1
|
Rasmussen JA, Ingleton T, Bennett WW, Pearson RM, Ca M, Foulsham E, Hanslow D, Scanes PR, Connolly RM. The effects of estuarine outflows on coastal marine ecosystems in New South Wales, Australia. MARINE POLLUTION BULLETIN 2024; 208:116915. [PMID: 39276624 DOI: 10.1016/j.marpolbul.2024.116915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024]
Abstract
In the state of New South Wales (NSW), Australia, recent legislative action has focused on identifying key threats to the marine estate. We used a systematic literature review to evaluate the knowledge status of the effects of estuarine outflows on coastal marine ecosystems, within the environmental, hydrological, and physicochemical context of NSW waters. Results focussed on studies that measured outcomes for marine biota (n = 56). Trace elements and organochlorines were the most frequently studied contaminant types, with reported biological concentrations often below guideline values but detected at the highest concentrations adjacent to urban sources. Few studies measured the impacts of legacy and emerging contaminants to animal health, or the flow on effects to marine ecosystems in NSW. Our review highlights key biological and geographical data gaps in estuarine outflow research in NSW, particularly of the impact on ecosystems of exported carbon and nutrients to the oligotrophic waters of NSW.
Collapse
Affiliation(s)
- J A Rasmussen
- Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Queensland, Australia.
| | - T Ingleton
- Waters, Wetlands and Coasts Science, Department of Climate Change, Energy, the Environment & Water, NSW Government, Lidcombe, New South Wales, Australia
| | - W W Bennett
- Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Queensland, Australia
| | - R M Pearson
- Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Queensland, Australia
| | - McAneney Ca
- Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Queensland, Australia
| | - E Foulsham
- Waters, Wetlands and Coasts Science, Department of Climate Change, Energy, the Environment & Water, NSW Government, Lidcombe, New South Wales, Australia
| | - D Hanslow
- Waters, Wetlands and Coasts Science, Department of Climate Change, Energy, the Environment & Water, NSW Government, Lidcombe, New South Wales, Australia
| | - P R Scanes
- Healthy Waters, 21 Northmead Avenue, Northmead, New South Wales, Australia
| | - R M Connolly
- Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
2
|
Chen S, Qiu G. Physiological and multi-omics analysis reveals the influence of copper on Halophila beccarii Asch. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108785. [PMID: 38824692 DOI: 10.1016/j.plaphy.2024.108785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/09/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024]
Abstract
High concentrations of copper can pollute coastal waters, primarily from agricultural runoff and mining activities, which can harm marine organisms, including seagrasses. The molecular mechanism of copper toxicity to seagrass currently remains unclear. To determine the response to copper, physiological and multi-omic analyses were conducted to explore the molecular mechanism by which copper affects the global threatened seagrass Halophila beccarii Asch. Excessive copper stress causes oxidative damage and stimulates the activity of the antioxidant enzyme system to remove excess reactive oxygen species (ROS), thereby reducing the damage caused by copper stress. Cu increases the activities of superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6), peroxidase (EC 1.11.1.7), ascorbate peroxidase (EC 1.11.1.11), glutathione peroxidase (EC 1.11.1.9), ascorbate oxidase (EC 1.10.3.3), glutathione reductase (EC 1.6.4.2), and dehydroascorbate reductase (EC 1.8.5.1) and the content of malondialdehyde and reduces the activity of monodehydroascorbate reductase (EC 1.6.5.4). Under copper stress, H. beccarii upregulates the metabolic pathways of steroid biosynthesis and cutin, suberin, and wax biosynthesis, downregulates the metabolic pathways of arginine and proline metabolism and fructose and mannose metabolism; the levels of expression of the ribosome-related genes; upregulates the levels of expression of circadian rhythm-related proteins and downregulates the levels of glutathione metabolism and the proteins related to carbon fixation. This study provides new insights into the response of seagrass to copper stress and reports potential candidate metabolites, genes, and proteins that can be considered as biomarkers to improve the protection and management of seagrass meadows.
