1
|
Bisaccia M, Berini F, Marinelli F, Binda E. Emerging Trends in Antimicrobial Resistance in Polar Aquatic Ecosystems. Antibiotics (Basel) 2025; 14:394. [PMID: 40298543 PMCID: PMC12024378 DOI: 10.3390/antibiotics14040394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/01/2025] [Accepted: 04/04/2025] [Indexed: 04/30/2025] Open
Abstract
The global spread of antimicrobial resistance (AMR) threatens to plummet society back to the pre-antibiotic era through a resurgence of common everyday infections' morbidity. Thus, studies investigating antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in urban, agricultural, and clinical settings, as well as in extreme environments, have become increasingly relevant in the One Health perspective. Since the Antarctic and Arctic regions are considered amongst the few remaining pristine environments on Earth, the characterization of their native resistome appears to be of the utmost importance to understand whether and how it is evolving as a result of anthropogenic activities and climate change. In the present review, we report on the phenotypic (e.g., disk diffusion test) and genotypic (e.g., PCR, metagenomics) approaches used to study AMR in the aquatic environment of polar regions, as water represents one of AMR main dissemination routes in nature. Their advantages and limits are described, and the emerging trends resulting from the analysis of ARB and ARGs diffusion in polar waters discussed. The resistome detected in these extreme environments appears to be mostly comparable to those from more anthropized areas, with the predominance of tetracycline, β-lactam, and sulfonamide resistance (and related ARGs). Indeed, AMR is, in all cases, more consistently highlighted in sites impacted by human and wildlife activities with respect to more pristine ones. Surprisingly, aminoglycoside and fluroquinolone determinants seem to have an even higher incidence in the Antarctic and Arctic aquatic environment compared to that from other areas of the world, corroborating the need for a more thorough AMR surveillance in these regions.
Collapse
Affiliation(s)
- Melissa Bisaccia
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy; (M.B.); (F.B.); (E.B.)
| | - Francesca Berini
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy; (M.B.); (F.B.); (E.B.)
- Climate Change Research Center (CCRC), University of Insubria, 22100 Como, Italy
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy; (M.B.); (F.B.); (E.B.)
- Climate Change Research Center (CCRC), University of Insubria, 22100 Como, Italy
| | - Elisa Binda
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy; (M.B.); (F.B.); (E.B.)
| |
Collapse
|
2
|
He LX, He LY, Tang YJ, Qiao LK, Xu MC, Zhou ZY, Bai H, Zhang M, Ying GG. Deciphering spread of quinolone resistance in mariculture ponds: Cross-species and cross-environment transmission of resistome. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137198. [PMID: 39827796 DOI: 10.1016/j.jhazmat.2025.137198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/08/2025] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
Mariculture is known to harbor antibiotic resistance genes (ARGs), which can be released into marine ecosystems via oceanic farming ponds, posing a public health concern. In this study, metagenomic sequencing was used to decipher the profiles of quinolone-resistant microbiomes and the mechanisms of quinolone resistance in sediment, seawater, and fish gill samples from five mariculture ponds. Residues of both veterinary-specific (enrofloxacin and sarafloxacin) and prohibited quinolones (ofloxacin, ciprofloxacin, pefloxacin, norfloxacin, and lomefloxacin) were detected. We identified a total of 285 subtypes of ARGs across all samples. Pathogens played a crucial role in the prevalence and distribution of these ARGs. Out of the annotated 629 bacterial species, 42 were identified as pathogenic, predominantly belonging to the Proteobacteria phylum. Notably, the Acinetobacter genus was prevalent in the gills and exhibited correlations with various ARGs. The presence of the plasmid-mediated quinolone resistance (PMQR) genes in various bacterial species and the identification of sulfonamide resistance genes across different samples indicated the potential for cross-species and cross-environment transmission of ARGs. Metagenomic binning revealed that Exiguobacterium harbored five ARGs (vanA, vanB, fexA, msr(G), mefF), while Shewanella carried six ARGs (blaOXA-436, adeF, qacl, ANT (2'')-Ia, dfrA1, rsmA). Mutations in gyrA and parC contributed to quinolone resistance in these multidrug-resistant Exiguobacterium and Shewanella. Our findings suggest a potential for ARG transmission across various bacterial species and environments in mariculture. This study emphasized the risk of resistance spread within the mariculture ecosystem.
