1
|
Jin W, Xiao C, Zhao J, Yang G, Chen Q, Feng L. Exposure to trace levels of live seaweed-derived antibacterial 2,4,6-tribromophenol modulates β-lactam antibiotics resistance in Vibrio. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133774. [PMID: 38417370 DOI: 10.1016/j.jhazmat.2024.133774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 03/01/2024]
Abstract
Non-antibiotic substances have been found to contribute to the spread of antibiotic resistance. Bromophenols (BPs) are special anti-bacterial substances obtained from seaweed. This study explored the modulatory effect of trace BPs from a live seaweed on the antibiotic resistance of pathogenic Vibrio (V.) strains. A hydroponic solution of Ulva fasciata was found to contain trace levels (9-333 μg L-1) of 2,4,6-tribromophenol (TBP), a typical BP. TBP at a concentration of 165 μg L-1 significantly increased the inhibition zone diameter of widely used β-lactam antibiotics (amoxicillin and ampicillin) against V. alginolyticus M7 (Va. M7) and V. parahaemolyticus M3 (Vp. M3) as well as reduced the minimum inhibitory concentration by 2-4 fold against Va. M7. Whole genome re-sequencing analysis demonstrated that Va. M3 (53-60) had more mutant genes than Vp. M7 (44) in β-lactam resistance pathway. Transcriptome sequencing analysis, along with verification through RT-qPCR, further showed that oligopeptide permease (opp) was the only differentially expressed gene (DEG) among the mutated genes in the β-lactam resistance pathway. The opp transport activity and membrane permeability of Vibrio were both enhanced at 165 μg L-1 of TBP, and the ability of biofilm formation was also decreased. Thus, antibiotics resistance improvement of Vibrio by TBP was potentially related with the promoted opp transport activity, membrane permeability and inhibited biofilm formation.
Collapse
Affiliation(s)
- Weimei Jin
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China
| | - Changyan Xiao
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China
| | - Jing Zhao
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Guangfeng Yang
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China
| | - Qingguo Chen
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China
| | - Lijuan Feng
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China; Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China.
| |
Collapse
|
2
|
Triga A, Smyrli M, Katharios P. Pathogenic and Opportunistic Vibrio spp. Associated with Vibriosis Incidences in the Greek Aquaculture: The Role of Vibrio harveyi as the Principal Cause of Vibriosis. Microorganisms 2023; 11:1197. [PMID: 37317171 DOI: 10.3390/microorganisms11051197] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 06/16/2023] Open
Abstract
A monitoring program to follow vibriosis incidents in the Greek marine aquaculture was implemented over the past 13 years. 273 isolates, from various cases originating from eight regions and nine hosts, were collected and characterized. The main aquaculture species of the survey were the European seabass (Dicentrarchus labrax) and the gilthead seabream (Sparus aurata). Various species of Vibrionaceae were associated with vibriosis. Vibrio harveyi had the highest prevalence and was isolated throughout the year from all hosts. During the warm months, Vibrio harveyi prevailed with frequent co-isolations of Photobacterium damselae subsp. damselae and Vibrio alginolyticus, while during spring, other Vibrio species were more abundant, such as Vibrio lentus, Vibrio cyclitrophicus, and Vibrio gigantis. Phylogenetic analysis using the mreB gene and the metabolic fingerprint of the isolates showed great variability within the species of the collection. The severity of the disease and the frequency of outbreaks make vibriosis (that is, mainly attributed to V. harveyi) an important concern for the regional aquaculture sector.
