1
|
Kim MS, Lee JS, Yang Z, Hagiwara A, Kim DH, Lee JS. Comparative genome analysis and global methylation patterns for epigenetic study in the brackish water flea Diaphanosoma celebensis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 55:101493. [PMID: 40174405 DOI: 10.1016/j.cbd.2025.101493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 04/04/2025]
Abstract
The brackish water flea Diaphanosoma celebensis is a crucial organism in brackish and estuarine ecosystems, acting as a key trophic link between primary producers and higher trophic levels. Its small size, short life cycle, and high reproductive capacity make it an ideal model for studying ecological responses to environmental stressors, especially in polluted environments. This study provides a chromosome-level genome assembly of D. celebensis, consisting of 22 chromosomes with an N50 of 4,113,329 base pairs and 95.1 % completeness, achieved by combining de novo assembly with Hi-C data from D. dubium. Whole-genome bisulfite sequencing (WGBS) revealed distinct DNA methylation patterns, with exons showing higher methylation than introns and intergenic regions. A detailed analysis identified four gene clusters based on methylation levels. Cluster δ (highly methylated), enriched for pathways related to protein processing, ribosomal activity, and ubiquitin-mediated proteolysis, suggests a regulatory mechanism for stress adaptation in D. celebensis. In contrast, cluster α (hypo methylated), associated with transcription regulation and neural functions, highlights genes involved in cellular processes that may respond dynamically to environmental changes. Functional gene comparisons indicated significant differences in pathways related to ion transport and ubiquitination, emphasizing the unique adaptations of D. celebensis to its brackish environment. These findings provide a deeper understanding of the species' genomic and epigenetic regulation, offering valuable insights for future studies on its adaptation to environmental pollutants.
Collapse
Affiliation(s)
- Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jin-Sol Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Atsushi Hagiwara
- Institute of Integrated Science and Technology, Graduate School of Fisheries Science and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
2
|
Lee Y, Kim DH, Lee JS, Lee MC, Kim HS, Maszczyk P, Sakakura Y, Yang Z, Hagiwara A, Park HG, Lee JS. Oxidative stress-mediated deleterious effects of hypoxia in the brackish water flea Diaphanosoma celebensis. MARINE POLLUTION BULLETIN 2024; 205:116633. [PMID: 38936003 DOI: 10.1016/j.marpolbul.2024.116633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/25/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
In this study, we investigated the acute toxicity, in vivo effects, oxidative stress, and gene expression changes caused by hypoxia on the brackish water flea Diaphanosoma celebensis. The no-observed-effect concentration (NOEC) of 48 h of hypoxia exposure was found to be 2 mg/L O2. Chronic exposure to NOEC caused a significant decline in lifespan but had no effect on total fecundity. The induction of reactive oxygen species increased in a time-dependent manner over 48 h, whereas the content of antioxidant enzymes (superoxide dismutase and catalase) decreased. The transcription and translation levels were modulated by hypoxia exposure. In particular, a significant increase in hemoglobin level was followed by up-regulation of hypoxia-inducible factor 1α gene expression and activation of the mitogen-activated protein kinase pathway. In conclusion, our findings provide a better understanding of the molecular mechanism of the adverse effects of hypoxia in brackish water zooplankton.
Collapse
Affiliation(s)
- Yoseop Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jin-Sol Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Chul Lee
- Department of Food and Nutrition, College of Bio-Nano Technology, Gachon University, Seongnam 13120, South Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Piotr Maszczyk
- Department of Hydrobiology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Warsaw 02-089, Poland
| | - Yoshitaka Sakakura
- Graduate School of Integrated Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, 8 Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Atsushi Hagiwara
- Graduate School of Integrated Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan
| | - Heum Gi Park
- Department of Marine Ecology and Environment, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
3
|
Rodríguez EM. Endocrine disruption in crustaceans: New findings and perspectives. Mol Cell Endocrinol 2024; 585:112189. [PMID: 38365065 DOI: 10.1016/j.mce.2024.112189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
A significant advance has been made, especially during the last two decades, in the knowledge of the effects on crustacean species of pollutants proven to be endocrine disruptors in vertebrates. Such effects have been also interpreted in the light of recent studies on crustacean endocrinology. Year after year, the increased number of reports refer to the effects of endocrine disruptors on several processes hormonally controlled. This review is aimed at summarizing and discussing the effects of several kinds of endocrine disruptors on the hormonal control of reproduction (including gonadal growth, sexual differentiation, and offspring development), molting, and intermediate metabolism of crustaceans. A final discussion about the state of the art, as well as the perspective of this toxicological research line is given.