Collapse
Affiliation(s)
- Lu-Xi He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Liang-Ying He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Yan-Jun Tang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Lu-Kai Qiao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Meng-Chao Xu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Zhi-Yin Zhou
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Hong Bai
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Min Zhang
- Guangdong Provincial Engineering Technology Research Center for Life and Health 15 of River&Lake, Pearl River Hydraulic Research Institute, Pearl River Water 16 Resources Commission of the Ministry of Water Resources, Guangzhou 510611-17, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
3
|
Silverio MP, Schultz J, Parise MTD, Parise D, Viana MVC, Nogueira W, Ramos RTJ, Góes-Neto A, Azevedo VADC, Brenig B, Bonelli RR, Rosado AS. Genomic and phenotypic insight into antimicrobial resistance of Pseudomonas fluorescens from King George Island, Antarctica. Front Microbiol 2025; 16:1535420. [PMID: 40099188 PMCID: PMC11911486 DOI: 10.3389/fmicb.2025.1535420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/12/2025] [Indexed: 03/19/2025] Open
Abstract
The genus Pseudomonas includes metabolically versatile microorganisms occupying diverse niches, from environmental habitats to plant pathogens, and has clinically significant strains. For this reason, Pseudomonas spp. might act as a reservoir of antimicrobial resistance genes, which have been detected even in isolated environments. The aim of this study was to report the antimicrobial susceptibility profile of 25 Pseudomonas fluorescens isolates from soil samples collected on King George Island (Antarctic Peninsula), and to select non-clonal isolates with unusual phenotypes for whole genome sequencing (WGS). Six classes of antimicrobials were assessed with disk diffusion and colistin with minimum inhibitory concentration (MIC) by broth microdilution. In order to confirm the discrepant phenotypes, MIC by agar dilution was performed for the beta-lactams aztreonam, ceftazidime, cefepime and the aminoglycoside neomycin. The genus Pseudomonas was confirmed by matrix-assisted laser desorption/ionization - time of flight (MALDI-TOF) and the clonal relationships were examined using repetitive extragenic palindromic polymerase chain reaction (BOX-PCR), from which 14 strains were selected for WGS. Antimicrobial susceptibility testing revealed that all strains were susceptible to neomycin and exhibited varying degrees of intermediate or full resistance to aztreonam and colistin. Additionally, 11 strains demonstrated intermediate resistance to ceftazidime, and six were resistant to cefepime. The genomic analysis identified various efflux pumps, predominantly from the ABC transporter and resistance-nodulation-division families. Resistance genes were detected against eight classes of antimicrobials, listed by prevalence: beta-lactams, tetracyclines, polymyxins, aminoglycosides, fosmidomycin, fosfomycin, quinolones, and chloramphenicol. Genes associated with heavy-metal resistance, prophages, and adaptations to extreme environments were also investigated. One notable isolate exhibited not only the highest number of pathogenicity and resistance islands, but also presented a carbapenemase-encoding gene (bla PFM-2) in its genome. Overall, one plasmid was identified in a distinct isolate, which did not exhibit antimicrobial resistance determinants. The genotypic and phenotypic findings are consistent, suggesting that efflux pumps play a critical role in antimicrobial extrusion. This study offers valuable insight into the evolution of antimicrobial resistance in P. fluorescens, particularly in extreme environments, such as Antarctica. By exploring the antimicrobial resistance mechanisms in P. fluorescens, the study sheds light on how isolated ecosystems drive the natural evolution of resistance genes.
