1
|
Cao Y, Zhang B, Cai Q, Zhu Z, Liu B, Dong G, Greer CW, Lee K, Chen B. Responses of Alcanivorax species to marine alkanes and polyhydroxybutyrate plastic pollution: Importance of the ocean hydrocarbon cycles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120177. [PMID: 36116568 DOI: 10.1016/j.envpol.2022.120177] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Understanding microbial responses to hydrocarbon and plastic pollution are crucial for limiting the detrimental impacts of environmental contaminants on marine ecosystems. Herein, we reported a new Alcanivorax species isolated from the North Atlantic Ocean capable of degrading alkanes and polyhydroxybutyrate (PHB) plastic (one of the emerging bioplastics that may capture the future plastic market). The whole-genome sequencing showed that the species harbors three types of alkane 1-monooxygenases (AlkB) and one PHB depolymerase (PhaZ) to initiate the degradation of alkanes and plastics. Growth profiling demonstrated that n-pentadecane (C15, the main alkane in the marine environment due to cyanobacterial production other than oil spills) and PHB could serve as preferential carbon sources. However, the cell membrane composition, PhaZ activity, and expression of three alkB genes were utterly different when grown on C15 and PHB. Further, Alcanivorax was a well-recognized alkane-degrader that participated in the ocean hydrocarbon cycles linking with hydrocarbon production and removal. Our discovery supported that the existing biogeochemical processes may add to the marine ecosystem's resilience to the impacts of plastics.
Collapse
Affiliation(s)
- Yiqi Cao
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada.
| | - Qinhong Cai
- Gaia Refinery, Saint John, NB E2J 2E7, Canada
| | - Zhiwen Zhu
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Bo Liu
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Guihua Dong
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Charles W Greer
- National Research Council Canada, Energy, Mining and Environment Research Centre, Montreal, QC H4P 2R2, Canada
| | - Kenneth Lee
- Fisheries and Oceans Canada, Ecosystem Science, Ottawa, ON K1A 0E6, Canada
| | - Bing Chen
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| |
Collapse
|
2
|
Suwannarach N, Kumla J, Zhao Y, Kakumyan P. Impact of Cultivation Substrate and Microbial Community on Improving Mushroom Productivity: A Review. BIOLOGY 2022; 11:biology11040569. [PMID: 35453768 PMCID: PMC9027886 DOI: 10.3390/biology11040569] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Lignocellulosic material and substrate formulations affect mushroom productivity. The microbial community in cultivation substrates affects the quality of the substrates and the efficiency of mushroom production. The elucidation of the key microbes and their biochemical function can serve as a useful guide in the development of a more effective system for mushroom cultivation. Abstract Lignocellulosic materials commonly serve as base substrates for mushroom production. Cellulose, hemicellulose, and lignin are the major components of lignocellulose materials. The composition of these components depends upon the plant species. Currently, composted and non-composted lignocellulosic materials are used as substrates in mushroom cultivation depending on the mushroom species. Different substrate compositions can directly affect the quality and quantity of mushroom production yields. Consequently, the microbial dynamics and communities of the composting substrates can significantly affect mushroom production. Therefore, changes in both substrate composition and microbial diversity during the cultivation process can impact the production of high-quality substrates and result in a high degree of biological efficiency. A brief review of the current findings on substrate composition and microbial diversity for mushroom cultivation is provided in this paper. We also summarize the advantages and disadvantages of various methods of mushroom cultivation by analyzing the microbial diversity of the composting substrates during mushroom cultivation. The resulting information will serve as a useful guide for future researchers in their attempts to increase mushroom productivity through the selection of suitable substrate compositions and their relation to the microbial community.
Collapse
Affiliation(s)
- Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (J.K.)
| | - Jaturong Kumla
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (J.K.)
| | - Yan Zhao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Correspondence: (Y.Z.); (P.K.)
| | - Pattana Kakumyan
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Correspondence: (Y.Z.); (P.K.)