Collapse
Affiliation(s)
- Adriana Triga
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), P.O. Box 2214, 71500 Heraklion, Greece
- Department of Biology, University of Crete, P.O. Box 1470, 71110 Heraklion, Greece
| | - Maria Smyrli
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), P.O. Box 2214, 71500 Heraklion, Greece
| | - Pantelis Katharios
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), P.O. Box 2214, 71500 Heraklion, Greece
| |
Collapse
|
3
|
Xiao C, Qiao Y, Yang G, Feng L. Antibiotics resistance evolution of isolated Vibrio parahaemolyticus from mariculture under the continuous culture of sub-inhibitory concentrations of Ulva fasciata hydroponic solution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160124. [PMID: 36372171 DOI: 10.1016/j.scitotenv.2022.160124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
The outbreak of vibriosis from Vibrio (V.) parahaemolyticus is widespread in the mariculture, and live macroalgae has been considered to be effective and eco-friendly approach for the control of vibriosis. Three V. parahaemolyticus strains with β-lactam antibiotics resistance (resistant to ampicillin (AM), amoxicillin (AMX)) were isolated from mariculture in study, and the antibiotics resistance evolution mechanism was examined at the sub-inhibitory concentration (SIC) of hydroponic solution of Ulva (U.) fasciata (HSUF). The HSUF with the highest density (20 g fresh weight U. fasciata L-1) demonstrated the strongest inhibitory rates (47.0 %-65.8 %) on the three strains during the stable phase (8-24 h) of growth curve, which indicated that the HSUF (≤20 g L-1) could be considered to be at SIC for V. parahaemolyticus strains. After continuous subculture of V. parahaemolyticus with three dilutes (1/2 (HT), 1/20 (MT) and 1/50 (LT)) of HSUF (20 g L-1), all the strains of 20th generation were still resistant to AM and AMX. However, the LT condition reduced MIC of AM (2-16 times) and AMX (0-2 times) to strains, while MT and HT showed significantly various effect of β-lactam antibiotics resistance on different strains. The biofilm formation and ROS content of V. parahaemolyticus were almost positively correlated to the concentrations of HSUF. Transcriptome sequencing analysis of a representative strain showed that the lower concentrations of HSUF caused more down-regulated DEGs of the strains, and more down-regulated (vmeA, vmeB, sapA, mrdA) DEGs of strains were related to the pathway of β-lactam antibiotics resistance at LT condition. Thus, low concentration of HSUF was seemed to have better improvement for V. parahaemolyticus strains resistant to β-lactam antibiotics, which were mainly related to the impairment of biofilm formation, ROS and efflux pump.
Collapse
Affiliation(s)
- Changyan Xiao
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China
| | - Yan Qiao
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China
| | - Guangfeng Yang
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China; National-Local Joint Engineering Laboratory of Harbor Oil & Gas Storage and Transportation Technology, Zhoushan 316022, People's Republic of China
| | - Lijuan Feng
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China; National-Local Joint Engineering Laboratory of Harbor Oil & Gas Storage and Transportation Technology, Zhoushan 316022, People's Republic of China.
| |
Collapse
|
4
|
Kapetanović D, Vardić Smrzlić I, Kazazić S, Omanović D, Cukrov N, Cindrić AM, Rapljenović A, Perić L, Orlić K, Mijošek T, Redžović Z, Gavrilović A, Radočaj T, Filipović Marijić V. A preliminary study of the cultivable microbiota on the plastic litter collected by commercial fishing trawlers in the south-eastern Adriatic Sea, with emphasis on Vibrio isolates and their antibiotic resistance. MARINE POLLUTION BULLETIN 2023; 187:114592. [PMID: 36657339 DOI: 10.1016/j.marpolbul.2023.114592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Mediterranean Sea is the sixth largest area of marine litter accumulation in the world, and plastic pollution is a growing problem in its Adriatic sub-basin. The aim of the present study was to evaluate the cultivable microbiota associated with plastic litter collected by commercial fishing trawlers in the south-eastern Adriatic Sea in comparison with microbiota in seawater and sediment. Plastic litter in the sea contains an autochthonous microbiota that is different from that of the surrounding seawater and sediment. Vibrio abundance was higher on plastic litter than in surrounding seawater and sediment. All isolated Vibrio showing resistance to ampicillin and vancomycin, while resistance to other antibiotics depended on the isolated species. Overall, this study provides for the first time information on the cultivable microbiota associated with plastic litter collected by commercial fishing trawlers and provides a data base for further studies.
