1
|
Xu FF, Shang Y, Wei HQ, Zhang WY, Wang LX, Hu T, Zhang SQ, Li YL, Shang HH, Hou WB, Gou WF, Fan SJ, Li YL. Ursolic acid derivative UA312 ameliorates ionizing radiation-induced cardiotoxicity and neurodevelopmental toxicity in zebrafish via targeting chrna3 and grik5. Acta Pharmacol Sin 2025:10.1038/s41401-025-01564-0. [PMID: 40295836 DOI: 10.1038/s41401-025-01564-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/08/2025] [Indexed: 04/30/2025]
Abstract
The biological damage caused by ionizing radiation (IR) depends not only on the time and doses of exposure to tissue components but also on the developmental state of the cells. Currently, amifostine is the only radiation-protective agent used for clinical indications related to radiation therapy, but this compound has multiple drawbacks including high toxicity, short half-life and no protective effect on the nervous system. Ursolic acid (UA), a natural pentacyclic triterpenoid that exhibits multiple protective effects including anti-inflammatory, anticarcinogenic, and antioxidant effects. Due to its poor solubility and bioavailability, UA is mostly administered with liposomes. In this study we investigated the impact of UA312, an optimized derivative of UA, on radiation-induced developmental toxicity in zebrafish embryos and larvae. Embryo and larvae survival were observed at 4, 24, 48, and 72 hpf. UA312 was administered at 3 hpf, while embryos were irradiated with 6 Gy of γ-irradiation (dose rate: 0.88 Gy/min) at 4 hpf, then the embryos were moved to a fresh buffer. We determined that 40 µM of UA312 was a safe concentration for zebrafish embryos and larvae. We found that treatment with UA312 (40 µM) restored IR-induced early developmental dysplasia of the zebrafish embryos and larvae. Transcriptomic analysis revealed that exposure to IR inhibited multiple pathways related to neurodevelopment and cardiomyocyte function in zebrafish, which were validated by assessing abnormal cardiac morphology, variations in neurotransmitter levels and alterations in locomotor behavior; and that UA312 treatment ameliorated these alterations. We demonstrated that UA312 treatment significantly reversed the related signaling pathways by targeting chrna3 and grik5. In conclusion, this study identified a promising radioprotective drug, UA312, which alleviates IR-induced cardiotoxicity and neurodevelopmental toxicity in zebrafish by targeting chrna3 and grik5. UA312 may be developed as a novel radioprotective agent against acute IR damage in humans.
Collapse
Affiliation(s)
- Fei-Fei Xu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Yue Shang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Hui-Qiang Wei
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Wei-Ying Zhang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin, 300071, China
| | - Li-Xing Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Tong Hu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shu-Qin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Yan-Li Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Hai-Hua Shang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Wen-Bin Hou
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Wen-Feng Gou
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.
| | - Sai-Jun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.
| | - Yi-Liang Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China.
