1
|
Shankar VS, De K, Jacob S, Satyakeerthy TR. Unveiling the risk of marine litter and derelict fishing gear in remote coral reefs of the Andaman and Nicobar Islands, North Indian Ocean. MARINE POLLUTION BULLETIN 2025; 212:117591. [PMID: 39847968 DOI: 10.1016/j.marpolbul.2025.117591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/17/2025] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
An increasing amount of plastic litter and derelict fishing gear in the global oceans poses significant threats to corals and reef-associated marine biota. In this context, an underwater marine litter survey was conducted along the fringing coral reefs in the Andaman and Nicobar Islands- a remote archipelago in the Bay of Bengal, Northern Indian Ocean. The result revealed entanglement and smothering of coral colonies by plastic and derelict fishing gear. The survey recorded an average litter density of 0.42 ± 0.08 items/m2 (range: 0.23 ± 0.02 to 0.71 ± 0.09) and a mean mass of 138.61 ± 42.15 g/m2 (range: 70.17 ± 7.74 to 303.4 ± 2.55). Plastic was the most dominant litter (60.82 %) recorded in the reef environment. Derelict fishing gear made of plastic comprised 33.65 % of the total litter. Plastic Abundance Index (PAI), Hazardous Item Index (HII), and Clean Environment Index (CEI) were used to assess the ecological impact of marine litter. These indices highlighted the significant risks posed by marine litter to the coral reef environment. The finding helps to strengthen the assessment of marine litter in remote islands and underscores the urgent need for improved waste management, stricter regulations on the disposal of fishing gear, and effective removal of derelict fishing gear from the coral reef environments. Present study offers actionable insights for policymakers and stakeholders to prioritize interventions for managing marine litter to safeguard vulnerable coral reef systems.
Collapse
Affiliation(s)
- Venkatesan Shiva Shankar
- Faculty of Environmental Science, Mahatma Gandhi Government College, Middle & North Andaman, Andaman and Nicobar Islands 744203, India.
| | - Kalyan De
- Biological Oceanography Division, CSIR- National Institute of Oceanography, Dona Paula, Goa 403 004, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Sunil Jacob
- IGNOU Regional Centre, Port Blair, Andaman and Nicobar Islands 744 103, India
| | | |
Collapse
|
2
|
De K, Nanajkar M, Mote S, Ingole B. Reef on the edge: resilience failure of marginal patch coral reefs in Eastern Arabian Sea under recurrent coral bleaching, coral diseases, and local stressors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:7288-7302. [PMID: 36031676 DOI: 10.1007/s11356-022-22651-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Marked by strong El Niño-Southern Oscillation (ENSO) effects during 2014-2016, global coral reefs underwent mass bleaching. Here, we conducted a comprehensive (2014-2019) study, coinciding with the 2014-16 ENSO, to investigate the response and resilience potential of marginal coral communities to the combined impact of recurrent thermal anomalies and multiple anthropogenic stressors before, during, and after the mass bleaching episodes. Our result unveiled that thermal-stress-driven back-to-back annual coral bleaching episodes caused coral mortality and significantly decimated coral cover, primarily in 2015 and 2016. Subsequent benthic regime shifts toward macroalgal and algal turf colonization, followed by an increase in coral disease prevalence and recruitment failure was observed after the recurrent bleaching episodes. Algal cover increased from 21% in 2014 to 52.90% in 2019, and a subsequent increase in coral disease occurrence was observed from 16% in 2015 to 29% in 2019. The cascading negative effect of multiple stressors magnified coral loss and decreased the coral cover significantly from 45% in 2014 to 20% in 2019. The corals in the intensive recreational diving activity sites showed higher disease prevalence, concurring with high mechanical coral damage. The present study demonstrates that consecutive thermal bleaching episodes combined with local stressors can cause declines in coral cover and promote an undesirable regime shift to algal dominance in marginal coral reef habitats within a short duration. These results are of particular interest given that marginal reefs were traditionally perceived as resilient reef habitats due to their higher survival threshold to environmental changes. The present study indicates that mitigation of local stressors by effective management strategies, in conjunction with globally coordinated efforts to ameliorate climate change, can protect these unique coral reefs.
