024-32419-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
Intertidal mudflats are susceptible to oil pollution due to their proximity to discharges from industries, accidental spills from marine shipping activities, oil drilling, pipeline seepages, and river outflows. The experimental study was divided into two periods. In the first period, microcosm trials were carried out to examine the effect of chemically modified biochar on biological hydrocarbon removal from sediments. The modified biochar's surface area increased from 2.544 to 25.378 m2/g, followed by a corresponding increase in the hydrogen-carbon and oxygen-carbon ratio, indicating improved stability and polarity. In the second period, the effect of exogenous fungus - Scedoporium sp. ZYY on the bacterial community structure was examined in relation to total petroleum hydrocarbon (TPH) removal. The maximum TPH removal efficiency of 82.4% was achieved in treatments with the modified biochar, followed by a corresponding increase in Fluorescein diacetate hydrolysis activity. Furthermore, high-throughput 16S RNA gene sequencing employed to identify changes in the bacterial community of the original sediment and treatments before and after fungal inoculation revealed Proteobacteria as the dominant phylum. In addition, it was observed that Scedoporium sp. ZYY promoted the proliferation of specific TPH-degraders, particularly, Hyphomonas adhaerens which accounted for 77% of the total degrading populations in treatments where TPH removal was highest. Findings in this study provide valuable insights into the effect of modified biochar and the fundamental role of exogenous fungus towards the effective degradation of oil-contaminated intertidal mudflat sediments.
Collapse
Affiliation(s)
- Edidiong Okokon Atakpa
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
| | - Bozhi Yan
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China
| | - Samuel Ukpong Okon
- Institute of Port, Coastal, and Offshore Engineering, Ocean College, Zhejiang University, Zhoushan, 316021, China
- Suzhou Industrial Technological Research Institute of Zhejiang University, Suzhou, 215163, China
| | - Qing Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China
| | - Dongdong Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
| | - Chunfang Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China.
| |
Collapse
|
6
|
Gyasi SF, Sarfo MK, Kabo-Bah AT, Adu B, Appiah AS, Serfor-Armah Y. In vitro assessment of crude oil degradation by Acinetobacter junii and Alcanivorax xenomutans isolated from the coast of Ghana. Heliyon 2024; 10:e24994. [PMID: 38318038 PMCID: PMC10838785 DOI: 10.1016/j.heliyon.2024.e24994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 02/07/2024] Open
Abstract
This study was aimed at using in vitro microcosm experiments to assess crude oil degradation efficiency of Acinetobacter junii and Alcanivorax xenomutans isolated along Ghana's coast. Uncontaminated seawater from selected locations along the coast was used to isolate bacterial species by employing enrichment culture procedures with crude oil as the only carbon source. The isolates were identified by means of the extended direct colony transfer method of the Matrix Assisted Laser Desorption Ionization Time of Flight Mass Spectroscopy (MALDI-TOF MS), as Acinetobacter junii, and Alcanivorax xenomutans. Remediation tests showed that Acinetobacter junii yielded degradation efficiencies of 27.59 %, 41.38 % and 57.47 %. Whereas efficiencies of 21.14 %, 32.18 % and 43.68 % were recorded by Alcanivorax xenomutans representing 15, 30 and 45 days respectively. Consortia of Acinetobacter junii, and Alcanivorax xenomutans also yielded 32.18 %, 48.28 % and 62.07 % for the selected days respectively. Phylogenetic characterization using ClustalW and BLAST of sequences generated from the Oxford Nanopore Sequencing technique, showed that the Ghanaian isolates clustered with Alcanivorax xenomutans and Acinetobacter junii species respectively. An analysis of the sequenced data for the 1394-bp portion of the 16S rRNA gene of the isolates revealed >99 % sequence identity with the isolates present on the GenBank database. The isolates of closest identity were Alcanivorax xenomutans and Acinetobacter junii with accession numbers, NR_133958.1 and KJ147060.1 respectively. Acinetobacter junii and Alcanivorax xenomutans isolated from Ghana's coast under pristine seawater conditions have therefore demonstrated their capacity to be used for the remediation of crude oil spills.
Collapse
Affiliation(s)
- Samuel Fosu Gyasi
- Department of Biological Science, University of Energy and Natural Resources. Sunyani, Ghana
- Centre for Research in Applied Biology, University of Energy and Natural Resources. Sunyani, Ghana
| | - Mark Kwasi Sarfo
- National Nuclear Research Institute, Ghana Atomic Energy Commission, Ghana
| | | | - Bright Adu
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Ghana
| | - Andrew Sarkodie Appiah
- Biotechnology Center, Biotechnology and Nuclear Agricultural Research Institute, Ghana Atomic Energy Commission, Ghana
| | - Yaw Serfor-Armah
- School of Nuclear and Allied Sciences, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
7
|
Zhao S, Liu R, Wang J, Lv S, Zhang B, Dong C, Shao Z. Biodegradation of polyethylene terephthalate (PET) by diverse marine bacteria in deep-sea sediments. Environ Microbiol 2023; 25:2719-2731. [PMID: 37421171 DOI: 10.1111/1462-2920.16460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 06/19/2023] [Indexed: 07/09/2023]
Abstract
PET plastic waste entering the oceans is supposed to take hundreds of years to degrade and tends to accumulate in the deep sea. However, we know little about the bacteria capable of plastic degradation therein. To determine whether PET-degrading bacteria are present in deep-sea sediment, we collected the samples from the eastern central Pacific Ocean and initiated microbial incubation with PET as the carbon source. After enrichment with PET for 2 years, we gained all 15 deep-sea sediment communities at five oceanic sampling sites. Bacterial isolation for pure culture and further growth tests confirmed that diverse bacteria possess degradation ability including Alcanivorax xenomutans BC02_1_A5, Marinobacter sediminum BC31_3_A1, Marinobacter gudaonensis BC06_2_A6, Thalassospira xiamenensis BC02_2_A1 and Nocardioides marinus BC14_2_R3. Furthermore, four strains were chosen as representatives to reconfirm the PET degradation capability by SEM, weight loss and UPLC-MS. The results showed that after 30-day incubation, 1.3%-1.8% of PET was lost. De-polymerization of PET by the four strains was confirmed by the occurrence of the PET monomer of MHET and TPA as the key degradation products. Bacterial consortia possessing PET-degrading potential are prevalent and diverse and might play a key role in the removal of PET pollutants in deep oceans.