| |
Collapse
|
2
|
Burggren W, Abramova R, Bautista NM, Fritsche Danielson R, Dubansky B, Gupta A, Hansson K, Iyer N, Jagadeeswaran P, Jennbacken K, Rydén-Markinhutha K, Patel V, Raman R, Trivedi H, Vazquez Roman K, Williams S, Wang QD. A larval zebrafish model of cardiac physiological recovery following cardiac arrest and myocardial hypoxic damage. Biol Open 2024; 13:bio060230. [PMID: 39263862 PMCID: PMC11413934 DOI: 10.1242/bio.060230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/22/2024] [Indexed: 09/13/2024] Open
Abstract
Contemporary cardiac injury models in zebrafish larvae include cryoinjury, laser ablation, pharmacological treatment and cardiac dysfunction mutations. Although effective in damaging cardiomyocytes, these models lack the important element of myocardial hypoxia, which induces critical molecular cascades within cardiac muscle. We have developed a novel, tractable, high throughput in vivo model of hypoxia-induced cardiac damage that can subsequently be used in screening cardioactive drugs and testing recovery therapies. Our potentially more realistic model for studying cardiac arrest and recovery involves larval zebrafish (Danio rerio) acutely exposed to severe hypoxia (PO2=5-7 mmHg). Such exposure induces loss of mobility quickly followed by cardiac arrest occurring within 120 min in 5 days post fertilization (dpf) and within 40 min at 10 dpf. Approximately 90% of 5 dpf larvae survive acute hypoxic exposure, but survival fell to 30% by 10 dpf. Upon return to air-saturated water, only a subset of larvae resumed heartbeat, occurring within 4 min (5 dpf) and 6-8 min (8-10 dpf). Heart rate, stroke volume and cardiac output in control larvae before hypoxic exposure were 188±5 bpm, 0.20±0.001 nL and 35.5±2.2 nL/min (n=35), respectively. After briefly falling to zero upon severe hypoxic exposure, heart rate returned to control values by 24 h of recovery. However, reflecting the severe cardiac damage induced by the hypoxic episode, stroke volume and cardiac output remained depressed by ∼50% from control values at 24 h of recovery, and full restoration of cardiac function ultimately required 72 h post-cardiac arrest. Immunohistological staining showed co-localization of Troponin C (identifying cardiomyocytes) and Capase-3 (identifying cellular apoptosis). As an alternative to models employing mechanical or pharmacological damage to the developing myocardium, the highly reproducible cardiac effects of acute hypoxia-induced cardiac arrest in the larval zebrafish represent an alternative, potentially more realistic model that mimics the cellular and molecular consequences of an infarction for studying cardiac tissue hypoxia injury and recovery of function.
Collapse
Affiliation(s)
- Warren Burggren
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Regina Abramova
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Naim M. Bautista
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Regina Fritsche Danielson
- SVP and head of Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 431 50, Sweden
| | - Ben Dubansky
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Avi Gupta
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Kenny Hansson
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 431 50, Sweden
| | - Neha Iyer
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Pudur Jagadeeswaran
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Karin Jennbacken
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 431 50, Sweden
| | - Katarina Rydén-Markinhutha
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 431 50, Sweden
| | - Vishal Patel
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Revathi Raman
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Hersh Trivedi
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Karem Vazquez Roman
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Steven Williams
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| | - Qing-Dong Wang
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 431 50, Sweden
| |
Collapse
|
3
|
Verkerk L, Verkerk AO, Wilders R. Zebrafish as a Model System for Brugada Syndrome. Rev Cardiovasc Med 2024; 25:313. [PMID: 39355588 PMCID: PMC11440409 DOI: 10.31083/j.rcm2509313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/22/2024] [Accepted: 04/28/2024] [Indexed: 10/03/2024] Open
Abstract
Brugada syndrome (BrS) is an inheritable cardiac arrhythmogenic disease, associated with an increased risk of sudden cardiac death. It is most common in males around the age of 40 and the prevalence is higher in Asia than in Europe and the United States. The pathophysiology underlying BrS is not completely understood, but several hypotheses have been proposed. So far, the best effective treatment is the implantation of an implantable cardioverter-defibrillator (ICD), but device-related complications are not uncommon. Therefore, there is an urgent need to improve diagnosis and risk stratification and to find new treatment options. To this end, research should further elucidate the genetic basis and pathophysiological mechanisms of BrS. Several experimental models are being used to gain insight into these aspects. The zebrafish (Danio rerio) is a widely used animal model for the study of cardiac arrhythmias, as its cardiac electrophysiology shows interesting similarities to humans. However, zebrafish have only been used in a limited number of studies on BrS, and the potential role of zebrafish in studying the mechanisms of BrS has not been reviewed. Therefore, the present review aims to evaluate zebrafish as an animal model for BrS. We conclude that zebrafish can be considered as a valuable experimental model for BrS research, not only for gene editing technologies, but also for screening potential BrS drugs.