Collapse
Affiliation(s)
- Myllena Pereira Silverio
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Investigation in Medical Microbiology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Júnia Schultz
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mariana T D Parise
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Doglas Parise
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Wylerson Nogueira
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | | | - Aristoteles Góes-Neto
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Bertram Brenig
- Department of Molecular Biology of Livestock, Institute of Veterinary Medicine, Georg August University, Göttingen, Germany
| | - Raquel Regina Bonelli
- Laboratory of Investigation in Medical Microbiology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre Soares Rosado
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Bioscience Program, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
4
|
Caruso G, Azzaro M, Dell’Acqua O, Papale M, Lo Giudice A, Laganà P. Plastic Polymers and Antibiotic Resistance in an Antarctic Environment (Ross Sea): Are We Revealing the Tip of an Iceberg? Microorganisms 2024; 12:2083. [PMID: 39458392 PMCID: PMC11510405 DOI: 10.3390/microorganisms12102083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Microbial colonization of plastic polymers in Antarctic environments is an under-investigated issue. While several studies are documenting the spread of plastic pollution in the Ross Sea, whether the formation of a plastisphere (namely the complex microbial assemblage colonizing plastics) may favor the spread of antibiotic-resistant bacteria (ARB) in this marine environment is unknown yet. A colonization experiment was performed in this ecosystem, aiming at exploring the potential role of plastic polymers as a reservoir of antibiotic resistance. To this end, the biofilm-producing activity and the antibiotic susceptibility profiles of bacterial strains isolated from biofilms colonizing submerged polyvinylchloride and polyethylene panels were screened. The colonization experiment was carried out at two different sites of the Ross Sea, namely Road Bay and Tethys Bay. Most of bacterial isolates were able to produce biofilm; several multidrug resistances were detected in the bacterial members of biofilms associated to PVC and PE (also named as the plastisphere), as well as in the bacterial strains isolated from the surrounding water. The lowest percentage of ARB was found in the PE-associated plastisphere from the not-impacted (control) Punta Stocchino station, whereas the highest one was detected in the PVC-associated plastisphere from the Tethys Bay station. However, no selective enrichment of ARB in relation to the study sites or to either type of plastic material was observed, suggesting that resistance to antibiotics was a generalized widespread phenomenon. Resistance against to all the three classes of antibiotics assayed in this study (i.e., cell wall antibiotics, nucleic acids, and protein synthesis inhibitors) was observed. The high percentage of bacterial isolates showing resistance in remote environments like Antarctic ones, suffering increasing anthropic pressure, points out an emerging threat with a potential pathogenic risk that needs further deepening studies.
Collapse
Affiliation(s)
- Gabriella Caruso
- Institute of Polar Sciences, National Research Council, Spianata S. Raineri 86, 98122 Messina, Italy; (M.A.); (M.P.); (A.L.G.)
| | - Maurizio Azzaro
- Institute of Polar Sciences, National Research Council, Spianata S. Raineri 86, 98122 Messina, Italy; (M.A.); (M.P.); (A.L.G.)
| | - Ombretta Dell’Acqua
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genoa, Italy;
| | - Maria Papale
- Institute of Polar Sciences, National Research Council, Spianata S. Raineri 86, 98122 Messina, Italy; (M.A.); (M.P.); (A.L.G.)
| | - Angelina Lo Giudice
- Institute of Polar Sciences, National Research Council, Spianata S. Raineri 86, 98122 Messina, Italy; (M.A.); (M.P.); (A.L.G.)
- Italian Collection of Antarctic Bacteria, National Antarctic Museum (CIBAN-MNA), Viale Ferdinando Stagno d’Alcontrès 31, 98168 Messina, Italy
| | - Pasqualina Laganà
- Department of Biomedical and Dentistry Sciences and Morphological and Functional Images (BIOMORF), University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy;
| |
Collapse
|
5
|
Otur Ç, Okay S, Konuksever Ö, Duyar O, Kaya Y, Kurt-Kızıldoğan A. Comprehensive characterization and resistome analysis of Antarctic Pseudomonas migulae strain CAS19. World J Microbiol Biotechnol 2024; 40:347. [PMID: 39397126 DOI: 10.1007/s11274-024-04153-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
Although traditionally considered pristine, Antarctica faces an increasing threat of antibiotic resistance due to human intervention. Here, we obtained a bacterial isolate, the CAS19 strain, from a lake water sample from Ardley Island, Antarctica and characterized it comprehensively. The CAS19 was a psychrotrophic and neutrophilic/alkalitolerant bacterium thriving at temperatures from 15 to 33 °C and pH levels from 6.0 to 9.0. Besides the production of siderophore and indole acetic acid, it also exhibited proteolytic and lipolytic activities. It was identified as Pseudomonas migulae by multilocus (16S rRNA, gyrB, rpoB and rpoD) sequence analysis, and its genome was 6.5 Mbps in length, had 59% GC content, and contained 5,821 coding sequences. The CAS19 was resistant to several antibiotics, including trimethoprim, penicillin, vancomycin, and erythromycin, confirmed by RT-qPCR analysis, with a notable increase in dfr (63-fold), bla (461-fold), vanW (31.7-fold) and macA (24.7-fold) expressions upon antibiotic exposure. Additionally, CAS19 exhibited resistance to heavy metals with an order of Cr(III) = Cu(II) > Ni(II) > Zn(II) > Cd(II), and showed diesel fuel (5%) degradation capacity. Cold-related genes cspA_2 and cspD were overexpressed at 4 and 15 °C, consistent with the cold adaptation mechanism. In conclusion, for the first time an Antarctic P. migulae isolate has been characterized in detail, uncovering a rich resistome repertoir that might be associated with anthropogenic disturbances.
