1
|
Wu H, Cheng F, Chen J, Li H, Xu J, He P, Li S. Species-Specific Responses of Bloom-Forming Algae to the Ocean Warming and Acidification. PLANTS (BASEL, SWITZERLAND) 2024; 13:2433. [PMID: 39273917 PMCID: PMC11396949 DOI: 10.3390/plants13172433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Macroalgal biomass blooms, including those causing the green and golden tides, have been rising along Chinese coasts, resulting in considerable social impacts and economic losses. To understand the links between the ongoing climate changes (ocean warming and acidification) and algal tide formation, the effects of temperature (20 and 24 °C), pCO2 concentration (Partial Pressure of Carbon Dioxide, 410 ppm and 1000 ppm) and their interaction on the growth of Ulva prolifera and Ulva lactuca (green tide forming species), as well as Sargassum horneri (golden tide forming species) were investigated. The results indicate that the concurrent rises in temperature and pCO2 level significantly boosted the growth and nutrient uptake rates of U. lactuca. For U. prolifera, the heightened growth and photosynthetic efficiency under higher CO2 conditions are likely due to the increased availability of inorganic carbon. In contrast, S. horneri exhibited negligible responsiveness to the individual and combined effects of the increased temperature and CO2 concentration. These outcomes indicate that the progressive climate changes, characterized by ocean warming and acidification, are likely to escalate the incidence of green tides caused by Ulva species, whereas they are not anticipated to precipitate golden tides.
Collapse
Affiliation(s)
- Hailong Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Fangsheng Cheng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jiang Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - He Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Juntian Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Peimin He
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Sufang Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
2
|
Ren X, Zhang Y, Gao X, Gong Q, Li J. Temporal and Within-Sporophyte Variations in Triphenyltin Chloride (TPTCL) and Its Degradation Products in Cultivated Undaria pinnatifida. PLANTS (BASEL, SWITZERLAND) 2024; 13:767. [PMID: 38592831 PMCID: PMC10975867 DOI: 10.3390/plants13060767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 04/11/2024]
Abstract
Undaria pinnatifida can effectively deal with organotin pollution through its excellent accumulation and degradation capabilities found under laboratory conditions. However, nothing is known regarding its accumulation, degradation performance, and related impact factors in the wild farming area. In this study, we monitored triphenyltin chloride (TPTCL) contents and degradation products in different algal parts (blades, stipes, sporophylls, and holdfasts) of cultivated U. pinnatifida from December 2018 to May 2019. Our results showed that sporophytes had an accumulation and degradation capacity for TPTCL. The TPTCL contents and degradation products varied with the algal growth stages and algal parts. TPTCL accumulated in the blades at the growth stage and the blades, stipes, sporophylls, and holdfasts at the mature stage. The TPTCL content among algal parts was blades (74.92 ± 2.52 μg kg-1) > holdfasts (62.59 ± 1.42 μg kg-1) > sporophylls (47.24 ± 1.41 μg kg-1) > stipes (35.53 ± 0.55 μg kg-1). The primary degradation product DPTCL accumulated only in the blades at any stage, with a concentration of 69.30 ± 3.89 μg kg-1. The secondary degradation product MPTCL accumulated in the blades at the growth stage and in the blades, stipe, and sporophyll at the mature stage. The MPTCL content among algal parts was blades (52.80 ± 3.48 μg kg-1) > sporophylls (31.08 ± 1.53 μg kg-1) > stipes (20.44 ± 0.85 μg kg-1). The accumulation pattern of TPTCL and its degradation products seems closely related to nutrient allocation in U. pinnatifida. These results provide the basis for applying cultivated U. pinnatifida in the bioremediation of organotin pollution and the food safety evaluation of edible algae.