| |
Collapse
|
3
|
Exploration of Microbial Diversity of Himalayan Glacier Moraine Soil Using 16S Amplicon Sequencing and Phospholipid Fatty Acid Analysis Approaches. Curr Microbiol 2020; 78:78-85. [PMID: 33112975 DOI: 10.1007/s00284-020-02259-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 10/15/2020] [Indexed: 10/23/2022]
Abstract
Changme Khangpu glacier is located in the northern district of Sikkim which comes under UNESCO heritage site Kanchenjunga Biosphere Reserve which is considered as one of the important biological hotspot regions in the Eastern Himalayas. This is the first report on microbial diversity analysis of moraine soil from one of the unexplored glaciers of Sikkim using high throughput sequencing platform and phospholipid fatty acids analysis (PLFA). It was found that the 16S amplicon sequence comprised 362,902 raw sequences with a sequence length of 150 bp and (G + C) content 52%. A total of 156,821 pre-processed reads were clustered into 378 OTUs (operational taxonomic units) comprising 6 bacterial phyla. The top four dominant phyla based on the 16S amplicon sequences were Proteobacteria (56%), Firmicutes (16%), Actinobacteria (12%), and Bacteroidetes (8%), respectively. PLFA analysis confirmed the dominance of Gram positive bacteria (72%) followed by Gram negative bacteria (32%) and the major fatty acids which are present in the moraine soil sample were PUFA (61%), and 18:2ω6,9c (29%). This is the primary study and first of its kind done on moraine soil from glaciers of Sikkim. Based on 16S amplicon sequencing and PLFA analysis of moraine soil samples from glaciers of Sikkim suggest that this glaciers harbours rich microbial diversity and thus can have wide industrial and biotechnological potential. Thus, there is an escalating scope to further study these extreme biomes with respect to their microbial diversity and their functional capabilities.
Collapse
|
4
|
Najar IN, Sherpa MT, Das S, Thakur N. Bacterial diversity and functional metagenomics expounding the diversity of xenobiotics, stress, defense and CRISPR gene ontology providing eco-efficiency to Himalayan Hot Springs. Funct Integr Genomics 2020; 20:479-496. [PMID: 31897823 DOI: 10.1007/s10142-019-00723-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 10/17/2019] [Accepted: 11/05/2019] [Indexed: 11/26/2022]
Abstract
Sikkim is one of the bio-diverse states of India, which harbors diverse alkaline and sulfur rich hot springs in its vicinity. However, there is a dearth of data present in terms of microbial and its functional diversity as only a few hot springs have been studied in this area. Thus, in this regard, microbial and functional diversity of two hot springs by NGS, PLFA, and culture-independent approaches were carried out. PLFA and culture-dependent analysis was complementary as the Gram-positive bacteria were abundant in both the hot springs with the dominance of phylum Firmicutes with Geobacillus. Metagenomic analysis revealed the abundance of Proteobacteria, Actinobacteria, and Firmicutes in both hot springs. Functional metagenomics suggested that both Yumthang and Reshi hot spring possess a diverse set of genes analogous to stress such as genes allied to osmotic, heat shock, and acid stresses; defense analogies such as multidrug resistance efflux pump, multidrug transport system, and β-lactamase; and CRISPR analogues such as related to Cas1, Cas2, Cas3, cmr1-5 proteins, CT1972, and CT1133 gene families. The xenobiotic analogues were found against benzoate, nitrotolune, xylene, DDT, and chlorocyclohexane/chlorobenzene degradation. Thus, these defensive mechanisms against environmental and anthropogenic hiccups and hindrances provide the eco-efficiency to such thermal habitats. The higher enzymatic, degradation, defense, stress potential and the lower percentage identity (< 95%) of isolates encourage the further exploration and exploitation of these habitats for industrial and biotechnological purposes.
Collapse
Affiliation(s)
- Ishfaq Nabi Najar
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok, Sikkim, 737102, India
| | - Mingma Thundu Sherpa
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok, Sikkim, 737102, India
| | - Sayak Das
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok, Sikkim, 737102, India
| | - Nagendra Thakur
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok, Sikkim, 737102, India.
- Department of Chemical Engineering and Biomolecular Engineering, Korean Advance Institute of Science and Technology, Daejeon, South Korea.