Collapse
Affiliation(s)
- Leonie Verkerk
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Arie O Verkerk
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Ronald Wilders
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
4
|
Martinez-Sielva A, Vicente M, Salgado-Almario J, Garcia-Blazquez A, Domingo B, Llopis J. Suppression of Contraction Raises Calcium Ion Levels in the Heart of Zebrafish Larvae. BIOSENSORS 2024; 14:219. [PMID: 38785693 PMCID: PMC11118826 DOI: 10.3390/bios14050219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Zebrafish larvae have emerged as a valuable model for studying heart physiology and pathophysiology, as well as for drug discovery, in part thanks to its transparency, which simplifies microscopy. However, in fluorescence-based optical mapping, the beating of the heart results in motion artifacts. Two approaches have been employed to eliminate heart motion during calcium or voltage mapping in zebrafish larvae: the knockdown of cardiac troponin T2A and the use of myosin inhibitors. However, these methods disrupt the mechano-electric and mechano-mechanic coupling mechanisms. We have used ratiometric genetically encoded biosensors to image calcium in the beating heart of intact zebrafish larvae because ratiometric quantification corrects for motion artifacts. In this study, we found that halting heart motion by genetic means (injection of tnnt2a morpholino) or chemical tools (incubation with para-aminoblebbistatin) leads to bradycardia, and increases calcium levels and the size of the calcium transients, likely by abolishing a feedback mechanism that connects contraction with calcium regulation. These outcomes were not influenced by the calcium-binding domain of the gene-encoded biosensors employed, as biosensors with a modified troponin C (Twitch-4), calmodulin (mCyRFP1-GCaMP6f), or the photoprotein aequorin (GFP-aequorin) all yielded similar results. Cardiac contraction appears to be an important regulator of systolic and diastolic Ca2+ levels, and of the heart rate.
Collapse
Affiliation(s)
| | | | | | | | - Beatriz Domingo
- Physiology and Cell Dynamics Group, Instituto de Biomedicina de la Universidad de Castilla-La Mancha, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, C/Almansa 14, 02006 Albacete, Spain; (A.M.-S.); (M.V.); (J.S.-A.); (A.G.-B.)
| | - Juan Llopis
- Physiology and Cell Dynamics Group, Instituto de Biomedicina de la Universidad de Castilla-La Mancha, Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, C/Almansa 14, 02006 Albacete, Spain; (A.M.-S.); (M.V.); (J.S.-A.); (A.G.-B.)
| |
Collapse
|
5
|
Using Zebrafish Animal Model to Study the Genetic Underpinning and Mechanism of Arrhythmogenic Cardiomyopathy. Int J Mol Sci 2023; 24:ijms24044106. [PMID: 36835518 PMCID: PMC9966228 DOI: 10.3390/ijms24044106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is largely an autosomal dominant genetic disorder manifesting fibrofatty infiltration and ventricular arrhythmia with predominantly right ventricular involvement. ACM is one of the major conditions associated with an increased risk of sudden cardiac death, most notably in young individuals and athletes. ACM has strong genetic determinants, and genetic variants in more than 25 genes have been identified to be associated with ACM, accounting for approximately 60% of ACM cases. Genetic studies of ACM in vertebrate animal models such as zebrafish (Danio rerio), which are highly amenable to large-scale genetic and drug screenings, offer unique opportunities to identify and functionally assess new genetic variants associated with ACM and to dissect the underlying molecular and cellular mechanisms at the whole-organism level. Here, we summarize key genes implicated in ACM. We discuss the use of zebrafish models, categorized according to gene manipulation approaches, such as gene knockdown, gene knock-out, transgenic overexpression, and CRISPR/Cas9-mediated knock-in, to study the genetic underpinning and mechanism of ACM. Information gained from genetic and pharmacogenomic studies in such animal models can not only increase our understanding of the pathophysiology of disease progression, but also guide disease diagnosis, prognosis, and the development of innovative therapeutic strategies.