Collapse
Affiliation(s)
- Enrique M Rodríguez
- Universidad de Buenos Aires. CONICET. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA). Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental. Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Lee J, Jeon MJ, Won EJ, Yoo JW, Lee YM. Effect of heavy metals on the energy metabolism in the brackish water flea Diaphanosoma celebensis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115189. [PMID: 37385021 DOI: 10.1016/j.ecoenv.2023.115189] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/02/2023] [Accepted: 06/24/2023] [Indexed: 07/01/2023]
Abstract
Heavy metals such as lead (Pb), cadmium (Cd), and arsenic (As) are of great concern in aquatic ecosystems because of their global distribution, persistence, and biomagnification via the food web. They can induce the expression of cellular protective systems (e.g., detoxification enzymes and antioxidant enzymes) to protect organisms from oxidative stress, which is a high-energy-consuming process. Thus, energy reserves (e.g., glycogen, lipids, and proteins) are utilized to maintain metabolic homeostasis. Although a few studies have suggested that heavy metal stress can modulate the metabolic cycle in crustaceans, information on changes in energy metabolism under metal pollution remains lacking in planktonic crustaceans. In the present study, the activity of digestive enzymes (amylase, trypsin, and lipase) and the contents of energy storage molecules (glycogen, lipid, and protein) were examined in the brackish water flea Diaphanosoma celebensis exposed to Cd, Pb, and As for 48 h. Transcriptional modulation of the three AMP-activated protein kinase (AMPK) and metabolic pathway-related genes was further investigated. Amylase activity was highly increased in all heavy metal-exposed groups, whereas trypsin activity was reduced in Cd- and As-exposed groups. While glycogen content was increased in all exposed groups in a concentration-dependent manner, lipid content was reduced at higher concentrations of heavy metals. The expression of AMPKs and metabolic pathway-related genes was distinct among heavy metals. In particular, Cd activated the transcription of AMPK-, glucose/lipid metabolism-, and protein synthesis-related genes. Our findings indicate that Cd can disrupt energy metabolism, and may be a potent metabolic toxicant in D. celebensis. This study provides insights into the molecular mode of action of heavy metal pollution on the energy metabolism in planktonic crustaceans.
Collapse
Affiliation(s)
- Jiyoon Lee
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| | - Min Jeong Jeon
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| | - Eun-Ji Won
- Institute of Marine and Atmospheric Sciences, Hanyang University, Ansan 15588, Republic of Korea
| | - Je-Won Yoo
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| | - Young-Mi Lee
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea.
| |
Collapse
|
5
|
Xu M, Liu P, Huang Q, Xu S, Dumont HJ, Han BP. High-quality genome of Diaphanosoma dubium provides insights into molecular basis of its broad ecological adaptation. iScience 2023; 26:106006. [PMID: 36798432 PMCID: PMC9926121 DOI: 10.1016/j.isci.2023.106006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/20/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Diaphanosoma dubium Manuilova, 1964, is a widespread planktonic water flea in Asian freshwater. Although sharing similar ecological roles with species of Daphnia, studies on D. dubium and its congeners are still few and lacking a genome for the further studies. Here, we assembled a high quality and chromosome level genome of D. dubium by combining long reads sequencing and Hi-C technologies. The total length of assembled genome was 101.8 Mb, with 98.92 Mb (97.2%) anchored into 22 chromosomes. Through comparative genomic analysis, we found the genes, involved in anti-ROS, detoxification, protein digestion, germ cells regulation and protection, underwent expansion in D. dubium. These genes and their expansion helpfully explain its widespread geographical distribution and dominance in eutrophic waters. This study provides insight into the adaptive evolution of D. dubium at genomic perspectives, and the present high quality genomic resource will be a footstone for future omics studies of the species and its congeners.