Collapse
Affiliation(s)
- Kalyan De
- CSIR- National Institute of Oceanography, Dona Paula, Goa, 403002, India.
| | - Mandar Nanajkar
- CSIR- National Institute of Oceanography, Dona Paula, Goa, 403002, India
| | - Sambhaji Mote
- CSIR- National Institute of Oceanography, Dona Paula, Goa, 403002, India
| | - Baban Ingole
- CSIR- National Institute of Oceanography, Dona Paula, Goa, 403002, India
| |
Collapse
|
3
|
Arora M, De K, Ray Chaudhury N, Nanajkar M, Chauhan P, Pateriya B. Climate Change Induced Thermal Stress Caused Recurrent Coral Bleaching over Gulf of Kachchh and Malvan Marine Sanctuary, West Coast of India. CLIMATE CHANGE IN ASIA AND AFRICA - EXAMINING THE BIOPHYSICAL AND SOCIAL CONSEQUENCES, AND SOCIETY'S RESPONSES 2022. [DOI: 10.5772/intechopen.96806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
Abstract
Coral reefs are one of the most sensitive, productive, and invaluable biological resources on the earth. However, coral reefs are facing unprecedented stress due to ongoing climate changes and intensified anthropogenic disturbances globally. Elevated Sea Surface Temperature (SST) has emerged as the most imminent threat to the thermos-sensitive reef-building corals. The 2010–2014-2016 El Niño Southern Oscillation (ENSO) caused prolonged marine heat waves (MHWs) that led to the most widespread coral bleaching and mortality in the tropical Indi-Pacific regions. Coral bleaching prediction is vital for the management of the reef biodiversity, ecosystem functioning, and services. Recent decades, satellite remote sensing has emerged as a convenient tool for large-scale coral reef monitoring programs. As thermal stress is a critical physical attribute for coral bleaching hence, the present study examines the effectiveness of the elevated SSTs as a proxy to predict coral bleaching in shallow water marginal reefs. Advanced Very High-Resolution Radiometer (AVHRR) satellite data from the NOAA Coral Reef Watch’s (CRW) platform has been used for this study. Coral bleaching indices like Bleaching Threshold (BT), Positive SST Anomaly (PA), and Degree Heating Weeks (DHW) are computed to analyze the thermal stress on the coral reefs. The computed thermal stress from satellite-derived SST data over regions concurrence with the mass coral bleaching (MCB) events. This study concludes that in the last decades (2010 to 2019) the coral cover around these regions has dramatically declined due to higher SST, which indicates that the thermal stress induced recurrent bleaching events attributed to the coral loss.
Collapse
|
4
|
De K, Sautya S, Gaikwad S, Mitra A, Nanajkar M. Characterization of anthropogenic marine macro-debris affecting coral habitat in the highly urbanized seascape of Mumbai megacity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 298:118798. [PMID: 34999148 DOI: 10.1016/j.envpol.2022.118798] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Marine debris has become a major form of pollution and a serious ecosystem health concern. The present study evaluates the accumulation, origin, and fate of debris in intertidal coral habitats of Mumbai-one of the world's highly populated coastal cities on the west coast of India. Predominantly, seven hermatypic coral species belonging to seven genera and five families were identified and mainly represented by Pseudosidastrea, Porites, and Bernardpora. In terms of number, the mean density of marine debris was 1.60 ± 0.13 SE items/m2, which is higher than the global average. The mean density of plastic debris was 1.46 ± 0.14 SE items/m2. Approximately 9% of total coral colonies were in physical contact with debris, and 22% of these colonies showed visible signs of partial bleaching. Single use plastic bags and wrappers were dominant plastic debris. The study area was characterized as 'very poor cleanliness' according to the Beach Quality Indexes, which include the Clean Coast Index, General Index, and Hazardous Items Index. The numerical model indicates the influence of river discharge and probable areas of plastic accumulation with high tidal currents in this region, maneuvering the spatial advection of litter in the nearshore areas. Combined analysis of ground-truthing and model simulation implies that the possible contributing sources of litter were representatives of land-based and sea-originated. The overall results point to increasing anthropogenic stressors threatening coastal coral communities, including marine debris pollution. It is advocated to adopt an integrated coastal zone management approach supported by coordinated policy frameworks could guide the mitigation of the debris footprint in coastal environments.