Collapse
Affiliation(s)
- Siting Chen
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Academy of Marine Sciences (Guangxi Mangrove Research Center), Guangxi Academy of Sciences, Beihai, Guangxi, 536007, China.
| | - Guanglong Qiu
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Academy of Marine Sciences (Guangxi Mangrove Research Center), Guangxi Academy of Sciences, Beihai, Guangxi, 536007, China.
| |
Collapse
|
3
|
Chen W, Li S, Bai D, Li Z, Liu H, Bai L, Pan L. Detoxification mechanism of herbicide in Polypogon fugax and its influence on rhizosphere enzyme activities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115263. [PMID: 37473705 DOI: 10.1016/j.ecoenv.2023.115263] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
The excessive use of chemical herbicides has resulted in evolution of herbicide-resistant weeds. Cytochrome P450 monooxygenases (P450s) are vital detoxification enzymes for herbicide-resistant weeds. Herein, we confirmed a resistant (R) Polypogon fugax population showing resistance to quizalofop-p-ethyl, acetolactate synthase (ALS)-inhibiting herbicide pyroxsulam, and several other ACCase (acetyl-CoA carboxylase)-inhibiting herbicides. Molecular analysis revealed no target-site gene mutations in the R population. Foliar spraying with malathion clearly reversed the quizalofop-p-ethyl phytotoxicity. Higher level of quizalofop-p-ethyl degradation was confirmed in the R population using HPLC analysis. Subsequently, RNA-Seq transcriptome analysis indicated that the overexpression of CYP89A2 gene appeared to be responsible for reducing quizalofop-p-ethyl phytotoxicity. The molecular docking results supported a metabolic effect of CYP89A2 protein on most herbicides tested. Furthermore, we found that low doses of herbicides stimulated the rhizosphere enzyme activities in P. fugax and the increase of rhizosphere dehydrogenase of R population may be related to its resistance mechanism. In summary, our research has shown that metabolic herbicide resistance mediated by CYP89A2, contributes to quizalofop-p-ethyl resistance in P. fugax.
Collapse
Affiliation(s)
- Wen Chen
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Sifu Li
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Huangpu Research Institute of Longping Agricultural Science and Technology, Guangzhou 510715, China
| | - Dingyi Bai
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Zongfang Li
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Haozhe Liu
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Lianyang Bai
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China.
| | - Lang Pan
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
4
|
Single-molecule real-time sequencing of the full-length transcriptome of Halophila beccarii. Sci Rep 2022; 12:16444. [PMID: 36180578 PMCID: PMC9525579 DOI: 10.1038/s41598-022-20988-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
Ecologically, Halophila beccarii Asch. is considered as a colonizing or a pioneer seagrass species and a “tiny but mighty” seagrass species, since it may recover quickly from disturbance generally. The use of transcriptome technology can provide a better understanding of the physiological processes of seagrasses. To date, little is known about the genome and transcriptome information of H. beccarii. In this study, we used single molecule real-time (SMRT) sequencing to obtain full-length transcriptome data and characterize the transcriptome structure. A total of 11,773 of the 15,348 transcripts were successfully annotated in seven databases. In addition, 1573 long non-coding RNAs, 8402 simple sequence repeats and 2567 transcription factors were predicted in all the transcripts. A GO analysis showed that 5843 transcripts were divided into three categories, including biological process (BP), cellular component (CC) and molecular function (MF). In these three categories, metabolic process (1603 transcripts), protein-containing complex (515 transcripts) and binding (3233 transcripts) were the primary terms in BP, CC, and MF, respectively. The major types of transcription factors were involved in MYB-related and NF-YB families. To the best of our knowledge, this is the first report of the transcriptome of H. beccarii using SMRT sequencing technology.