Collapse
Affiliation(s)
- Çiğdem Otur
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, 55139, Türkiye
| | - Sezer Okay
- Department of Vaccine Technology, Vaccine Institute, Hacettepe University, Ankara, 06230, Türkiye.
| | - Ömer Konuksever
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, 55139, Türkiye
| | - Oğuzhan Duyar
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, 55139, Türkiye
| | - Yılmaz Kaya
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, 55139, Türkiye
| | - Aslıhan Kurt-Kızıldoğan
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, 55139, Türkiye.
| |
Collapse
|
6
|
Zhou Z, Zhu R, Song Y, Zhang W, Sun B, Zhang Z, Yao H. Penguin-Driven Dissemination and High Enrichment of Antibiotic Resistance Genes in Lake Sediments across Antarctica. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39083437 DOI: 10.1021/acs.est.4c02732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Numerous penguins can propagate pathogens with antibiotic resistance genes (ARGs) into Antarctica. However, the effects of penguin dissemination on the lake ARGs still have received little attention via guano deposition. Here, we have profiled ARGs in ornithogenic sediments subject to penguin guano (OLS) and nonornithogenic sediments (NOLS) from 16 lakes across Antarctica. A total of 191 ARGs were detected in all sediment samples, with a much higher abundance and diversity in OLS than in NOLS. Surprisingly, highly diverse and abundant ARGs were found in the OLS with a detection frequency of >40% and an absolute abundance of (2.34 × 109)-(4.98 × 109) copies g-1, comparable to those in coastal estuarine sediments and pig farms. The strong correlations of identified resistance genes with penguin guano input amount, environmental factors, mobile genetic elements, and bacterial community, in conjunction with network and redundancy analyses, all indicated that penguins were responsible for the dissemination and high enrichment of ARGs in lake sediments via the guano deposition, which might greatly outweigh local human-activity effects. Our results revealed that ARGs could be carried into lakes across the Antarctica through penguin migration, food chains, and guano deposition, which were closely connected with the widespread pollution of ARGs at the global scale.
Collapse
Affiliation(s)
- Zeming Zhou
- Institute of Polar Environment & Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Renbin Zhu
- Institute of Polar Environment & Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Yixin Song
- Institute of Polar Environment & Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Wanying Zhang
- Institute of Polar Environment & Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Bowen Sun
- Institute of Polar Environment & Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Zulin Zhang
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, U.K
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
7
|
Segawa T, Takahashi A, Kokubun N, Ishii S. Spread of antibiotic resistance genes to Antarctica by migratory birds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171345. [PMID: 38447711 DOI: 10.1016/j.scitotenv.2024.171345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Recent studies have highlighted the presence of antibiotic resistance genes (ARGs) in Antarctica, which are typically indicative of human activity. However, these studies have concentrated in the Antarctic Peninsula region, and relatively less is known about ARG prevalence in East Antarctica, where human activity levels are lower compared to the Antarctic Peninsula. In addition, the mechanisms of ARG transmission to Antarctica through natural or anthropogenic pathways remain unclear. In this study, we analyzed the fecal samples of Adélie penguins and South polar skuas by using high-throughput sequencing and microfluidic quantitative PCR to detect potential pathogens and ARGs at their breeding colonies near Syowa Station in East Antarctica. These results revealed the presence of several potential pathogens in the fecal matter of both bird species. However, the HF183 marker, which indicates human fecal contamination, was absent in all samples, as well as seawater sampled near the breeding colonies. This suggests that the human fecal contamination was negligible in our study area. In addition to pathogens, we found a significant number of ARGs and metal resistance genes in the feces of both Adélie penguins and South polar skuas, with higher detection rates in skuas than in penguins. To better understand how these birds acquire and transmit these genes, we analyzed the migratory patterns of Adélie penguins and South polar skuas by geolocator tracking. We found that the skuas migrate to the tropical and subtropical regions of the Indian Ocean during the austral winter. On the other hand, Adélie penguins exhibited a more localized migration pattern, mainly staying within Antarctic waters. Because the Indian Ocean is considered one of the major reservoirs of ARGs, South polar skuas might be exposed to ARGs during their winter migration and transfer these genes to Antarctica.