Collapse
Affiliation(s)
- Sufang Zhao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen, China
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, China
| | - Renju Liu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen, China
- School of Environmental Science, Harbin Institute of Technology, Harbin, China
| | - Juan Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen, China
| | - Shiwei Lv
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen, China
- School of Environmental Science, Harbin Institute of Technology, Harbin, China
| | - Benjuan Zhang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen, China
- School of Fisheries and Life, Shanghai Ocean University, Shanghai, China
| | - Chunming Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, Xiamen, China
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, China
- School of Environmental Science, Harbin Institute of Technology, Harbin, China
- School of Fisheries and Life, Shanghai Ocean University, Shanghai, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| |
Collapse
|
8
|
Yu Y, Huang W, Yu W, Tang S, Yin H. Metagenomic insights into the mechanisms of triphenyl phosphate degradation by bioaugmentation with Sphingopyxis sp. GY. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115261. [PMID: 37459723 DOI: 10.1016/j.ecoenv.2023.115261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/02/2023] [Accepted: 07/12/2023] [Indexed: 09/20/2023]
Abstract
Biodegradation of triphenyl phosphate (TPHP) by Sphingopyxis sp. GY was investigated, and results demonstrated that TPHP could be completely degraded in 36 h with intracellular enzymes playing a leading role. This study, for the first time, systematically explores the effects of the typical brominated flame retardants, organophosphorus flame retardants, and heavy metals on TPHP degradation. Our findings reveal that TCPs, BDE-47, HBCD, Cd and Cu exhibit inhibitory effects on TPHP degradation. The hydrolysis-, hydroxylated-, monoglucosylated-, methylated products and glutathione (GSH) conjugated derivative were identified and new degradation pathway of TPHP mediated by microorganism was proposed. Moreover, toxicity evaluation experiments indicate a significant reduction in toxicity following treatment with Sphingopyxis sp. GY. To evaluate its potential for environmental remediation, we conducted bioaugmentation experiments using Sphingopyxis sp. GY in a TPHP contaminated water-sediment system, which resulted in excellent remediation efficacy. Twelve intermediate products were detected in the water-sediment system, including the observation of the glutathione (GSH) conjugated derivative, monoglucosylated product, (OH)2-DPHP and CH3-O-DPHP for the first time in microorganism-mediated TPHP transformation. We further identify the active microbial members involved in TPHP degradation within the water-sediment system using metagenomic analysis. Notably, most of these members were found to possess genes related to TPHP degradation. These findings highlight the significant reduction of TPHP achieved through beneficial interactions and cooperation established between the introduced Sphingopyxis sp. GY and the indigenous microbial populations stimulated by the introduced bacteria. Thus, our study provides valuable insights into the mechanisms, co-existed pollutants, transformation pathways, and remediation potential associated with TPHP biodegradation, paving the way for future research and applications in environmental remediation strategies.
Collapse
Affiliation(s)
- Yuanyuan Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
| | - Wantang Huang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, China
| | - Wenyan Yu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, China
| | - Shaoyu Tang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, China.
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| |
Collapse
|
9
|
Xiang P, Zhang Y, Zhang T, Wu Q, Zhao C, Li Q. A novel bacterial combination for efficient degradation of polystyrene microplastics. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131856. [PMID: 37331064 DOI: 10.1016/j.jhazmat.2023.131856] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
This study aimed to investigate the combined decomposition of polystyrene (PS) microplastics using three bacterial cultures: Stenotrophomonas maltophilia, Bacillus velezensis, and Acinetobacter radioresistens. The ability of all three strains to grow on medium containing PS (Mn 90,000 Da, Mw 241,200 Da) microplastics as the sole carbon source was examined. After 60 days of A. radioresistens treatment, the maximum weight loss of the PS microplastics was found to be 16.7 ± 0.6% (half-life 251.1 d). After 60 days of treatment with S. maltophilia and B. velezensis, the maximum weight loss of PS microplastics was 43.5 ± 0.8% (half-life 74.9 d). After 60 days of treatment with S. maltophilia, B. velezensis, and A. radioresistens, the weight loss of the PS microplastics was 17.0 ± 0.2% (half-life 224.2 d). The S. maltophilia and B. velezensis treatment showed a more significant degradation effect after 60 days. This result was attributed to interspecific assistance and interspecific competition. Biodegradation of PS microplastics was confirmed using scanning electron microscopy, water contact angle, high-temperature gel chromatography, Fourier transform infrared spectroscopy and thermogravimetric analysis. This study is the first to explore the degradation ability of different bacterial combinations on PS microplastics, providing a reference for future research on the biodegradation technology of mixed bacteria.
Collapse
Affiliation(s)
- Peng Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Yunfeng Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Ting Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China; School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China
| | - Qian Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Changsong Zhao
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China.