Collapse
Affiliation(s)
- Kalyan De
- CSIR- National Institute of Oceanography, Dona Paula, Goa, 403004, India.
| | - Sabyasachi Sautya
- Laboratory for Benthic Ecological Trait Analysis (L-BETA), CSIR- National Institute of Oceanography, Regional Centre-Mumbai, Maharashtra, 400053, India.
| | - Santosh Gaikwad
- Laboratory for Benthic Ecological Trait Analysis (L-BETA), CSIR- National Institute of Oceanography, Regional Centre-Mumbai, Maharashtra, 400053, India.
| | - Aditi Mitra
- CSIR- National Institute of Oceanography, Dona Paula, Goa, 403004, India.
| | - Mandar Nanajkar
- CSIR- National Institute of Oceanography, Dona Paula, Goa, 403004, India.
| |
Collapse
|
5
|
Gaikwad S, De K, Nanajkar M, Sautya S. Octocoral colonies as spawning ground for the cuttlefish Sepiella inermis (Cephalopoda: Sepiidae). Symbiosis 2021. [DOI: 10.1007/s13199-021-00796-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
6
|
Aswani RS, Sajith S, Bhat MY. Is geopolitics a threat for offshore wind energy? A case of Indian Ocean Region. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-12779-z. [PMID: 33634398 DOI: 10.1007/s11356-021-12779-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
The aim of this paper is to drive the discourse towards the increasing shift to renewables, especially offshore wind energy generation, in the emerging international energy order. The Indian Ocean Region (IOR), despite its increasing contribution to onshore wind energy generation and impending policies on offshore wind energy, is reluctant to invest in the latter. Hence, this paper highlights four important aspects that challenge IOR's offshore wind energy development: Indian Ocean's strategic location, environment impacts, blue economy and maritime terrorism. In the background of the geopolitical rivalry existing in the Indian Ocean Region (IOR), with the increasing presence of China and the USA in the Indian Ocean, this paper aims to study if these geopolitical challenges are hindering offshore wind energy generation in IOR. The key findings of the paper include the necessity of addressing the geopolitical rivalry in IOR as an important hindrance in huge investments needed in OWE farms, so that a regional cooperative mechanism is arrived at especially from the point of view of policies towards OWE generation.
Collapse
Affiliation(s)
- R S Aswani
- School for Life, University of Petroleum and Energy Studies, Dehradun, 248007, India.
| | - Shambhu Sajith
- Department of Energy Management, School of Business, University of Petroleum and Energy Studies, Dehradun, 248007, India
| | - Mohammad Younus Bhat
- Department of Economics and International Business, School of Business, University of Petroleum and Energy Studies, Dehradun, 248007, India
| |
Collapse
|
7
|
De K, Nanajkar M, Mote S, Ingole B. Coral damage by recreational diving activities in a Marine Protected Area of India: Unaccountability leading to 'tragedy of the not so commons'. MARINE POLLUTION BULLETIN 2020; 155:111190. [PMID: 32469789 DOI: 10.1016/j.marpolbul.2020.111190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/24/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Globally, coral reefs have drastically degraded due to local and global environmental stressors. Concurrently, coral reef tourism is rapidly growing in developing economies, which is one of many anthropogenic stressors impacting reefs. At the Malvan Marine Sanctuary, a Marine Protected Area (MPA) on the West coast of India, we investigated the impact of recreational diving on the reef from 2016 to 2019. To evaluate the diver's underwater behavior, a novel approach was used, wherein the video-log broadcasting website www.youtube.com was perused. Evidential proof substantiates heavy physical damage to corals because of recreational diving activity, which may lead to the collapse of coral habitat if it continues unabated. This resource depletion ironically elevates the economy of dependents averting consequences due to lost corals, thus making this a 'tragedy' for corals which are not meant to be 'commons'. The study asserts need for proactive conservation efforts with stringent implementation and restoration initiatives in this MPA.
Collapse
Affiliation(s)
- Kalyan De
- CSIR- National Institute of Oceanography, Dona Paula, Goa 403004, India; School of Earth, Ocean, and Atmospheric Sciences, Goa University, Taleigao, Goa 403206, India.
| | - Mandar Nanajkar
- CSIR- National Institute of Oceanography, Dona Paula, Goa 403004, India.
| | - Sambhaji Mote
- CSIR- National Institute of Oceanography, Dona Paula, Goa 403004, India
| | - Baban Ingole
- CSIR- National Institute of Oceanography, Dona Paula, Goa 403004, India
| |
Collapse
|