Collapse
Affiliation(s)
- Meng Xu
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
| | - Ping Liu
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China,College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Qi Huang
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
| | - Shaolin Xu
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
| | - Henri J. Dumont
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China,Ghent University, Department of Biology, Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Bo-Ping Han
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China,Corresponding author
| |
Collapse
|
6
|
Khazaeel K, Rad OR, Jamshidian J, Tabandeh MR, Mohammadi G, Atashfaraz A. Effect of bromelain on sperm quality, testicular oxidative stress and expression of oestrogen receptors in bisphenol-A treated male mice. Andrologia 2022; 54:e14584. [PMID: 36068179 DOI: 10.1111/and.14584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 08/09/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022] Open
Abstract
Bisphenol A (BPA) as an endocrine-disrupting chemical (EDC) with low estrogenic activity increases oxidative stress and testicular damage. Bromelain is a mixture of different thiol endopeptidases and other components with many uses as a natural anti-inflammatory enzyme. The present study aimed to evaluate the effect of bromelain on male reproductive failure induced by BPA. A total of 60 healthy adult male mice were randomly divided into six groups (n = 6), including control, bromelain (70 mg/kg), BPA (5 and 600 mg/kg), and BPA (5 and 600 mg/kg) + bromelain. BPA and bromelain were administrated orally for 35 days. Then, the epididymis and testes were removed to evaluate sperm parameters, oxidative stress markers, serum levels of testosterone concentrations, and oestrogen receptors expression. The BPA significantly (P < 0.05) decreased sperm count, motility, viability, and normal sperm morphology, as well as testosterone levels, oestrogen receptors alpha (ERα) and beta (ERβ), GPx, CAT, and SOD activity than control. Also, BPA significantly (P < 0.05) increased the sperm anomalies, and MDA concentration. Co-administration of bromelain + BPA caused a significantly (P < 0.05) increase sperm count, normal sperm morphology, testosterone levels, expression of ERα and ERβ, and GPx, CAT, and SOD activity than the BPA group (P < 0.05). Also, Bromelain significantly (P < 0.05) decreased sperm anomalies and MDA concentration than control. Based on the results of this study, it appears that BPA causes side effects on male reproduction. While, bromelain has the potential to reduce the side effects of BPA on the male reproductive system.
Collapse
Affiliation(s)
- Kaveh Khazaeel
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Stem Cells and Transgenic Technology Research Centre (STTRC), Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Omid Ramezani Rad
- Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Javad Jamshidian
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohammad Reza Tabandeh
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Ghodratollah Mohammadi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Ammar Atashfaraz
- Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
7
|
Wang T, He K, Blaney L, Chung JS. 17β-Estradiol (E2) may be involved in the mode of crustacean female sex hormone (CFSH) action in the blue crab, Callinectes sapidus. Front Endocrinol (Lausanne) 2022; 13:962576. [PMID: 35957817 PMCID: PMC9358259 DOI: 10.3389/fendo.2022.962576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
17β-estradiol (E2) has been proved to control reproduction, sexual differentiation, and the development of the secondary sexual characteristics of vertebrate females. In decapod crustacean species, crustacean female sex hormone (CFSH), a protein hormone, is required for developing adult-specific ovigerous setae for embryo brooding and gonophores for mating at the blue crab Callinectes sapidus puberty molting. However, it is unclear that whether the mode of CFSH action involves a vertebrate-type sex steroid hormone in crustaceans. To this end, E2 levels were first measured using a competitive ELISA in the hemolymph and the potential CFSH target tissues from both prepuberty and adult females; the presence of E2 was further