Collapse
|
6
|
Abstract
Heart disease is the leading cause of death worldwide. Despite decades of research, most heart pathologies have limited treatments, and often the only curative approach is heart transplantation. Thus, there is an urgent need to develop new therapeutic approaches for treating cardiac diseases. Animal models that reproduce the human pathophysiology are essential to uncovering the biology of diseases and discovering therapies. Traditionally, mammals have been used as models of cardiac disease, but the cost of generating and maintaining new models is exorbitant, and the studies have very low throughput. In the last decade, the zebrafish has emerged as a tractable model for cardiac diseases, owing to several characteristics that made this animal popular among developmental biologists. Zebrafish fertilization and development are external; embryos can be obtained in high numbers, are cheap and easy to maintain, and can be manipulated to create new genetic models. Moreover, zebrafish exhibit an exceptional ability to regenerate their heart after injury. This review summarizes 25 years of research using the zebrafish to study the heart, from the classical forward screenings to the contemporary methods to model mutations found in patients with cardiac disease. We discuss the advantages and limitations of this model organism and introduce the experimental approaches exploited in zebrafish, including forward and reverse genetics and chemical screenings. Last, we review the models used to induce cardiac injury and essential ideas derived from studying natural regeneration. Studies using zebrafish have the potential to accelerate the discovery of new strategies to treat cardiac diseases.
Collapse
Affiliation(s)
- Juan Manuel González-Rosa
- Cardiovascular Research Center, Massachusetts General Hospital Research Institute, Harvard Medical School, Charlestown, MA
| |
Collapse
|
7
|
Baillie JS, Stoyek MR, Quinn TA. Seeing the Light: The Use of Zebrafish for Optogenetic Studies of the Heart. Front Physiol 2021; 12:748570. [PMID: 35002753 PMCID: PMC8733579 DOI: 10.3389/fphys.2021.748570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
Optogenetics, involving the optical measurement and manipulation of cellular activity with genetically encoded light-sensitive proteins ("reporters" and "actuators"), is a powerful experimental technique for probing (patho-)physiological function. Originally developed as a tool for neuroscience, it has now been utilized in cardiac research for over a decade, providing novel insight into the electrophysiology of the healthy and diseased heart. Among the pioneering cardiac applications of optogenetic actuators were studies in zebrafish, which first demonstrated their use for precise spatiotemporal control of cardiac activity. Zebrafish were also adopted early as an experimental model for the use of optogenetic reporters, including genetically encoded voltage- and calcium-sensitive indicators. Beyond optogenetic studies, zebrafish are becoming an increasingly important tool for cardiac research, as they combine many of the advantages of integrative and reduced experimental models. The zebrafish has striking genetic and functional cardiac similarities to that of mammals, its genome is fully sequenced and can be modified using standard techniques, it has been used to recapitulate a variety of cardiac diseases, and it allows for high-throughput investigations. For optogenetic studies, zebrafish provide additional advantages, as the whole zebrafish heart can be visualized and interrogated in vivo in the transparent, externally developing embryo, and the relatively small adult heart allows for in situ cell-specific observation and control not possible in mammals. With the advent of increasingly sophisticated fluorescence imaging approaches and methods for spatially-resolved light stimulation in the heart, the zebrafish represents an experimental model with unrealized potential for cardiac optogenetic studies. In this review we summarize the use of zebrafish for optogenetic investigations in the heart, highlighting their specific advantages and limitations, and their potential for future cardiac research.