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China.
| |
Collapse
|
10
|
Malik N, Lakhawat SS, Kumar V, Sharma V, Bhatti JS, Sharma PK. Recent advances in the omics-based assessment of microbial consortia in the plastisphere environment: Deciphering the dynamic role of hidden players. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION 2023; 176:207-225. [DOI: 10.1016/j.psep.2023.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
11
|
Liu Q, Chen H, Su Y, Sun S, Zhao C, Zhang X, Gu Y, Li L. Enhanced crude oil degradation by remodeling of crude oil-contaminated soil microbial community structure using sodium alginate/graphene oxide/Bacillus C5 immobilized pellets. ENVIRONMENTAL RESEARCH 2023; 223:115465. [PMID: 36773642 DOI: 10.1016/j.envres.2023.115465] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Bioaugmentation (BA) of oil-contaminated soil by immobilized microorganisms is considered to be a promising technology. However, available high-efficiency microbial agents remain very limited. Therefore, we prepared a SA/GO/C5 immobilized gel pellets by embedding the highly efficient crude oil degrading bacteria Bacillus C5 in the SA/GO composite material. The optimum preparation conditions of SA/GO/C5 immobilized gel pellets were: SA 3.0%, GO 25.0 μg/mL, embedding amount of C5 6%, water bath temperature of 50°C, CaCl2 solution concentration 3% and cross-linking time 20 h. BA experiments were carried out on crude oil contaminated soil to explore the removal effect of SA/GO/C5 immobilized pellets. The results showed that the SA/GO/C5 pellets exhibited excellent mechanical strength and specific surface area, which facilitated the attachment and growth of the Bacillus C5. Compared with free bacteria C5, the addition of SA/GO/C5 significantly promoted the removal of crude oil in soil, reaching 64.92% after 30 d, which was 2.1 times the removal rate of C5. The addition of SA/GO/C5 promoted the abundance of soil exogenous Bacillus C5 and indigenous crude oil degrading bacteria Alcanivorax and Marinobacter. In addition, the enrichment of hydrocarbon degradation-related functional abundance was predicted by PICRUSt2 in the SA/GO/C5 treatment group. This study demonstrated that SA/GO/C5 is an effective method for remediating crude oil-contaminated soil, providing a basis and option for immobilized microorganisms bioaugmentation to remediate organic contaminated soil.
Collapse
Affiliation(s)
- Qiyou Liu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China.
| | - Hongxu Chen
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Yuhua Su
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Shuo Sun
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Chaocheng Zhao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China
| | - Xiuxia Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China
| | - Yingying Gu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, China
| | - Lin Li
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China
| |
Collapse
|
12
|
Sun X, Chen Z, Kong T, Chen Z, Dong Y, Kolton M, Cao Z, Zhang X, Zhang H, Liu G, Gao P, Yang N, Lan L, Xu Y, Sun W. Mycobacteriaceae Mineralizes Micropolyethylene in Riverine Ecosystems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15705-15717. [PMID: 36288260 DOI: 10.1021/acs.est.2c05346] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Microplastic (MP) contamination is a serious global environmental problem. Plastic contamination has attracted extensive attention during the past decades. While physiochemical weathering may influence the properties of MPs, biodegradation by microorganisms could ultimately mineralize plastics into CO2. Compared to the well-studied marine ecosystems, the MP biodegradation process in riverine ecosystems, however, is less understood. The current study focuses on the MP biodegradation in one of the world's most plastic contaminated rivers, Pearl River, using micropolyethylene (mPE) as a model substrate. Mineralization of 13C-labeled mPE into 13CO2 provided direct evidence of mPE biodegradation by indigenous microorganisms. Several Actinobacteriota genera were identified as putative mPE degraders. Furthermore, two Mycobacteriaceae isolates related to the putative mPE degraders, Mycobacterium sp. mPE3 and Nocardia sp. mPE12, were retrieved, and their ability to mineralize 13C-mPE into 13CO2 was confirmed. Pangenomic analysis reveals that the genes related to the proposed mPE biodegradation pathway are shared by members of Mycobacteriaceae. While both Mycobacterium and Nocardia are known for their pathogenicity, these populations on the plastisphere in this study were likely nonpathogenic as they lacked virulence factors. The current study provided direct evidence for MP mineralization by indigenous biodegraders and predicted their biodegradation pathway, which may be harnessed to improve bioremediation of MPs in urban rivers.
Collapse
Affiliation(s)
- Xiaoxu Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, P. R. China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Zhenyu Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, P. R. China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Tianle Kong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, P. R. China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zheng Chen
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Yiran Dong
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, China
| | - Max Kolton
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, P. R. China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- French Associates Institute for Agriculture and Biotechnology of Drylands, Ben-Gurion University of the Negev, Beer Sheva 849900, Israel
| | - Zhiguo Cao
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Xin Zhang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Haihan Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Guoqiang Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Pin Gao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, P. R. China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Nie Yang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, P. R. China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ling Lan
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, P. R. China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yating Xu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, P. R. China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, P. R. China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
13
|
Crisafi F, Smedile F, Yakimov MM, Aulenta F, Fazi S, La Cono V, Martinelli A, Di Lisio V, Denaro R. Bacterial biofilms on medical masks disposed in the marine environment: a hotspot of biological and functional diversity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155731. [PMID: 35533867 DOI: 10.1016/j.scitotenv.2022.155731] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 05/06/2023]
Abstract
The present paper was aimed at investigating the role of disposable medical masks as a substrate for microbial biofilm growth and for the selection of specific microbial traits in highly impacted marine environments. In this view, we have immerged masks in a coastal area affected by a continuous input of artisanal fishery wastes and hydrocarbons pollution caused by intense maritime traffic. Masks maintained one month in the field were colonized by a bacterial community significantly different from that detected in the natural matrices from the same areas (seawater and sediments). The masks served as a viable substrate for the growth and enrichment of phototrophic microorganisms (Oxyphotobacteria), as well as Ruminococcaceae, Gracilibacteria, and Holophageae. In a follow-up investigation, masks previously colonized in the field were transferred in lab-scale microcosms which were supplemented with hydrocarbons and which contained also a piece of a virgin mask. After one month, a shift in the community composition, likely triggered by hydrocarbons addition, was observed in the previously colonized mask, with signatures characteristic of hydrocarbon-degrading microbial groups. Such hydrocarbon-degrading bacteria were also found to colonize the virgin mask. Remarkably, SEM micrographs provided indications of the occurrence of morphological modifications of the surface components of the virgin masks colonized by hydrocarbonoclastic bacteria. Overall, for the first time, we have demonstrated the potential risk for human and animal health determined by the uncorrected disposal of masks which are suitable substrates for pathogens colonization, permanence and spreading. Moreover, we have herein strengthened the knowledge on the role of hydrocarbon-degrading bacteria in the colonization and modification of fossil-based plastics in marine environment.