confirmed with a liquid chromatography tandem mass spectrometry method. Then, the cDNAs of the following genes known to be associated with vertebrate steroidogenic pathways were isolated: StAR-related lipid transfer protein 3 (StAR3); 3β-hydroxysteroid dehydrogenase (3βHSD); two isoforms of 17β-hydroxysteroid dehydrogenase 8 (17βHSD8); and, estradiol-related receptor (ERR). RT-PCR analysis revealed that these genes were widely distributed in the eyestalk ganglia, hepatopancreas, brain, ovary, spermathecae, ovigerous and plumose setae tissues of adult females. The 17βHSD8 transcripts were localized in the follicle cells, the periphery of the nuclear membrane of primary oocytes, and yolk granules of the vitellogenic oocytes using in situ hybridization, and the corresponding protein was detected in the follicle cells and ooplasm of primary oocytes using immunohistochemistry. Furthermore, the adult females injected with CFSH-dsRNA (n = 30 times) had E2 and StAR3 transcripts levels lower in the ovigerous and plumose setae, spermathecae than controls. These results suggested that the mode of CFSH action in C. sapidus might involve E2 in these adult-female-specific tissues.
Collapse
Affiliation(s)
- Tao Wang
- Department of Marine Biotechnology & Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, United States
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, United States
| | - Ke He
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, United States
| | - Lee Blaney
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, United States
| | - J. Sook Chung
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, United States
| |
Collapse
|
8
|
Lee YM, Cho H, Kim RO, In S, Kim SJ, Won EJ. Validation of reference genes for quantitative real-time PCR in chemical exposed and at different age's brackish water flea Diaphanosoma celebensis. Sci Rep 2021; 11:23691. [PMID: 34880360 PMCID: PMC8654955 DOI: 10.1038/s41598-021-03098-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/29/2021] [Indexed: 11/09/2022] Open
Abstract
Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), a primary approach for evaluating gene expression, requires an appropriate normalization strategy to confirm relative gene expression levels by comparison, and rule out variations that might occur in analytical procedures. The best option is to use a reference gene whose expression level is stable across various experimental conditions to compare the mRNA levels of a target gene. However, there is limited information on how the reference gene is differentially expressed at different ages (growth) in small invertebrates with notable changes such as molting. In this study, expression profiles of nine candidate reference genes from the brackish water flea, Diaphanosoma celebensis, were evaluated under diverse exposure to toxicants and according to growth. As a result, four different algorithms showed similar stabilities of genes for chemical exposures in the case of limited conditions using the same developmental stage (H2A was stable, whereas Act was fairly unstable in adults), while the results according to age showed a significantly different pattern in suite of candidate reference genes. This affected the results of genes EcRA and GST, which are involved in development and detoxification mechanisms, respectively. Our finding is the first step towards establishing a standardized real-time qRT-PCR analysis of this environmentally important invertebrate that has potential for aquatic ecotoxicology, particularly in estuarine environments.
Collapse
Affiliation(s)
- Young-Mi Lee
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul, 03016, Republic of Korea.
| | - Hayoung Cho
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul, 03016, Republic of Korea
| | - Ryeo-Ok Kim
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul, 03016, Republic of Korea.,Division of Chemical Research, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon, 22689, Korea
| | - Soyeon In
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul, 03016, Republic of Korea
| | - Se-Joo Kim
- Genome Editing Research Center, Korea Research Institute Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Eun-Ji Won
- Department of Marine Science and Convergent Technology, Hanyang University, Ansan, 15588, Republic of Korea.