Collapse
Affiliation(s)
- Jonathan S. Baillie
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Matthew R. Stoyek
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - T. Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
8
|
Moving average and standard deviation thresholding (MAST): a novel algorithm for accurate R-wave detection in the murine electrocardiogram. J Comp Physiol B 2021; 191:1071-1083. [PMID: 34304289 DOI: 10.1007/s00360-021-01389-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/21/2021] [Accepted: 07/06/2021] [Indexed: 01/09/2023]
Abstract
Advances in implantable radio-telemetry or diverse biologging devices capable of acquiring high-resolution ambulatory electrocardiogram (ECG) or heart rate recordings facilitate comparative physiological investigations by enabling detailed analysis of cardiopulmonary phenotypes and responses in vivo. Two priorities guiding the meaningful adoption of such technologies are: (1) automation, to streamline and standardize large dataset analysis, and (2) flexibility in quality-control. The latter is especially relevant when considering the tendency of some fully automated software solutions to significantly underestimate heart rate when raw signals contain high-amplitude noise. We present herein moving average and standard deviation thresholding (MAST), a novel, open-access algorithm developed to perform automated, accurate, and noise-robust single-channel R-wave detection from ECG obtained in chronically instrumented mice. MAST additionally and automatically excludes and annotates segments where R-wave detection is not possible due to artefact levels exceeding signal levels. Customizable settings (e.g. window width of moving average) allow for MAST to be scaled for use in non-murine species. Two expert reviewers compared MAST's performance (true/false positive and false negative detections) with that of a commercial ECG analysis program. Both approaches were applied blindly to the same random selection of 270 3-min ECG recordings from a dataset containing varying amounts of signal artefact. MAST exhibited roughly one quarter the error rate of the commercial software and accurately detected R-waves with greater consistency and virtually no false positives (sensitivity, Se: 98.48% ± 4.32% vs. 94.59% ± 17.52%, positive predictivity, +P: 99.99% ± 0.06% vs. 99.57% ± 3.91%, P < 0.001 and P = 0.0274 respectively, Wilcoxon signed rank; values are mean ± SD). Our novel, open-access approach for automated single-channel R-wave detection enables investigators to study murine heart rate indices with greater accuracy and less effort. It also provides a foundational code for translation to other mammals, ectothermic vertebrates, and birds.
Collapse
|
9
|
Arslanova A, Shafaattalab S, Lin E, Barszczewski T, Hove-Madsen L, Tibbits GF. Investigating inherited arrhythmias using hiPSC-derived cardiomyocytes. Methods 2021; 203:542-557. [PMID: 34197925 DOI: 10.1016/j.ymeth.2021.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 10/21/2022] Open
Abstract
Fundamental to the functional behavior of cardiac muscle is that the cardiomyocytes are integrated as a functional syncytium. Disrupted electrical activity in the cardiac tissue can lead to serious complications including cardiac arrhythmias. Therefore, it is important to study electrophysiological properties of the cardiac tissue. With advancements in stem cell research, protocols for the production of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have been established, providing great potential in modelling cardiac arrhythmias and drug testing. The hiPSC-CM model can be used in conjunction with electrophysiology-based platforms to examine the electrical activity of the cardiac tissue. Techniques for determining the myocardial electrical activity include multielectrode arrays (MEAs), optical mapping (OM), and patch clamping. These techniques provide critical approaches to investigate cardiac electrical abnormalities that underlie arrhythmias.