Collapse
|
5
|
Transcriptomic response of Pseudomonas nicosulfuronedens LAM1902 to the sulfonylurea herbicide nicosulfuron. Sci Rep 2022; 12:13656. [PMID: 35953636 PMCID: PMC9372043 DOI: 10.1038/s41598-022-17982-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/03/2022] [Indexed: 12/13/2022] Open
Abstract
The overuse of the herbicide nicosulfuron has become a global environmental concern. As a potential bioremediation technology, the microbial degradation of nicosulfuron shows much promise; however, the mechanism by which microorganisms respond to nicosulfuron exposure requires further study. An isolated soil-borne bacteria Pseudomonas nicosulfuronedens LAM1902 displaying nicosulfuron, chlorimuron-ethyl, and cinosulfuron degradabilities in the presence of glucose, was used to determine the transcriptional responses to nicosulfuron exposure. RNA-Seq results indicated that 1102 differentially expressed genes (DEGs) were up-regulated and 702 down-regulated under nicosulfuron stress. DEGs were significantly enriched in “ABC transporters”, “sulfur metabolism”, and “ribosome” pathways (p ≤ 0.05). Several pathways (glycolysis and pentose phosphate pathways, a two-component regulation system, as well as in bacterial chemotaxis metabolisms) were affected by nicosulfuron exposure. Surprisingly, nicosulfuron exposure showed positive effects on the production of oxalic acid that is synthesized by genes encoding glycolate oxidase through the glyoxylate cycle pathway. The results suggest that P. nicosulfuronedens LAM1902 adopt acid metabolites production strategies in response to nicosulfuron, with concomitant nicosulfuron degradation. Data indicates that glucose metabolism is required during the degradation and adaptation of strain LAM1902 to nicosulfuron stress. The present studies provide a glimpse at the molecular response of microorganisms to sulfonylurea pesticide toxicity and a potential framework for future mechanistic studies.
Collapse
|
6
|
Malea P, Emmanouilidis A, Kevrekidis DP, Moustakas M. Copper uptake kinetics and toxicological effects of ionic Cu and CuO nanoparticles on the seaweed Ulva rigida. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:57523-57542. [PMID: 35352227 DOI: 10.1007/s11356-022-19571-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Copper ion (Cu2+) and copper oxide (CuO) nanoparticle (NP) ecotoxicity are of increasing concern as they are considered to be a potential risk to marine systems. This study represents the first attempt to evaluate CuO NP impacts on the seaweeds and Cu2+ on the chlorophyte Ulva rigida. Effects on oxidative stress, antioxidant defence markers, photosystem II function, thalli growth, and cell viability in U. rigida exposed for 4 up 72 h to1 and 5 mg L-1 Cu2+ and CuO NPs were examined. Hydrogen peroxide (H2O2) generation, superoxide dismutase (SOD) activity, malondialdehyde (MDA) content, and growth inhibition seemed to be reliable and early warning markers of toxicity. The most important variables of the principal component analysis (PCA): H2O2 generation, antioxidant stress markers, and growth-based toxicity index, were higher at 1 mg L-1 CuO NPs compared to CuSO4 and at 5 mg L-1 CuSO4 compared to CuO NPs. Intracellular uptake kinetics fit well to the Michaelis-Menten equation. The higher toxicity at 5 mg L-1 CuSO4 compared to 1 mg L-1 was due to the higher Cu uptake with increasing concentration, suggesting and higher accumulation ability. On the contrary, 1 mg L-1 CuO NPs induced more strongly toxicity effects than 5 mg L-1. The relatively stronger effect of CuO NPs at 1 mg L-1 than the respective CuSO4 concentration could be attributed to the higher rate of initial uptake (Vc) and the mean rate of Cu uptake [Cmax/(2 × Km)] at CuO NP treatment. The intracellular seaweed experimental threshold of Cu, which coincided with the onset of oxidative stress, was within the Cu concentration range recorded in Mediterranean Ulva spp., indicating that it may pose a substantial risk to marine environments.
Collapse
Affiliation(s)
- Paraskevi Malea
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Macedonia, Greece.
| | - Antonios Emmanouilidis
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Macedonia, Greece
| | - Dimitrios Phaedon Kevrekidis
- Laboratory of Forensic Medicine and Toxicology, Department of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Michael Moustakas
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Macedonia, Greece
| |
Collapse
|