Collapse
Affiliation(s)
- F Crisafi
- Institute of Polar Sciences, National Research Council (ISP-CNR), Spianata San Raineri, 86, 98121 Messina, Italy
| | - F Smedile
- Institute of Polar Sciences, National Research Council (ISP-CNR), Spianata San Raineri, 86, 98121 Messina, Italy
| | - M M Yakimov
- Institute of Polar Sciences, National Research Council (ISP-CNR), Spianata San Raineri, 86, 98121 Messina, Italy
| | - F Aulenta
- Water Research Institute, National Research Council (IRSA-CNR), Via Salaria km 29, 300, 00015 Monterotondo, Rome, Italy
| | - S Fazi
- Water Research Institute, National Research Council (IRSA-CNR), Via Salaria km 29, 300, 00015 Monterotondo, Rome, Italy
| | - V La Cono
- Institute of Polar Sciences, National Research Council (ISP-CNR), Spianata San Raineri, 86, 98121 Messina, Italy
| | - A Martinelli
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - V Di Lisio
- Donostia International Physics Center, Paseo Manuel de Lardizabal, 4, 20018 Donostia-San Sebastian, Spain
| | - R Denaro
- Water Research Institute, National Research Council (IRSA-CNR), Via Salaria km 29, 300, 00015 Monterotondo, Rome, Italy.
| |
Collapse
|
14
|
Zadjelovic V, Erni-Cassola G, Obrador-Viel T, Lester D, Eley Y, Gibson MI, Dorador C, Golyshin PN, Black S, Wellington EMH, Christie-Oleza JA. A mechanistic understanding of polyethylene biodegradation by the marine bacterium Alcanivorax. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129278. [PMID: 35739790 DOI: 10.1016/j.jhazmat.2022.129278] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/19/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Polyethylene (PE) is one of the most recalcitrant carbon-based synthetic materials produced and, currently, the most ubiquitous plastic pollutant found in nature. Over time, combined abiotic and biotic processes are thought to eventually breakdown PE. Despite limited evidence of biological PE degradation and speculation that hydrocarbon-degrading bacteria found within the plastisphere is an indication of biodegradation, there is no clear mechanistic understanding of the process. Here, using high-throughput proteomics, we investigated the molecular processes that take place in the hydrocarbon-degrading marine bacterium Alcanivorax sp. 24 when grown in the presence of low density PE (LDPE). As well as efficiently utilising and assimilating the leachate of weathered LDPE, the bacterium was able to reduce the molecular weight distribution (Mw from 122 to 83 kg/mol) and overall mass of pristine LDPE films (0.9 % after 34 days of incubation). Most interestingly, Alcanivorax acquired the isotopic signature of the pristine plastic and induced an extensive array of metabolic pathways for aliphatic compound degradation. Presumably, the primary biodegradation of LDPE by Alcanivorax sp. 24 is possible via the production of extracellular reactive oxygen species as observed both by the material's surface oxidation and the measurement of superoxide in the culture with LDPE. Our findings confirm that hydrocarbon-biodegrading bacteria within the plastisphere may in fact have a role in degrading PE.
Collapse
Affiliation(s)
- Vinko Zadjelovic
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.
| | - Gabriel Erni-Cassola
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK; Program Man-Society-Environment (MGU), University of Basel, 4051 Basel, Switzerland
| | - Theo Obrador-Viel
- Department of Biology, University of the Balearic Islands, Palma 07122, Spain
| | - Daniel Lester
- Polymer Characterisation Research Technology Platform, University of Warwick, Coventry CV4 7AL, UK
| | - Yvette Eley
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Matthew I Gibson
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Cristina Dorador
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta, Universidad de Antofagasta, Chile; Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta Angamos 601, Antofagasta, Chile; Centre for Biotechnology & Bioengineering (CeBiB) Santiago, Chile
| | - Peter N Golyshin
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK
| | - Stuart Black
- Department of Geography and Environmental Science, University of Reading, UK
| | | | - Joseph A Christie-Oleza
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK; Department of Biology, University of the Balearic Islands, Palma 07122, Spain.
| |
Collapse
|
15
|
Hou L, Xi J, Liu J, Wang P, Xu T, Liu T, Qu W, Lin YB. Biodegradability of polyethylene mulching film by two Pseudomonas bacteria and their potential degradation mechanism. CHEMOSPHERE 2022; 286:131758. [PMID: 34399255 DOI: 10.1016/j.chemosphere.2021.131758] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/07/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Wasted polyethylene (PE) products caused pollution has become a global issue. Researchers have identified PE-degrading bacteria which have been considered as a sustainable alleviation to this crisis. However, the degradation mechanism employed by currently isolated bacteria is unclear and their degradation efficiencies are insufficient. More importantly, there is little research into bacteria capable of degrading PE mulching film to solve "white" pollution in agriculture. We determined the PE degradation efficiency of two Pseudomonas, identified by 16S rDNA analysis, and elucidated their potential mechanisms through whole genome sequencing. During an 8-week period, PE mulch lost 5.95 ± 0.03% and 3.62 ± 0.32% of its mass after incubated with P. knackmussii N1-2 and P. aeruginosa RD1-3 strains, respectively. Moreover, considerable pits and wrinkles were observed on PE.The hydrophobicity of PE films also decreased, and new oxygenic functional groups were detected on PE mulch by Fourier Transform Infrared Spectrometry (FTIR). Complete genome sequencing analysis indicated that two Pseudomonas strains encode genes for enzymes and metabolism pathways involved in PE degradation. The results provide a theoretical basis for further research that investigates the mechanism driving the degradation and metabolism of discarded PE in the environment.