| |
Collapse
|
5
|
Fan F, Zhang B, Liu J, Cai Q, Lin W, Chen B. Towards sulfide removal and sulfate reducing bacteria inhibition: Function of biosurfactants produced by indigenous isolated nitrate reducing bacteria. CHEMOSPHERE 2020; 238:124655. [PMID: 31472344 DOI: 10.1016/j.chemosphere.2019.124655] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
The effectiveness of nitrate-mediated souring control highly depends on the interactions of sulfate reducing bacteria (SRB) and nitrate reducing bacteria (NRB). Biosurfactants produced by natural NRB are promising bio-agents for enhancing NRB competence towards SRB. However, the function of NRB-produced biosurfactants in NRB-SRB interactions remains unexplored due to the rarely successful isolation of natural biosurfactant-producing NRB. Hereby, biosurfactant-aided inhibitory control of SRB strain Desulfomicrobium escambiense ATCC 51164 by biosurfactant-producing NRB strain Pseudomonas stutzeri CX3, reported in our previous work, was investigated. Under non-sour conditions, insufficient nitrate injection resulted in limited SRB inhibition. Phospholipid fatty acid (PLFA) biomarkers traced the overall bacterial responses. Compositional PLFA patterns revealed biosurfactant addition benefitted both SRB and NRB towards stressful conditions. Under sour conditions, nitrite oxidation of sulfide proved to be the primary mechanism for sulfide removal. The subsequent elevation of redox potential and pH inhibited SRB activities. NRB-produced biosurfactants significantly enhanced SRB inhibition by NRB through more efficient sulfide removal and effective duration of nitrate in the microcosms. Biosurfactants specially produced by the NRB strain are for the first time reported to significantly strengthen SRB inhibition by NRB via reduced nitrate usage and prolonged effective duration of nitrate, which has encouraging potential in nitrate-dependent souring control.
Collapse
Affiliation(s)
- Fuqiang Fan
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X5, Canada.
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X5, Canada.
| | - Jiabin Liu
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X5, Canada.
| | - Qinhong Cai
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X5, Canada.
| | - Weiyun Lin
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X5, Canada.
| | - Bing Chen
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X5, Canada.
| |
Collapse
|
6
|
Najar IN, Sherpa MT, Das S, Das S, Thakur N. Microbial ecology of two hot springs of Sikkim: Predominate population and geochemistry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 637-638:730-745. [PMID: 29758429 DOI: 10.1016/j.scitotenv.2018.05.037] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/03/2018] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
Northeastern regions of India are known for their floral and faunal biodiversity. Especially the state of Sikkim lies in the eastern Himalayan ecological hotspot region. The state harbors many sulfur rich hot springs which have therapeutic and spiritual values. However, these hot springs are yet to be explored for their microbial ecology. The development of neo generation techniques such as metagenomics has provided an opportunity for inclusive study of microbial community of different environment. The present study describes the microbial diversity in two hot springs of Sikkim that is Polok and Borong with the assist of culture dependent and culture independent approaches. The culture independent techniques used in this study were next generation sequencing (NGS) and Phospholipid Fatty Acid Analysis (PLFA). Having relatively distinct geochemistry both the hot springs are thermophilic environments with the temperature range of 50-77 °C and pH range of 5-8. Metagenomic data revealed the dominance of bacteria over archaea. The most abundant phyla were Proteobacteria and Bacteroidetes although other phyla were also present such as Acidobacteria, Nitrospirae, Firmicutes, Proteobacteria, Parcubacteria and Spirochaetes. The PLFA studies have shown the abundance of Gram Positive bacteria followed by Gram negative bacteria. The culture dependent technique was correlative with PLFA studies. Most abundant bacteria as isolated and identified were Gram-positive genus Geobacillus and Anoxybacillus. The genus Geobacillus has been reported for the first time in North-Eastern states of India. The Geobacillus species obtained from the concerned hot springs were Geobacillus toebii, Geobacillus lituanicus, Geobacillus Kaustophillus and the Anoxybacillus species includes Anoxybacillus gonensis and Anoxybacillus Caldiproteolyticus. The distribution of major genera and their statistical correlation analyses with the geochemistry of the springs predicted that the temperature, pH, alkalinity, Ca2+, Mg2+, Cl2+, and sulfur were main environmental variables influencing the microbial community composition and diversity. Also the piper diagram suggested that the water of both the hot springs are Ca-HCO3- type and can be predicted as shallow fresh ground waters. This study has provided an insight into the ecological interaction of the diverse microbial communities and associated physicochemical parameters, which will help in determining the future studies on different biogeochemical pathways in these hot springs.
Collapse
Affiliation(s)
- Ishfaq Nabi Najar
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok 737102, Sikkim, India
| | - Mingma Thundu Sherpa
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok 737102, Sikkim, India
| | - Sayak Das
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok 737102, Sikkim, India
| | - Saurav Das
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok 737102, Sikkim, India
| | - Nagendra Thakur
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok 737102, Sikkim, India.
| |
Collapse
|