Collapse
Affiliation(s)
- Takahiro Segawa
- Center for Life Science Research, University of Yamanashi, Shimokato, Chuo, Yamanashi 409-3898, Japan.
| | - Akinori Takahashi
- National Institute of Polar Research, Tachikawa, Tokyo, Japan; Department of Polar Science, The Graduate University for Advanced Studies, Tachikawa, Tokyo, Japan
| | - Nobuo Kokubun
- National Institute of Polar Research, Tachikawa, Tokyo, Japan; Department of Polar Science, The Graduate University for Advanced Studies, Tachikawa, Tokyo, Japan
| | - Satoshi Ishii
- Department of Soil, Water and Climate, University of Minnesota, St. Paul, MN, USA; BioTechnology Institute, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
8
|
Ren Z, Li H, Luo W. Unraveling the mystery of antibiotic resistance genes in green and red Antarctic snow. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170148. [PMID: 38246373 DOI: 10.1016/j.scitotenv.2024.170148] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
Antarctic snow is a thriving habitat for a diverse array of complex microorganisms, and can present in different colors due to algae blooms. However, the potential role of Antarctic snow as reservoirs for antibiotic resistance genes (ARGs) has not been studied. Using metagenomic sequencing, we studied ARGs in green-snow and red-snow on the Fildes Peninsula, Antarctica. Alpha and beta diversities of ARGs, as well as co-occurrence between ARGs and bacteria were assessed. The results showed that a total of 525 ARGs conferring resistance to 30 antibiotic classes were detected across the samples, with half of the ARGs presented in all samples. Green-snow exhibited a higher number of ARGs compared to red-snow. The most abundant ARGs conferring resistance to commonly used antibiotics, including disinfecting agents and antiseptics, peptide, isoniazid, MLS, fluoroquinolone, aminocoumarin, etc. Multidrug resistance genes stood out as the most diverse and abundant, with antibiotic efflux emerging as the dominant resistance mechanism. Interestingly, the composition of ARGs in green-snow markedly differed from that in red-snow, highlighting distinct ARG profiles. Beta-diversity partitioning showed a higher contribution of nestedness for ARG's variation in green-snow, while higher contribution of turnover in red-snow. Furthermore, the co-occurrence analysis between ARGs and bacteria unveiled intricate relationships, indicating that certain ARGs may have multiple potential hosts. The observed differences in co-occurrence networks between green-snow and red-snow suggested distinct host relationships between ARGs and bacteria in these colored snows. Given the increasing appearance of the colored snow around the world due to the climate change, the results shed light on the mystery and potential implication of ARGs in green and red Antarctic snow.
Collapse
Affiliation(s)
- Ze Ren
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Huirong Li
- Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, Shanghai 200136, China; Key Laboratory of Polar Ecosystem and Climate Change, Shanghai Jiao Tong University, Ministry of Education, Shanghai 200030, China; Shanghai Key Laboratory of Polar Life and Environment Sciences, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Wei Luo
- Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, Shanghai 200136, China; Key Laboratory of Polar Ecosystem and Climate Change, Shanghai Jiao Tong University, Ministry of Education, Shanghai 200030, China; Shanghai Key Laboratory of Polar Life and Environment Sciences, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
9
|
Guibert F, Espinoza K, Taboada-Blanco C, Alonso CA, Oporto R, Castillo AK, Rojo-Bezares B, López M, Sáenz Y, Pons MJ, Ruiz J. Traditional marketed meats as a reservoir of multidrug-resistant Escherichia coli. Int Microbiol 2023:10.1007/s10123-023-00445-y. [PMID: 37995017 DOI: 10.1007/s10123-023-00445-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/24/2023]
Abstract
This study aimed to analyze Escherichia coli from marketed meat samples in Peru. Sixty-six E. coli isolates were recovered from 21 meat samples (14 chicken, 7 beef), and antimicrobial resistance levels and the presence of mechanisms of antibiotic resistance, as well as clonal relationships and phylogeny of colistin-resistant isolates, were established. High levels of antimicrobial resistance were detected, with 93.9% of isolates being multi-drug resistant (MDR) and 76.2% of samples possessing colistin-resistant E. coli; of these, 6 samples from 6 chicken samples presenting mcr-1-producer E. coli. Colistin-resistant isolates were classified into 22 clonal groups, while phylogroup A (15 isolates) was the most common. Extended-spectrum β-lactamase- and pAmpC-producing E. coli were found in 18 and 8 samples respectively, with blaCTX-M-55 (28 isolates; 16 samples) and blaCIT (8 isolates; 7 samples) being the most common of each type. Additionally, blaCTX-M-15, blaCTX-M-65, blaSHV-27, blaOXA-5/10-like, blaDHA, blaEBC and narrow-spectrum blaTEM were detected. In addition, 5 blaCTX-M remained unidentified, and no sought ESBL-encoding gene was detected in other 6 ESBL-producer isolates. The tetA, tetE and tetX genes were found in tigecycline-resistant isolates. This study highlights the presence of MDR E. coli in Peruvian food-chain. The high relevance of CTX-M-55, the dissemination through the food-chain of pAmpC, as well as the high frequency of unrelated colistin-resistant isolates is reported.