Collapse
Affiliation(s)
- Lijun Hou
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; Department of Natural Resource Sciences, Macdonald Campus, McGill University, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Jiao Xi
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Jiaxi Liu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Peiyuan Wang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Tengqi Xu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Tingting Liu
- College of Science, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Wenxing Qu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yan Bing Lin
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
16
|
Cabral L, Giovanella P, Pellizzer EP, Teramoto EH, Kiang CH, Sette LD. Microbial communities in petroleum-contaminated sites: Structure and metabolisms. CHEMOSPHERE 2022; 286:131752. [PMID: 34426136 DOI: 10.1016/j.chemosphere.2021.131752] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/24/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Over recent decades, hydrocarbon concentrations have been augmented in soil and water, mainly derived from accidents or operations that input crude oil and petroleum into the environment. Different techniques for remediation have been proposed and used to mitigate oil contamination. Among the available environmental recovery approaches, bioremediation stands out since these hydrocarbon compounds can be used as growth substrates for microorganisms. In turn, microorganisms can play an important role with significant contributions to the stabilization of impacted areas. In this review, we present the current knowledge about responses from natural microbial communities (using DNA barcoding, multiomics, and functional gene markers) and bioremediation experiments (microcosm and mesocosm) conducted in the presence of petroleum and chemical dispersants in different samples, including soil, sediment, and water. Additionally, we present metabolic mechanisms for aerobic/anaerobic hydrocarbon degradation and alternative pathways, as well as a summary of studies showing functional genes and other mechanisms involved in petroleum biodegradation processes.
Collapse
Affiliation(s)
- Lucélia Cabral
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Patricia Giovanella
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Elisa Pais Pellizzer
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Elias Hideo Teramoto
- Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Laboratório de Estudos de Bacias (LEBAC), Departamento de Geologia Aplicada, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Chang Hung Kiang
- Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Laboratório de Estudos de Bacias (LEBAC), Departamento de Geologia Aplicada, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Lara Durães Sette
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil.
| |
Collapse
|
17
|
Jagtap CB, Ram RM, Tiwari OK, Titus S, Lodha T. Genome sequence of an obligate hydrocarbonoclastic bacterium Alcanivorax marinus NMRL4 isolated from oil polluted seawater of the Arabian Sea. Mar Genomics 2021; 60:100875. [PMID: 34627547 DOI: 10.1016/j.margen.2021.100875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 11/28/2022]
Abstract
Alcanivorax belongs to the hydrocarbonoclastic group of bacteria that are known for their preferential growth on alkanes and other related compounds. Here we report the genomic features of Alcanivorax marinus strain NMRL4 (=MCC 4632) isolated from oil polluted seawater of the Arabian Sea. Its 4,062,055 bp genome with 66.1% GC content encodes for 3935 coding sequences. The genome annotations of strain NMRL4 revealed the presence of multiple hydrocarbon degradation genes suggestive of its wider hydrocarbon substrate range. The strain encodes for three alkane monooxygenases, two cytochrome P450 and two flavin binding monooxygenases for degradation of short and long-chain alkanes. The genome shows capabilities for scavenging of nutrients, biofilm formation at oil-water interfaces, chemotaxis, motility and habitat specific adaptation. The genomic insights showed that the strain NMRL4 is an ideal candidate for bioremediation of pollutant petroleum hydrocarbons from the marine environment.
Collapse
Affiliation(s)
- C B Jagtap
- Department of Marine Biotechnology, Naval Materials Research Laboratory (NMRL), Ambernath 421 506, India.
| | - R Mohan Ram
- Department of Marine Biotechnology, Naval Materials Research Laboratory (NMRL), Ambernath 421 506, India
| | - O K Tiwari
- Department of Marine Biotechnology, Naval Materials Research Laboratory (NMRL), Ambernath 421 506, India
| | - S Titus
- Department of Marine Biotechnology, Naval Materials Research Laboratory (NMRL), Ambernath 421 506, India
| | - T Lodha
- National Center for Microbial Resource (NCMR), National Centre for Cell Science, Pune, India.
| |
Collapse
|
18
|
R M, S I, Kv S, Kp S, T R, G S, K R. Genomic characterization of Enterobacter xiangfangensis STP-3: Application to real time petroleum oil sludge bioremediation. Microbiol Res 2021; 253:126882. [PMID: 34619415 DOI: 10.1016/j.micres.2021.126882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/19/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
Sustainable treatment of petroleum oil sludge still remains as a major challenge to petroleum refineries. Bioremediation is the promising technology involving bacteria for simultaneous production of biosurfactant and followed by degradation of petroleum compounds. Complete genomic knowledge on such potential microbes could accentuate its successful exploitation. The present study discusses the genomic characteristics of novel biosurfactant producing petrophilic/ petroleum hydrocarbon degrading strain, Enterobacter xiangfangensis STP-3, isolated from petroleum refinery oil sludge contaminated soil. The genome has 4,584,462 bp and 4372 protein coding sequences. Functional analysis using the RAST and KEGG databases revealed the presence of biosynthetic gene clusters linked to glycolipid and lipopeptide production and multiple key candidate genes linked with the degradation pathway of petroleum hydrocarbons. Orthology study revealed diversity in gene clusters associated to membrane transport, carbohydrate, amino acid metabolism, virulence and defence mechanisms, and nucleoside and nucleotide synthesis. The comparative analysis with 27 other genomes predicted that the core genome contributes to its inherent bioremediation potential, whereas the accessory genome influences its environmental adaptability in unconventional environmental conditions. Further, experimental results showed that E. xiangfangensis STP-3 was able to degrade PHCs by 82 % in 14 days during the bioremediation of real time petroleum oil sludge with the concomitant production of biosurfactant and metabolic enzymes, To the best of our knowledge, no comprehensive genomic study has been previously reported on the biotechnological prospective of this species.