| |
Collapse
|
9
|
Shamhari A‘A, Abd Hamid Z, Budin SB, Shamsudin NJ, Taib IS. Bisphenol A and Its Analogues Deteriorate the Hormones Physiological Function of the Male Reproductive System: A Mini-Review. Biomedicines 2021; 9:1744. [PMID: 34829973 PMCID: PMC8615890 DOI: 10.3390/biomedicines9111744] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 02/06/2023] Open
Abstract
BPA is identified as an endocrine-disrupting chemical that deteriorates the physiological function of the hormones of the male reproductive system. Bisphenol F (BPF), bisphenol S (BPS), and bisphenol AF (BPAF) are actively explored as substitutes for BPA and are known as BPA analogues in most manufacturing industries. These analogues may demonstrate the same adverse effects as BPA on the male reproductive system; however, toxicological data explaining the male reproductive hormones' physiological functions are still limited. Hence, this mini-review discusses the effects of BPA and its analogues on the physiological functions of hormones in the male reproductive system, focusing on the hypothalamus-pituitary-gonad (HPG) axis, steroidogenesis, and spermatogenesis outcomes. The BPA analogues mainly show a similar negative effect on the hormones' physiological functions, proven by alterations in the HPG axis and steroidogenesis via activation of the aromatase activity and reduction of spermatogenesis outcomes when compared to BPA in in vitro and in vivo studies. Human biomonitoring studies also provide significant adverse effects on the physiological functions of hormones in the male reproductive system. In conclusion, BPA and its analogues deteriorate the physiological functions of hormones in the male reproductive system as per in vitro, in vivo, and human biomonitoring studies.
Collapse
Affiliation(s)
- Asma’ ‘Afifah Shamhari
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (A.‘A.S.); (Z.A.H.); (S.B.B.)
| | - Zariyantey Abd Hamid
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (A.‘A.S.); (Z.A.H.); (S.B.B.)
| | - Siti Balkis Budin
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (A.‘A.S.); (Z.A.H.); (S.B.B.)
| | - Nurul Jehan Shamsudin
- Centre for Toxicology and Health Risk Research, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Izatus Shima Taib
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (A.‘A.S.); (Z.A.H.); (S.B.B.)
| |
Collapse
|
10
|
Burgos-Aceves MA, Abo-Al-Ela HG, Faggio C. Impact of phthalates and bisphenols plasticizers on haemocyte immune function of aquatic invertebrates: A review on physiological, biochemical, and genomic aspects. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126426. [PMID: 34166954 DOI: 10.1016/j.jhazmat.2021.126426] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
The invertebrate innate immunity is a crucial characteristic that represents a valuable basis for studying common biological responses to environmental pollutants. Cell defence mechanisms are key players in protecting the organism from infections and foreign materials. Many haemocyte-associated immunological parameters have been reported to be immunologically sensitive to aquatic toxins (natural or artificial). Environmental plastic pollution poses a global threat to ecosystems and human health due to plastic vast and extensive use as additives in various consumer products. In recent years, studies have been done to evaluate the effects of plasticizers on humans and the environment, and their transmission and presence in water, air, and indoor dust, and so forth. Hence, the development of biomarkers that evaluate biological responses to different pollutants are essential to obtain important information on plasticizers' sublethal effects. This review analyses the current advances in the adverse effects of plasticizers (as emerging contaminants), such as immunological response disruption. The review also shows a critical analysis of the effects of the most widely used plasticizers on haemocytes. The advantages of an integrative approach that uses chemical, genetic, and immunomarker assays to monitor toxicity are highlighted. All these factors are imperative to ponder when designing toxicity studies to recognize the potential effects of plasticizers like bisphenol A and phthalates.