Collapse
Affiliation(s)
- Alia Arslanova
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser, University, Burnaby, BC V5A 1S6, Canada; hiPSC-CM Research Team, British Columbia Children's Hospital Research Institute, Vancouver, BC V5Z4H4, Canada
| | - Sanam Shafaattalab
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser, University, Burnaby, BC V5A 1S6, Canada; hiPSC-CM Research Team, British Columbia Children's Hospital Research Institute, Vancouver, BC V5Z4H4, Canada
| | - Eric Lin
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser, University, Burnaby, BC V5A 1S6, Canada
| | - Tiffany Barszczewski
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser, University, Burnaby, BC V5A 1S6, Canada; hiPSC-CM Research Team, British Columbia Children's Hospital Research Institute, Vancouver, BC V5Z4H4, Canada
| | - Leif Hove-Madsen
- Cardiac Rhythm and Contraction Group, IIBB-CSIC, Hospital de la Santa Creu i Sant Pau, Barcelona 08041, Spain; CIBERCV, Hospital de la Santa Creu i Sant Pau, Barcelona 08041, Spain; IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona 08041, Spain
| | - Glen F Tibbits
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser, University, Burnaby, BC V5A 1S6, Canada; hiPSC-CM Research Team, British Columbia Children's Hospital Research Institute, Vancouver, BC V5Z4H4, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
| |
Collapse
|
10
|
Narumanchi S, Wang H, Perttunen S, Tikkanen I, Lakkisto P, Paavola J. Zebrafish Heart Failure Models. Front Cell Dev Biol 2021; 9:662583. [PMID: 34095129 PMCID: PMC8173159 DOI: 10.3389/fcell.2021.662583] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/06/2021] [Indexed: 01/02/2023] Open
Abstract
Heart failure causes significant morbidity and mortality worldwide. The understanding of heart failure pathomechanisms and options for treatment remain incomplete. Zebrafish has proven useful for modeling human heart diseases due to similarity of zebrafish and mammalian hearts, fast easily tractable development, and readily available genetic methods. Embryonic cardiac development is rapid and cardiac function is easy to observe and quantify. Reverse genetics, by using morpholinos and CRISPR-Cas9 to modulate gene function, make zebrafish a primary animal model for in vivo studies of candidate genes. Zebrafish are able to effectively regenerate their hearts following injury. However, less attention has been given to using zebrafish models to increase understanding of heart failure and cardiac remodeling, including cardiac hypertrophy and hyperplasia. Here we discuss using zebrafish to study heart failure and cardiac remodeling, and review zebrafish genetic, drug-induced and other heart failure models, discussing the advantages and weaknesses of using zebrafish to model human heart disease. Using zebrafish models will lead to insights on the pathomechanisms of heart failure, with the aim to ultimately provide novel therapies for the prevention and treatment of heart failure.
Collapse
Affiliation(s)
- Suneeta Narumanchi
- Unit of Cardiovascular Research, Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, Helsinki, Finland
| | - Hong Wang
- Unit of Cardiovascular Research, Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, Helsinki, Finland
| | - Sanni Perttunen
- Unit of Cardiovascular Research, Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, Helsinki, Finland
| | - Ilkka Tikkanen
- Unit of Cardiovascular Research, Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, Helsinki, Finland.,Abdominal Center Nephrology, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Päivi Lakkisto
- Unit of Cardiovascular Research, Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, Helsinki, Finland.,Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Jere Paavola
- Unit of Cardiovascular Research, Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, Helsinki, Finland
| |
Collapse
|
11
|
Abstract
Inherited cardiac arrhythmias contribute substantially to sudden cardiac death in the young. The underlying pathophysiology remains incompletely understood because of the lack of representative study models and the labour-intensive nature of electrophysiological patch clamp experiments. Whereas patch clamp is still considered the gold standard for investigating electrical properties in a cell, optical mapping of voltage and calcium transients has paved the way for high-throughput studies. Moreover, the development of human-induced pluripotent stem-cell-derived cardiomyocytes (hiPSC-CMs) has enabled the study of patient specific cell lines capturing the full genomic background. Nevertheless, hiPSC-CMs do not fully address the complex interactions between various cell types in the heart. Studies using in vivo models, are therefore necessary. Given the analogies between the human and zebrafish cardiovascular system, zebrafish has emerged as a cost-efficient model for arrhythmogenic diseases. In this review, we describe how hiPSC-CM and zebrafish are employed as models to study primary electrical disorders. We provide an overview of the contemporary electrophysiological phenotyping tools and discuss in more depth the different strategies available for optical mapping. We consider the current advantages and disadvantages of both hiPSC-CM and zebrafish as a model and optical mapping as phenotyping tool and propose strategies for further improvement. Overall, the combination of experimental readouts at cellular (hiPSC-CM) and whole organ (zebrafish) level can raise our understanding of the complexity of inherited cardiac arrhythmia disorders to the next level.