Collapse
Affiliation(s)
- Damir Kapetanović
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | | | - Snježana Kazazić
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Dario Omanović
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Neven Cukrov
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | | | - Ana Rapljenović
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Lorena Perić
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Karla Orlić
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Tatjana Mijošek
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Zuzana Redžović
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Ana Gavrilović
- University of Zagreb Faculty of Agriculture, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Tena Radočaj
- University of Zagreb Faculty of Agriculture, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | | |
Collapse
|
5
|
Yu Y, Li H, Wang Y, Zhang Z, Liao M, Rong X, Li B, Wang C, Ge J, Zhang X. Antibiotic resistance, virulence and genetic characteristics of Vibrio alginolyticus isolates from aquatic environment in costal mariculture areas in China. MARINE POLLUTION BULLETIN 2022; 185:114219. [PMID: 36335689 DOI: 10.1016/j.marpolbul.2022.114219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Vibrio alginolyticus has been the second most common Vibrio species in the world and mainly grows in the ocean or estuary environment, which can induce epidemics outbreaks under marine organisms, and causing serious economic losses in aquaculture industry. In this study, the genetic populations and evolutionary relationship analysis of V. alginolyticus isolated from different geographical locations in China with typical interannual differences were exhibited originally genetic diversity. Then the virulence genes prevalence, antibiotic resistance phenotype, and antimicrobial resistance genes risk diversity of V. alginolyticus were analyzed by phenotypic and molecular typing methods. And they were complex correlations among antibiotic phenotypes, resistance and virulence genes under different genotype of V. alginolyticus. The results provide a theoretical foundation for further understanding the genetic and metabolic diversity among V. alginolyticus in China, and lay a theoretical foundation for the transmission risk assessment and regional diagnosis of Vibrio in aquatic animals.
Collapse
Affiliation(s)
- Yongxiang Yu
- Key Laboratory of Maricultural Organism Disease Control, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China.
| | - Hao Li
- Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, PR China.
| | - Yingeng Wang
- Key Laboratory of Maricultural Organism Disease Control, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China.
| | - Zheng Zhang
- Key Laboratory of Maricultural Organism Disease Control, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China.
| | - Meijie Liao
- Key Laboratory of Maricultural Organism Disease Control, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China.
| | - Xiaojun Rong
- Key Laboratory of Maricultural Organism Disease Control, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China.
| | - Bin Li
- Key Laboratory of Maricultural Organism Disease Control, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China.
| | - Chunyuan Wang
- Key Laboratory of Maricultural Organism Disease Control, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, PR China.
| | - Jianlong Ge
- Key Laboratory of Maricultural Organism Disease Control, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, PR China.
| | - Xiaosong Zhang
- Key Laboratory of Maricultural Organism Disease Control, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, PR China.