Collapse
Affiliation(s)
- Fernando Guibert
- Grupo de Investigación en Dinámicas y Epidemiología de la Resistencia a Antimicrobianos - "One Health", Universidad Científica del Sur, Antigua Panamericana Sur Km 19, Villa El Salvador, 15067, Lima, Peru
| | - Kathya Espinoza
- Grupo de Investigación en Dinámicas y Epidemiología de la Resistencia a Antimicrobianos - "One Health", Universidad Científica del Sur, Antigua Panamericana Sur Km 19, Villa El Salvador, 15067, Lima, Peru
| | - Clara Taboada-Blanco
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja, Logroño, Spain
| | - Carla A Alonso
- Servicio de Análisis Clínicos, Laboratorio de Microbiología, Hospital San Pedro, Logroño, Spain
| | - Rosario Oporto
- Grupo de Investigación en Dinámicas y Epidemiología de la Resistencia a Antimicrobianos - "One Health", Universidad Científica del Sur, Antigua Panamericana Sur Km 19, Villa El Salvador, 15067, Lima, Peru
| | - Angie K Castillo
- Grupo de Investigación en Dinámicas y Epidemiología de la Resistencia a Antimicrobianos - "One Health", Universidad Científica del Sur, Antigua Panamericana Sur Km 19, Villa El Salvador, 15067, Lima, Peru
| | - Beatriz Rojo-Bezares
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja, Logroño, Spain
| | - María López
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja, Logroño, Spain
| | - Yolanda Sáenz
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja, Logroño, Spain
| | - Maria J Pons
- Grupo de Investigación en Dinámicas y Epidemiología de la Resistencia a Antimicrobianos - "One Health", Universidad Científica del Sur, Antigua Panamericana Sur Km 19, Villa El Salvador, 15067, Lima, Peru.
| | - Joaquim Ruiz
- Grupo de Investigación en Dinámicas y Epidemiología de la Resistencia a Antimicrobianos - "One Health", Universidad Científica del Sur, Antigua Panamericana Sur Km 19, Villa El Salvador, 15067, Lima, Peru.
| |
Collapse
|
10
|
Han Y, Wang H, Wu J, Hu Y, Wen H, Yang Z, Wu H. Hydrogen peroxide treatment mitigates antibiotic resistance gene and mobile genetic element propagation in mariculture sediment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 328:121652. [PMID: 37080523 DOI: 10.1016/j.envpol.2023.121652] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
Mariculture sediments have been exchange and propagation sources of antibiotic resistance genes (ARGs). However, no efficient methods have been generated to remove ARGs from sediments. Here, we explored the impact of hydrogen peroxide (H2O2) and aeration on the efficient removal of ARGs and mobile genetic elements (MGEs) in mariculture sediments. When compared with the aeration group, the ARG abundance was 3.8-32.3% lower in the H2O2 group during the first 14 days. ARG and MGE abundances were also significantly associated with reduced total bacterial population and diversity (P < 0.05). Based on partial squares path modeling, reduction of MGEs had important roles in ARG removal from H2O2 treatments, while in the aeration group, ARG reductions were mainly determined by changes in bacterial community composition. These results suggested that H2O2 treatment represent a promising method for controlling ARG abundance after dosing feed stuff and limit the spread of ARGs in aquaculture environments.