Collapse
Affiliation(s)
- Muneeswari R
- Biomolecules and Biocatalysis Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Kancheepuram District, Tamil Nadu, India
| | - Iyappan S
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Kancheepuram District, Tamil Nadu, India
| | - Swathi Kv
- Biomolecules and Biocatalysis Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Kancheepuram District, Tamil Nadu, India
| | - Sudheesh Kp
- Nutrition, Genetics and Biotechnology Division, ICAR-Central Institute of Brackishwater Aquaculture, Chennai, 600028, Tamil Nadu, India
| | - Rajesh T
- CSIR-National Environmental Engineering Research Institute, Chennai Zonal Lab, Tamil Nadu, India
| | - Sekaran G
- Biomolecules and Biocatalysis Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Kancheepuram District, Tamil Nadu, India
| | - Ramani K
- Biomolecules and Biocatalysis Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Kancheepuram District, Tamil Nadu, India.
| |
Collapse
|
19
|
Muriel-Millán LF, Millán-López S, Pardo-López L. Biotechnological applications of marine bacteria in bioremediation of environments polluted with hydrocarbons and plastics. Appl Microbiol Biotechnol 2021; 105:7171-7185. [PMID: 34515846 DOI: 10.1007/s00253-021-11569-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/25/2022]
Abstract
Marine ecosystems are some of the most adverse environments on Earth and contain a considerable portion of the global bacterial population, and some of these bacterial species play pivotal roles in several biogeochemical cycles. Marine bacteria have developed different molecular mechanisms to address fluctuating environmental conditions, such as changes in nutrient availability, salinity, temperature, pH, and pressure, making them attractive for use in diverse biotechnology applications. Although more than 99% of marine bacteria cannot be cultivated with traditional microbiological techniques, several species have been successfully isolated and grown in the laboratory, facilitating investigations of their biotechnological potential. Some of these applications may contribute to addressing some current global problems, such as environmental contamination by hydrocarbons and synthetic plastics. In this review, we first summarize and analyze recently published information about marine bacterial diversity. Then, we discuss new literature regarding the isolation and characterization of marine bacterial strains able to degrade hydrocarbons and petroleum-based plastics, and species able to produce biosurfactants. We also describe some current limitations for the implementation of these biotechnological tools, but also we suggest some strategies that may contribute to overcoming them. KEY POINTS: • Marine bacteria have a great metabolic capacity to degrade hydrocarbons in harsh conditions. • Marine environments are an important source of new bacterial plastic-degrading enzymes. • Secondary metabolites from marine bacteria have diverse potential applications in biotechnology.
Collapse
Affiliation(s)
- Luis Felipe Muriel-Millán
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, Mexico.
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Ciudad Universitaria, CDMX, Mexico.
| | - Sofía Millán-López
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - Liliana Pardo-López
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| |
Collapse
|
20
|
Dell’ Anno F, Rastelli E, Sansone C, Brunet C, Ianora A, Dell’ Anno A. Bacteria, Fungi and Microalgae for the Bioremediation of Marine Sediments Contaminated by Petroleum Hydrocarbons in the Omics Era. Microorganisms 2021; 9:1695. [PMID: 34442774 PMCID: PMC8400010 DOI: 10.3390/microorganisms9081695] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/29/2022] Open
Abstract
Petroleum hydrocarbons (PHCs) are one of the most widespread and heterogeneous organic contaminants affecting marine ecosystems. The contamination of marine sediments or coastal areas by PHCs represents a major threat for the ecosystem and human health, calling for urgent, effective, and sustainable remediation solutions. Aside from some physical and chemical treatments that have been established over the years for marine sediment reclamation, bioremediation approaches based on the use of microorganisms are gaining increasing attention for their eco-compatibility, and lower costs. In this work, we review current knowledge concerning the bioremediation of PHCs in marine systems, presenting a synthesis of the most effective microbial taxa (i.e., bacteria, fungi, and microalgae) identified so far for hydrocarbon removal. We also discuss the challenges offered by innovative molecular approaches for the design of effective reclamation strategies based on these three microbial components of marine sediments contaminated by hydrocarbons.
Collapse
Affiliation(s)
- Filippo Dell’ Anno
- Department of Marine Biotechnology, Stazione Zoologica “Anton Dohrn”, Villa Comunale, 80121 Naples, Italy; (C.S.); (C.B.); (A.I.)
| | - Eugenio Rastelli
- Department of Marine Biotechnology, Stazione Zoologica “Anton Dohrn”, Fano Marine Centre, Viale Adriatico 1-N, 61032 Fano, Italy;
| | - Clementina Sansone
- Department of Marine Biotechnology, Stazione Zoologica “Anton Dohrn”, Villa Comunale, 80121 Naples, Italy; (C.S.); (C.B.); (A.I.)
| | - Christophe Brunet
- Department of Marine Biotechnology, Stazione Zoologica “Anton Dohrn”, Villa Comunale, 80121 Naples, Italy; (C.S.); (C.B.); (A.I.)
| | - Adrianna Ianora
- Department of Marine Biotechnology, Stazione Zoologica “Anton Dohrn”, Villa Comunale, 80121 Naples, Italy; (C.S.); (C.B.); (A.I.)