| |
Collapse
|
6
|
Kapetanović D, Vardić Smrzlić I, Gavrilović A, Jug-Dujaković J, Perić L, Kazazić S, Mišić Radić T, Kolda A, Čanković M, Žunić J, Listeš E, Vukić Lušić D, Lillehaug A, Lončarević S, Pikelj K, Hengl B, Knežević D, El-Matbouli M. Characterization of Vibrio Populations from Cultured European Seabass and the Surrounding Marine Environment with Emphasis on V. anguillarum. Microorganisms 2022; 10:2159. [PMID: 36363751 PMCID: PMC9695460 DOI: 10.3390/microorganisms10112159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/07/2022] [Accepted: 10/26/2022] [Indexed: 11/25/2023] Open
Abstract
Vibrio species are widely distributed and can be potentially pathogenic to aquatic organisms. In this study, we isolated Vibrio spp. from environmental samples (seawater, sediment, and fish swabs) collected over a three-year period from a fish farm in Mali Ston Bay in the Adriatic Sea, Croatia, and assess their distribution. A total of 48 seawater samples and 12 sediment samples, as well as gill and skin swabs from 110 farmed European seabass, were analysed for the presence of Vibrio. Vibrio strains were identified to the species level by MALDI TOF MS. The analysis revealed that V. alginolyticus was the predominant species in European seabass, followed by V. anguillarum. V. alginolyticus was isolated from the sediments, along with V. gigantis and V. pomeroyi, while V. chagasii, V. cyclitrophicus, V. fortis, V. gigantis, V. harveyi, V. pelagius, and V. pomeroyi were isolated from seawater. V. anguillarum was isolated only twice during two different spring seasons, once from a diseased sea bass and the second time from a healthy sea bass. We analysed these two isolates and found that they differ both genetically and in terms of resistance to antibiotics. Our results confirm the seasonality of vibriosis incidence and the presence of the pathogenic V. anguillarum, which increases the risk of vibriosis.
Collapse
Affiliation(s)
| | | | - Ana Gavrilović
- Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | | | | | | | | | | | | | | | - Eddy Listeš
- Croatian Veterinary Institute, Regional Veterinary Institute Split, 21000 Split, Croatia
| | | | | | | | - Kristina Pikelj
- Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Brigita Hengl
- Croatian Agency for Agriculture and Food, 31000 Osijek, Croatia
| | - Dražen Knežević
- Croatian Agency for Agriculture and Food, 31000 Osijek, Croatia
| | - Mansour El-Matbouli
- Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1230 Wien, Austria
- School of Biotechnology, Badr University in Cairo, Cairo 11829, Egypt
| |
Collapse
|
7
|
Skin Culturable Microbiota in Farmed European Seabass (Dicentrarchus labrax) in Two Aquacultures with and without Antibiotic Use. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10030303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study examined culturable skin microbiota that was associated with farmed European seabass (Dicentrarchus labrax). Healthy European seabass were sampled during summer commercial harvest from one conventional fish farm where antibiotics are used, and from another practicing a certified antibiotic-free fish aquaculture. Physicochemical and microbiological analysis of seawater and sediment were performed, as well as determination of culturable bacteria, including Vibrio, from skin swabs of European seabass and seawater and sediment at both farms. Samples were processed for isolation of bacteria and their characterization by molecular and antibiotic susceptibility tests. In both fish farms, most of the bacteria that were identified in the skin belonged to the genera Pseudomonas and Vibrio. Some of the microbiota that were identified are known to be pathogenic to fish: V. alginolyticus, V. anguillarum, and V. harveyi. Vibrio strains showed higher resistance to certain antibiotics compared to previous studies. This study provides, for the first time, information on the culturable skin bacteria that is associated with healthy European seabass under culture conditions with and without the use of antibiotics. This information will be useful in assessing how changes in culturable microbiota may affect the health of farmed European seabass, indicating a potential problem for fish health management during disease outbreaks.