Collapse
Affiliation(s)
- Ying Han
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China; Hebei Province Key Laboratory of Deep Remediation of Heavy Metals in Water and Resource Utilization, Yanshan University, Qinhuangdao, 066004, PR China.
| | - Haodong Wang
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Jiayue Wu
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Yikai Hu
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Hexin Wen
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Zijian Yang
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Hao Wu
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China; Hebei Province Key Laboratory of Deep Remediation of Heavy Metals in Water and Resource Utilization, Yanshan University, Qinhuangdao, 066004, PR China
| |
Collapse
|
11
|
A Novel Phytogenic Formulation, EUBIO-BPSG, as a Promising One Health Approach to Replace Antibiotics and Promote Reproduction Performance in Laying Hens. Bioengineering (Basel) 2023; 10:bioengineering10030346. [PMID: 36978737 PMCID: PMC10045918 DOI: 10.3390/bioengineering10030346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Gut microbiota play a key role in health maintenance and disease pathogenesis in animals. Dietary phytochemicals are crucial factors shaping gut bacteria. Here, we investigated the function and mechanism of a phytogenic formulation, EUBIO-BPSG (BP), in laying hens. We found that BP dose-dependently improved health and egg production in 54-week-old hens. Furthermore, BP was correlated with increased fecal Lactobacillus, decreased Escherichia coli and Salmonella enterica, and reduced antibiotic resistance (AR) and antibiotic resistance genes (ARG) in chicken stools. The 16S rDNA data showed that BP increased seven genera of probiotics and reduced 13 genera of pathogens in chicken feces. In vitro co-culture experiments showed that BP at 4 µg/mL and above promoted growth of L. reuteri while large 100- and 200-fold higher doses suppressed growth of E. coli and S. enterica, respectively. Mechanistic studies indicated that L. reuteri and its supernatants antagonized growth of E. coli and S. enterica but not vice-versa. Five short-chain fatty acids and derivatives (SCFA) produced from L. reuteri directly killed both pathogens via membrane destruction. Furthermore, BP inhibited conjugation and recombination of ARG via interference with conjugation machinery and integrase activity in E. coli. Collectively, this work suggests that BP promotes host health and reproductive performance in laying hens through regulation of gut microbiota through increasing probiotics and decreasing pathogens and spreading ARG.
Collapse
|
12
|
Xiao Y, Yan F, Cui Y, Du J, Hu G, Zhai W, Liu R, Zhang Z, Fang J, Chen L, Yu X. A symbiotic bacterium of Antarctic fish reveals environmental adaptability mechanisms and biosynthetic potential towards antibacterial and cytotoxic activities. Front Microbiol 2023; 13:1085063. [PMID: 36713225 PMCID: PMC9882997 DOI: 10.3389/fmicb.2022.1085063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/14/2022] [Indexed: 01/15/2023] Open
Abstract
Antarctic microbes are important agents for evolutionary adaptation and natural resource of bioactive compounds, harboring the particular metabolic pathways to biosynthesize natural products. However, not much is known on symbiotic microbiomes of fish in the Antarctic zone. In the present study, the culture method and whole-genome sequencing were performed. Natural product analyses were carried out to determine the biosynthetic potential. We report the isolation and identification of a symbiotic bacterium Serratia myotis L7-1, that is highly adaptive and resides within Antarctic fish, Trematomus bernacchii. As revealed by genomic analyses, Antarctic strain S. myotis L7-1 possesses carbohydrate-active enzymes (CAZymes), biosynthetic gene clusters (BGCs), stress response genes, antibiotic resistant genes (ARGs), and a complete type IV secretion system which could facilitate competition and colonization in the extreme Antarctic environment. The identification of microbiome gene clusters indicates the biosynthetic potential of bioactive compounds. Based on bioactivity-guided fractionation, serranticin was purified and identified as the bioactive compound, showing significant antibacterial and antitumor activity. The serranticin gene cluster was identified and located on the chrome. Furthermore, the multidrug resistance and strong bacterial antagonism contribute competitive advantages in ecological niches. Our results highlight the existence of a symbiotic bacterium in Antarctic fish largely represented by bioactive natural products and the adaptability to survive in the fish living in Antarctic oceans.