Collapse
Affiliation(s)
| | | | - Xu Gao
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, China; (X.R.); (Y.Z.); (Q.G.)
| | | | - Jingyu Li
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, China; (X.R.); (Y.Z.); (Q.G.)
| |
Collapse
|
3
|
Nomura M, Okamura H, Horie Y, Yap CK, Emmanouil C, Uwai S, Kawai H. Effects of antifouling compounds on the growth of macroalgae Undaria pinnatifida. CHEMOSPHERE 2023; 312:137141. [PMID: 36343734 DOI: 10.1016/j.chemosphere.2022.137141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Seaweeds are some of the principal primary producers of marine environments, and they are important ecological elements of coastal ecosystems. The effects of harmful chemicals on seaweeds may adversely affect coastal ecosystems, hence we aimed to develop a new phytotoxicity test using the gametophytes of a common temperate kelp species, Undaria pinnatifida (KU-1630), for the widely used antifouling chemical substances Cybutryne, Diuron, Cu2+, and Zn2+. Toxicity to gametophytes of U. pinnatifida was assessed by comparing the relative growth rate (RGR) at the logarithmic growth phase. Fragmentation method, initial algal biomass, photon irradiance, and adhesive period were investigated for developing optimal test conditions. Cybutryne exposure tests were performed with seven replicates and control, the RGR ranging from 0.17 to 0.19, while mean 7-day EC50 and no observed effect concentration (NOEC) were 5.1 μg/L and 1.8 μg/L, respectively. The 7-day EC50 for other antifoulants was 14 μg/L for Diuron, 17 μg/L for Cu2+, and 1500 μg/L for Zn2+. This test method demonstrated high sensitivity and reproducibility, and it may be added to the routine methods used for toxicity evaluation of hazardous chemicals.
Collapse
Affiliation(s)
- M Nomura
- Graduate School of Maritime Sciences, Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe, 658-0022, Japan
| | - H Okamura
- Research Center for Inland Seas, Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe, 658-0022, Japan.
| | - Y Horie
- Research Center for Inland Seas, Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe, 658-0022, Japan
| | - C K Yap
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - C Emmanouil
- School of Spatial Planning and Development, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - S Uwai
- Research Center for Inland Seas, Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe, 658-0022, Japan
| | - H Kawai
- Research Center for Inland Seas, Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe, 658-0022, Japan
| |
Collapse
|
4
|
Pankin D, Martynova N, Smirnov M, Manshina A. Spectral properties of triphenyltin chloride toxin and its detectivity by SERS: Theory and experiment. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 245:118933. [PMID: 32980758 DOI: 10.1016/j.saa.2020.118933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/28/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
The triphenyltin chloride (TPhTCl) molecular structure was investigated by Raman spectroscopy, surface-enhanced Raman spectroscopy (SERS) and the density functional theory (DFT) modeling. Several conformers with different ordering of the benzene rings were determined in the gas phase and in the dimethyl sulfoxide (DMSO) medium. It was shown that the dihedral angles describing such ordering can change under room conditions. Charge distribution of conformers was analyzed with the use of electrostatic potential (ESP) maps. The formation of weak hydrogen bonds and the rearrangement of the benzene rings to form a complex with negatively charged parts of other molecules were proven by ESP maps. Basing on the results of ESP map analysis, it can be assumed that interaction of TPhTCl molecule with metal cluster results in orientation ordering of the benzene rings. This conclusion was confirmed by modeling the atomistic and electronic structure of TPhTCl molecule adsorbed by the Au8 cluster, as well as by observing the intense SERS peaks assigned to vibrations of the benzene rings of TPhTCl molecule adsorbed on the surface of the gold inverse opals.
Collapse
Affiliation(s)
- Dmitrii Pankin
- St. Petersburg State University, Uljanovskaya 5, 198504 St. Petersburg, Russian Federation.
| | - Natalia Martynova
- Lomonosov Moscow State University, Leninskie Gory 1/73, 119991 Moscow, Russian Federation.
| | - Mikhail Smirnov
- St. Petersburg State University, Uljanovskaya 5, 198504 St. Petersburg, Russian Federation
| | - Alina Manshina
- St. Petersburg State University, Uljanovskaya 5, 198504 St. Petersburg, Russian Federation
| |
Collapse
|