Collapse
Affiliation(s)
- Mario Alberto Burgos-Aceves
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Haitham G Abo-Al-Ela
- Genetics and Biotechnology, Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez 43518, Egypt
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy.
| |
Collapse
|
11
|
Shen G, Wu J, Lin Y, Hua X, Xia Q, Zhao P. Estrogen-Related Receptor Influences the Hemolymph Glucose Content by Regulating Midgut Trehalase Gene Expression in the Last Instar Larvae of Bombyx mori. Int J Mol Sci 2021; 22:4343. [PMID: 33919382 PMCID: PMC8122577 DOI: 10.3390/ijms22094343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 01/13/2023] Open
Abstract
The expression of trehalase in the midgut of insects plays an important role in glucose supply to the hemolymph. Energy metabolism is usually regulated by the estrogen-related receptor (ERR). A decrease in ATP levels is caused by the ERR hindering glycolysis. However, the relationship between trehalose accumulation and ERR expression is still unclear. Here, we found that silkworm ERR (BmERR) is concentrated and BmERR expression is strongly correlated with trehalase in the midgut during the last instar silkworm larval stage. We cloned the promoter of the trehalase from Bombyx mori (BmTreh) and found that the ERR bound directly to the core response elements of the promoter. Cell level interference and the overexpression of ERR can reduce or enhance BmTreh transcription and promoter activity. Overexpressed transgenic BmERR can significantly increase the expression of BmTreh in the midgut of the last instar silkworm larvae, thereby hydrolyzing trehalose into glucose and releasing it into the hemolymph. Additionally, increased hemolymph glucose content reduces silkworm pupa weight but does not affect silk protein production from the silk gland. Our results suggest a novel function for BmERR through its involvement in BmTreh regulation and expand the understanding of ERR functions in insect trehalose metabolism.
Collapse
Affiliation(s)
- Guanwang Shen
- Biological Science Research Center, Southwest University, Chongqing 400716, China; (G.S.); (J.W.); (Y.L.); (X.H.); (Q.X.)
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Jinxin Wu
- Biological Science Research Center, Southwest University, Chongqing 400716, China; (G.S.); (J.W.); (Y.L.); (X.H.); (Q.X.)
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Ying Lin
- Biological Science Research Center, Southwest University, Chongqing 400716, China; (G.S.); (J.W.); (Y.L.); (X.H.); (Q.X.)
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Xiaoting Hua
- Biological Science Research Center, Southwest University, Chongqing 400716, China; (G.S.); (J.W.); (Y.L.); (X.H.); (Q.X.)
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Qingyou Xia
- Biological Science Research Center, Southwest University, Chongqing 400716, China; (G.S.); (J.W.); (Y.L.); (X.H.); (Q.X.)
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Ping Zhao
- Biological Science Research Center, Southwest University, Chongqing 400716, China; (G.S.); (J.W.); (Y.L.); (X.H.); (Q.X.)
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| |
Collapse
|
12
|
Kim DH, Choi BS, Kang HM, Park JC, Kim MS, Hagiwara A, Lee JS. The genome of the marine water flea Diaphanosoma celebensis: Identification of phase I, II, and III detoxification genes and potential applications in marine molecular ecotoxicology. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 37:100787. [PMID: 33454556 DOI: 10.1016/j.cbd.2020.100787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 11/19/2022]
Abstract
To assemble the genome of the marine water flea Diaphanosoma celebensis, a sentinel model for marine environmental monitoring, we constructed a high-quality genome using PromethION and HiSeq 2500 platforms. The total length of the assembled genome was 100.08 Mb, with N50 = 2.56 Mb (benchmarking universal single-copy orthologs, 96.9%) and consisted of 179 scaffolds. A total of 15,427 genes were annotated, and orthologous gene clusters in D. celebensis were analyzed and compared with those of the cladocerans Daphnia magna and Daphnia pulex. In addition, phase I, II, and III detoxification gene families of cytochrome P450s, glutathione S-transferases, and ATP-binding cassette were fully identified and revealed lineage-specific gene loss and/or expansion, suggesting that the evolution of detoxification gene families likely modulates fitness and susceptibility in response to environmental stressors. The study improves our understanding of the detoxification-related gene system and should contribute to future studies of molecular ecotoxicology in cladoceran species and their responses to emerging pollutants.
Collapse
Affiliation(s)
- Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | | | - Hye-Min Kang
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Atsushi Hagiwara
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan; Organization for Marine Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|