Collapse
|
12
|
Ding Y, Bu H, Xu X. Modeling Inherited Cardiomyopathies in Adult Zebrafish for Precision Medicine. Front Physiol 2020; 11:599244. [PMID: 33329049 PMCID: PMC7717946 DOI: 10.3389/fphys.2020.599244] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/30/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiomyopathies are a highly heterogeneous group of heart muscle disorders. More than 100 causative genes have been linked to various cardiomyopathies, which explain about half of familial cardiomyopathy cases. More than a dozen candidate therapeutic signaling pathways have been identified; however, precision medicine is not being used to treat the various types of cardiomyopathy because knowledge is lacking for how to tailor treatment plans for different genetic causes. Adult zebrafish (Danio rerio) have a higher throughout than rodents and are an emerging vertebrate model for studying cardiomyopathy. Herein, we review progress in the past decade that has proven the feasibility of this simple vertebrate for modeling inherited cardiomyopathies of distinct etiology, identifying effective therapeutic strategies for a particular type of cardiomyopathy, and discovering new cardiomyopathy genes or new therapeutic strategies via a forward genetic approach. On the basis of this progress, we discuss future research that would benefit from integrating this emerging model, including discovery of remaining causative genes and development of genotype-based therapies. Studies using this efficient vertebrate model are anticipated to significantly accelerate the implementation of precision medicine for inherited cardiomyopathies.
Collapse
Affiliation(s)
- Yonghe Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States.,Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Haisong Bu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States.,Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States.,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States.,Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
13
|
Yip JK, Harrison M, Villafuerte J, Fernandez GE, Petersen AP, Lien CL, McCain ML. Extended culture and imaging of normal and regenerating adult zebrafish hearts in a fluidic device. LAB ON A CHIP 2020; 20:274-284. [PMID: 31872200 PMCID: PMC8015799 DOI: 10.1039/c9lc01044k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Myocardial infarction and heart failure are leading causes of death worldwide, in large part because adult human myocardium has extremely limited regeneration capacity. Zebrafish are a powerful model for identifying new strategies for human cardiac repair because their hearts regenerate after relatively severe injuries. Zebrafish are also relatively scalable and compatible with many genetic tools. However, characterizing the regeneration process in live adult zebrafish hearts has proved challenging because adult fish are opaque, preventing live imaging in vivo. An alternative strategy is to explant and culture intact adult zebrafish hearts and investigate them ex vivo. However, explanted hearts maintained in conventional culture conditions experience rapid declines in morphology and physiology. To overcome these limitations, we designed and fabricated a fluidic device for culturing explanted adult zebrafish hearts with constant media perfusion that is also compatible with live imaging. We then compared the morphology and calcium activity of hearts cultured in the device, hearts cultured statically in dishes, and freshly explanted hearts. After one week of culture, hearts in the device experienced significantly less morphological degradation compared to hearts cultured in dishes. Hearts cultured in devices for one week also maintained capture rates similar to fresh hearts, unlike hearts cultured in dishes. We then cultured explanted injured hearts in the device and used live imaging techniques to continuously record the myocardial revascularization process over several days, demonstrating how our device is compatible with long-term live imaging and thereby enables unprecedented visual access to the multi-day process of adult zebrafish heart regeneration.
Collapse
Affiliation(s)
- Joycelyn K Yip
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| | - Michael Harrison
- Heart Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA. and The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Jessi Villafuerte
- Heart Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA. and The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA and Department of Biology, California State University of San Bernardino, San Bernardino, CA 92407, USA
| | - G Esteban Fernandez
- The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Andrew P Petersen
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| | - Ching-Ling Lien
- Heart Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA. and The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA and Department of Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA and Department of Biochemistry and Molecular Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
| | - Megan L McCain
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA. and Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|