| | - Antonio Dell’ Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
21
|
Vaksmaa A, Knittel K, Abdala Asbun A, Goudriaan M, Ellrott A, Witte HJ, Vollmer I, Meirer F, Lott C, Weber M, Engelmann JC, Niemann H. Microbial Communities on Plastic Polymers in the Mediterranean Sea. Front Microbiol 2021; 12:673553. [PMID: 34220756 PMCID: PMC8243005 DOI: 10.3389/fmicb.2021.673553] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/08/2021] [Indexed: 11/17/2022] Open
Abstract
Plastic particles in the ocean are typically covered with microbial biofilms, but it remains unclear whether distinct microbial communities colonize different polymer types. In this study, we analyzed microbial communities forming biofilms on floating microplastics in a bay of the island of Elba in the Mediterranean Sea. Raman spectroscopy revealed that the plastic particles mainly comprised polyethylene (PE), polypropylene (PP), and polystyrene (PS) of which polyethylene and polypropylene particles were typically brittle and featured cracks. Fluorescence in situ hybridization and imaging by high-resolution microscopy revealed dense microbial biofilms on the polymer surfaces. Amplicon sequencing of the 16S rRNA gene showed that the bacterial communities on all plastic types consisted mainly of the orders Flavobacteriales, Rhodobacterales, Cytophagales, Rickettsiales, Alteromonadales, Chitinophagales, and Oceanospirillales. We found significant differences in the biofilm community composition on PE compared with PP and PS (on OTU and order level), which shows that different microbial communities colonize specific polymer types. Furthermore, the sequencing data also revealed a higher relative abundance of archaeal sequences on PS in comparison with PE or PP. We furthermore found a high occurrence, up to 17% of all sequences, of different hydrocarbon-degrading bacteria on all investigated plastic types. However, their functioning in the plastic-associated biofilm and potential role in plastic degradation needs further assessment.
Collapse
Affiliation(s)
- Annika Vaksmaa
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, Netherlands
| | - Katrin Knittel
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Alejandro Abdala Asbun
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, Netherlands
| | - Maaike Goudriaan
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, Netherlands
| | - Andreas Ellrott
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Harry J Witte
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, Netherlands
| | - Ina Vollmer
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, Netherlands
| | - Florian Meirer
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, Netherlands
| | | | | | - Julia C Engelmann
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, Netherlands
| | - Helge Niemann
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, Netherlands.,Department of Earth Sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
22
|
Denaro R, Aulenta F, Crisafi F, Di Pippo F, Cruz Viggi C, Matturro B, Tomei P, Smedile F, Martinelli A, Di Lisio V, Venezia C, Rossetti S. Marine hydrocarbon-degrading bacteria breakdown poly(ethylene terephthalate) (PET). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141608. [PMID: 32836129 DOI: 10.1016/j.scitotenv.2020.141608] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 05/09/2023]
Abstract
Pollution of aquatic ecosystems by plastic wastes poses severe environmental and health problems and has prompted scientific investigations on the fate and factors contributing to the modification of plastics in the marine environment. Here, we investigated, by means of microcosm studies, the role of hydrocarbon-degrading bacteria in the degradation of poly(ethylene terephthalate) (PET), the main constituents of plastic bottles, in the marine environment. To this aim, different bacterial consortia, previously acclimated to representative hydrocarbons fractions namely, tetradecane (aliphatic fraction), diesel (mixture of hydrocarbons), and naphthalene/phenantrene (aromatic fraction), were used as inocula of microcosm experiments, in order to identify peculiar specialization in poly(ethylene terephthalate) degradation. Upon formation of a mature biofilm on the surface of poly(ethylene terephthalate) films, the bacterial biodiversity and degradation efficiency of each selected consortium was analyzed. Notably, significant differences on biofilm biodiversity were observed with distinctive hydrocarbons-degraders being enriched on poly(ethylene terephthalate) surface, such as Alcanivorax, Hyphomonas, and Cycloclasticus species. Interestingly, ATR-FTIR analyses, supported by SEM and water contact angle measurements, revealed major alterations of the surface chemistry and morphology of PET films, mainly driven by the bacterial consortia enriched on tetradecane and diesel. Distinctive signatures of microbial activity were the alteration of the FTIR spectra as a consequence of PET chain scission through the hydrolysis of the ester bond, the increased sample hydrophobicity as well as the formation of small cracks and cavities on the surface of the film. In conclusion, our study demonstrates for the first time that hydrocarbons-degrading marine bacteria have the potential to degrade poly(ethylene terephthalate), although their degradative activity could potentially trigger the formation of harmful microplastics in the marine environment.
Collapse
Affiliation(s)
- R Denaro
- Water Research Institute (IRSA) (CNR), Via Salaria km 29, 300, 00015 Monterotondo, Rome, Italy.