Collapse
|
8
|
Pepi M, Focardi S. Antibiotic-Resistant Bacteria in Aquaculture and Climate Change: A Challenge for Health in the Mediterranean Area. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5723. [PMID: 34073520 PMCID: PMC8198758 DOI: 10.3390/ijerph18115723] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/11/2021] [Accepted: 05/22/2021] [Indexed: 12/30/2022]
Abstract
Aquaculture is the productive activity that will play a crucial role in the challenges of the millennium, such as the need for proteins that support humans and the respect for the environment. Aquaculture is an important economic activity in the Mediterranean basin. A great impact is presented, however, by aquaculture practices as they involve the use of antibiotics for treatment and prophylaxis. As a consequence of the use of antibiotics in aquaculture, antibiotic resistance is induced in the surrounding bacteria in the column water, sediment, and fish-associated bacterial strains. Through horizontal gene transfer, bacteria can diffuse antibiotic-resistance genes and mobile resistance genes further spreading genetic determinants. Once triggered, antibiotic resistance easily spreads among aquatic microbial communities and, from there, can reach human pathogenic bacteria, making vain the use of antibiotics for human health. Climate change claims a significant role in this context, as rising temperatures can affect cell physiology in bacteria in the same way as antibiotics, causing antibiotic resistance to begin with. The Mediterranean Sea represents a 'hot spot' in terms of climate change and aspects of antibiotic resistance in aquaculture in this area can be significantly amplified, thus increasing threats to human health. Practices must be adopted to counteract negative impacts on human health, with a reduction in the use of antibiotics as a pivotal point. In the meantime, it is necessary to act against climate change by reducing anthropogenic impacts, for example by reducing CO2 emissions into the atmosphere. The One Health type approach, which involves the intervention of different skills, such as veterinary, ecology, and medicine in compliance with the principles of sustainability, is necessary and strongly recommended to face these important challenges for human and animal health, and for environmental safety in the Mediterranean area.
Collapse
Affiliation(s)
- Milva Pepi
- Stazione Zoologica Anton Dohrn, Fano Marine Centre, Viale Adriatico 1-N, 61032 Fano, Italy;
| | - Silvano Focardi
- Department of Environmental Sciences, Università di Siena, Via Mattioli, 4, 53100 Siena, Italy
| |
Collapse
|
9
|
Ina-Salwany MY, Al-Saari N, Mohamad A, Mursidi FA, Mohd-Aris A, Amal MNA, Kasai H, Mino S, Sawabe T, Zamri-Saad M. Vibriosis in Fish: A Review on Disease Development and Prevention. JOURNAL OF AQUATIC ANIMAL HEALTH 2019; 31:3-22. [PMID: 30246889 DOI: 10.1002/aah.10045] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/16/2018] [Indexed: 05/19/2023]
Abstract
Current growth in aquaculture production is parallel with the increasing number of disease outbreaks, which negatively affect the production, profitability, and sustainability of the global aquaculture industry. Vibriosis is among the most common diseases leading to massive mortality of cultured shrimp, fish, and shellfish in Asia. High incidence of vibriosis can occur in hatchery and grow-out facilities, but juveniles are more susceptible to the disease. Various factors, particularly the source of fish, environmental factors (including water quality and farm management), and the virulence factors of Vibrio, influence the occurrence of the disease. Affected fish show weariness, with necrosis of skin and appendages, leading to body malformation, slow growth, internal organ liquefaction, blindness, muscle opacity, and mortality. A combination of control measures, particularly a disease-free source of fish, biosecurity of the farm, improved water quality, and other preventive measures (e.g., vaccination) might be able to control the infection. Although some control measures are expensive and less practical, vaccination is effective, relatively cheap, and easily implemented. In this review, the latest knowledge on the pathogenesis and control of vibriosis, including vaccination, is discussed.
Collapse
Affiliation(s)
- M Y Ina-Salwany
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Nurhidayu Al-Saari
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- International Institute for Halal Research and Training, International Islamic University Malaysia, KICT Building, Level 3, 53100, Gombak, Selangor, Malaysia
| | - Aslah Mohamad
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Fathin-Amirah Mursidi
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Aslizah Mohd-Aris
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Department of Biology, School of Biology, Universiti Teknologi MARA, Kampus Kuala Pilah, 72000, Kuala Pilah, Negeri Sembilan, Malaysia
| | - M N A Amal
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Hisae Kasai
- Laboratory of Fish Pathology, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, 041-8611, Japan
| | - Sayaka Mino
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, 041-8611, Japan
| | - Tomoo Sawabe
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, 041-8611, Japan
| | - M Zamri-Saad
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
10
|
The depressed central carbon and energy metabolisms is associated to the acquisition of levofloxacin resistance in Vibrio alginolyticus. J Proteomics 2018; 181:83-91. [DOI: 10.1016/j.jprot.2018.04.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 02/28/2018] [Accepted: 04/02/2018] [Indexed: 01/22/2023]
|
11
|
Cao J, Zhang J, Ma L, Li L, Zhang W, Li J. Identification of fish source Vibrio alginolyticus and evaluation of its bacterial ghosts vaccine immune effects. Microbiologyopen 2018; 7:e00576. [PMID: 29349911 PMCID: PMC6011932 DOI: 10.1002/mbo3.576] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/20/2017] [Accepted: 11/23/2017] [Indexed: 12/27/2022] Open
Abstract
Vibrio alginolyticus (V. alginolyticus) is a common pathogen for humans and marine aquatic animals. Vibriosis of marine aquatic animals, caused by V. alginolyticus, has become more prevalent globally in recent years. Hence, a safe and effective vaccine is urgently needed for the control of this disease. Here, the strain 16‐3 isolated from the large yellow croaker (Larimichthys crocea) suffered from canker was identified as V. alginolyticus based on morphological, biochemical, and 16S rDNA sequencing analysis. Then, recombinant temperature‐controlled lysis plasmid pBV220‐lysisE was electroporated into the strain 16‐3 to generate V. alginolyticus bacterial ghosts (VaBGs) by inducing lysis gene E expression, and the safety and immune effects of VaBGs were further investigated in mice and large yellow croaker. The results showed that VaBGs were as safe as formalin‐killed V. alginolyticus cells (FKC) to mice and fish. Compared with FKC and PBS groups, significant elevations of the serum agglutinating antibody titer, serum bactericidal activity, lymphocyte proliferative responses, and levels of four different cytokines (Th1 type: IL‐2, TNF‐α; Th2 type: IL‐4 and IL‐6) in serum were detected in the VaBGs group, indicating that a Th1/Th2‐mediated mixed immune response was elicited by the VaBGs. More importantly, after challenged with the parent strain 16‐3, VaBGs‐vaccinated mice and fish showed higher protection than FKC‐vaccinated mice, the relative percent of survival (RPS) being 60%, 66.7% and 40%, respectively. Taken together, this is the first demonstration that the newly constructed V. alginolyticus ghosts may be developed as a safe and effective vaccine against V. alginolyticus infection in aquaculture.
Collapse
Affiliation(s)
- Ji Cao
- Key Laboratory of Zoonoses, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jiajun Zhang
- Key Laboratory of Zoonoses, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Lin Ma
- Key Laboratory of Zoonoses, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Lin Li
- Key Laboratory of Zoonoses, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Wenchang Zhang
- Key Laboratory of Zoonoses, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jinnian Li
- Key Laboratory of Zoonoses, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
12
|
Stalin N, Srinivasan P. Molecular characterization of antibiotic resistant Vibrio harveyi isolated from shrimp aquaculture environment in the south east coast of India. Microb Pathog 2016; 97:110-8. [DOI: 10.1016/j.micpath.2016.05.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/22/2016] [Accepted: 05/27/2016] [Indexed: 10/21/2022]
|
13
|
Miller RA. Antimicrobial susceptibility testing guidelines as a necessary tool to guide chemotherapeutic interventions in aquaculture. MICROBIOLOGY AUSTRALIA 2016. [DOI: 10.1071/ma16036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The selection of chemotherapy in aquatic animal medicine is not as straightforward as one might believe. A multitude of factors can impact effectiveness in situ. Some of these factors include the pathogen(s) present and their antimicrobial susceptibility, site(s) of infection, timing of treatment, host health/disease status, dose and regimen, water salinity, and water temperature. This article will focus on the first of these factors, and how susceptibility testing of target pathogen(s) can be used to both inform therapy decisions and assist in compliance with principles of prudent and judicious use.
Collapse
|