| | - F Aulenta
- Water Research Institute (IRSA) (CNR), Via Salaria km 29, 300, 00015 Monterotondo, Rome, Italy
| | - F Crisafi
- Institute for Biological Resources and Marine Biotechnology (IRBIM) (CNR), Spianata San Raineri, 86, 98121 Messina, Italy
| | - F Di Pippo
- Water Research Institute (IRSA) (CNR), Via Salaria km 29, 300, 00015 Monterotondo, Rome, Italy
| | - C Cruz Viggi
- Water Research Institute (IRSA) (CNR), Via Salaria km 29, 300, 00015 Monterotondo, Rome, Italy
| | - B Matturro
- Water Research Institute (IRSA) (CNR), Via Salaria km 29, 300, 00015 Monterotondo, Rome, Italy
| | - P Tomei
- Water Research Institute (IRSA) (CNR), Via Salaria km 29, 300, 00015 Monterotondo, Rome, Italy
| | - F Smedile
- Institute for Biological Resources and Marine Biotechnology (IRBIM) (CNR), Spianata San Raineri, 86, 98121 Messina, Italy
| | - A Martinelli
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - V Di Lisio
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - C Venezia
- Water Research Institute (IRSA) (CNR), Via Salaria km 29, 300, 00015 Monterotondo, Rome, Italy
| | - S Rossetti
- Water Research Institute (IRSA) (CNR), Via Salaria km 29, 300, 00015 Monterotondo, Rome, Italy
| |
Collapse
|
23
|
Freitas L, Appolinario L, Calegario G, Campeão M, Tschoeke D, Garcia G, Venancio IM, Cosenza CAN, Leomil L, Bernardes M, Albuquerque AL, Thompson C, Thompson F. Glacial-interglacial transitions in microbiomes recorded in deep-sea sediments from the western equatorial Atlantic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:140904. [PMID: 32763595 DOI: 10.1016/j.scitotenv.2020.140904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
In the late Quaternary, glacial-interglacial transitions are marked by major environmental changes. Glacial periods in the western equatorial Atlantic (WEA) are characterized by high continental terrigenous input, which increases the proportion of terrestrial organic matter (e.g. lignin, alkanes), nutrients (e.g. iron and sulphur), and lower primary productivity. On the other hand, interglacials are characterized by lower continental contribution and maxima in primary productivity. Microbes can serve as biosensors of past conditions, but scarce information is available on deep-sea sediments in the WEA. The hypothesis put forward in this study is that past changes in climate conditions modulated the taxonomic/functional composition of microbes from deep sediment layers. To address this hypothesis, we collected samples from a marine sediment core located in the WEA, which covered the last 130 kyr. This region is influenced by the presence of the Amazon River plume, which outputs dissolved and particulate nutrients in vast oceanic regions, as well as the Parnaiba river plume. Core GL-1248 was analysed by shotgun metagenomics and geochemical analyses (alkane, lignin, perylene, sulphur). Two clusters (glacial and interglacial-deglacial) were found based on taxonomic and functional profiles of metagenomes. The interglacial period had a higher abundance of genes belonging to several sub-systems (e.g. DNA, RNA metabolism, cell division, chemotaxis, and respiration) that are consistent with a past environment with enhanced primary productivity. On the other hand, the abundance of Alcanivorax, Marinobacter, Kangiella and aromatic compounds that may serve as energy sources for these bacteria were higher in the glacial. The glacial period was enriched in genes for the metabolism of aromatic compounds, lipids, isoprenoids, iron, and Sulphur, consistent with enhanced fluvial input during the last glacial period. In contrast, interglacials have increased contents of more labile materials originating from phytoplankton (e.g. Prochlorococcus). This study provides new insights into the microbiome as climatic archives at geological timescales.
Collapse
Affiliation(s)
- Lucas Freitas
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; SAGE-COPPE, UFRJ, Rio de Janeiro, Brazil
| | - Luciana Appolinario
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; SAGE-COPPE, UFRJ, Rio de Janeiro, Brazil
| | - Gabriela Calegario
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; SAGE-COPPE, UFRJ, Rio de Janeiro, Brazil
| | - Mariana Campeão
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; SAGE-COPPE, UFRJ, Rio de Janeiro, Brazil
| | - Diogo Tschoeke
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; SAGE-COPPE, UFRJ, Rio de Janeiro, Brazil
| | - Gizele Garcia
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; SAGE-COPPE, UFRJ, Rio de Janeiro, Brazil
| | - Igor Martins Venancio
- Center for Weather Forecasting and Climate Studies (CPTEC), National Institute for Space Research (INPE), Cachoeira Paulista, Brazil; Gradutate Program on Geoscience (Geochemistry), Federal Fluminense University, Niterói, Brazil
| | | | | | - Marcelo Bernardes
- Gradutate Program on Geoscience (Geochemistry), Federal Fluminense University, Niterói, Brazil
| | - Ana Luiza Albuquerque
- Gradutate Program on Geoscience (Geochemistry), Federal Fluminense University, Niterói, Brazil.
| | - Cristiane Thompson
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; SAGE-COPPE, UFRJ, Rio de Janeiro, Brazil.
| | - Fabiano Thompson
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; SAGE-COPPE, UFRJ, Rio de Janeiro, Brazil.
| |
Collapse
|
24
|
Zhang W, Yu C, Wang X, Hai L. Increased abundance of nitrogen transforming bacteria by higher C/N ratio reduces the total losses of N and C in chicken manure and corn stover mix composting. BIORESOURCE TECHNOLOGY 2020; 297:122410. [PMID: 31757616 DOI: 10.1016/j.biortech.2019.122410] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/05/2019] [Accepted: 11/09/2019] [Indexed: 06/10/2023]
Abstract
The aim of this work was to investigate how the initial C/N ratio during composting of chicken manure/corn stover mix affected the succession of dominant bacteria in the mix which led to the reduction of the total losses of N and C in the composting process. 16S rDNA sequencing indicated that the succession of predominant bacteria was significantly affected by the temperature and the initial C/N ratio during composting. Redundancy analysis showed that higher C/N appeared to promote the relative abundance of nitrogen fixing bacteria Thermoactinomyces, Planifilum, Flavobacterium, Bacillaceae, Pseudomonas,Sphingobacterium, Paenibacillus, Bacillus and Thermobifida, while compressing the denitrifying bacteria Pusillimonas, Ignatzschineria, Alcanivorax, Cerasibacillus, Truepera and Erysipelothrix. C/N ratio of 30:1 yielded the least C/N losses in the composting process, indicating that adjustment to the initial C/N ratio could affect nitrogen transforming bacteria to reduce the total losses of N and C and improve compost quality.
Collapse
Affiliation(s)
- WenMing Zhang
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, PR China; Department of Agriculture and Biosystem Engineering, Iowa State University, Ames 50010, USA.
| | - ChenXu Yu
- Department of Agriculture and Biosystem Engineering, Iowa State University, Ames 50010, USA
| | - XuJie Wang
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Long Hai
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, PR China
| |
Collapse
|