Collapse
Affiliation(s)
- Yu Xiao
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Fangfang Yan
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Yukun Cui
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Jiangtao Du
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Guangzhao Hu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Wanying Zhai
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Rulong Liu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Zhizhen Zhang
- Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan, China
| | - Jiasong Fang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Liangbiao Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China,*Correspondence: Liangbiao Chen, ✉
| | - Xi Yu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China,Xi Yu, ✉
| |
Collapse
|
13
|
Xu C, Lu J, Shen C, Wang J, Li F. Deciphering the mechanisms shaping the plastisphere antibiotic resistome on riverine microplastics. WATER RESEARCH 2022; 225:119192. [PMID: 36206680 DOI: 10.1016/j.watres.2022.119192] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/31/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Microplastics in urban rivers provide bacterial niches and serve as dispersal vectors for antibiotic resistant genes (ARGs) dissemination, which may exacerbate risks in the aquatic systems. However, whether MPs in the river would also selectively enrich ARGs and the underlying mechanisms shaping the resistome on MPs remains largely unknown. In this study, we explored the occurrence of ARGs, bacterial communities, and mobile genetic elements (MGEs) on MPs and in waters from the Huangpu River in China. Microplastics were widely distributed in the river (1.78 ± 0.84 items/L), with overwhelming percentages of polyethylene terephthalate fibers. Although reduced ARG abundances were observed on MPs than in waters, MPs selectively enriched the ARGs resistant to Rifamycin and Vancomycin. A clear variation for ARG profiles was elucidated between water and MPs samples. Network analysis suggested that MPs created a unique niche for the genus Afipia to colonize, potentially contributing to the vertical dissemination of ARGs. Additionally, the co-occurrence between ARGs and MGEs revealed that the MPs favor the propagation of some plasmid-associated ARGs mediated by horizontal gene transfer. The null model-based stochasticity ratio and the neutral community model suggested that the ARG assembly on MPs was dominantly driven by stochastic process. The results further indicated that microbial communities and MGEs played significant roles in shaping ARG profiles and dynamics on MPs. Our findings provided new insights into the ecological processes of antibiotic resistome of the aquatic plastisphere.
Collapse
Affiliation(s)
- Chenye Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jiawei Lu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Chensi Shen
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jie Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| | - Fang Li
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
14
|
Liu Q, Wang Y, Liu X, Li S, Ren S, Gao Z, Han T, Xu Z, Zhou H. Glutaraldehyde base-cross-linked chitosan-silanol/Fe 3O 4 composite for removal of heavy metals and bacteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69439-69449. [PMID: 35567682 DOI: 10.1007/s11356-022-20673-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
We designed and synthesised a magnetic adsorbent (Fe3O4@Si-OH@CS-Glu) combining chitosan-silanol groups with glutaraldehyde as a cross-linking agent, which has improved physicochemical properties and can be used to remove multiple heavy metals and bacteria from polluted water. The adsorbent was characterised with SEM, XRD, FTIR, BET, VSM, and zeta potential. Under optimum conditions, the adsorption efficiencies of Fe3O4@Si-OH@CS-Glu for Cr6+, As5+, Hg2+, and Se6+ were as high as 90.5%, 73.5%, 91.6%, and 100% respectively. In addition, Escherichia coli (gram-negative) and Staphylococcus aureus (gram-positive) can be removed after 2-4 adsorption cycles with 2.5 mg Fe3O4@Si-OH@CS-Glu. The main adsorption mechanism of the adsorbent for heavy metals and bacteria is electrostatic adsorption. Overall, the synthesised Fe3O4@Si-OH@CS-Glu adsorbent showed high removal efficiency and adsorption capacity with a stable structure and easy separation. It has promising applications for the removal of heavy metals and bacteria from water.
Collapse
Affiliation(s)
- Qibo Liu
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, China
| | - Yonghui Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Xueli Liu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Shuang Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Shuyue Ren
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Tie Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Zhangrun Xu
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, China
| | - Huanying Zhou
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| |
Collapse
|
15
|
Zhang T, Ji Z, Li J, Yu L. Metagenomic insights into the antibiotic resistome in freshwater and seawater from an Antarctic ice-free area. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119738. [PMID: 35817298 DOI: 10.1016/j.envpol.2022.119738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The comprehensive profiles of antibiotic resistance genes (ARGs) in the Antarctic water environments and their potential health risks are not well understood. The present study characterized the bacterial community compositions and ARG profiles of freshwater (11 samples) and seawater (28 samples) around the Fildes Region (an ice-free area in Antarctica) using a shotgun metagenomic sequencing approach for the first time. There were significant differences in the compositions of the bacterial community and ARG profiles between freshwater and seawater. In the 39 water samples, 114 ARG subtypes belonging to 15 ARG types were detectable. In freshwater, the dominant ARGs were related to multidrug and rifamycin resistance. In seawater, the dominant ARGs were related to peptide, multidrug, and beta-lactam resistance. Both the bacterial community compositions and ARG profiles were significantly related to certain physicochemical properties (e.g., pH, salinity, NO3-). Procrustes analysis revealed a significant correlation between the bacterial community compositions and ARG profiles of freshwater and seawater samples. A total of 31 metagenome-assembled genomes (MAGs) carrying 35 ARG subtypes were obtained and identified. The results will contribute to a better evaluation of the ARG contamination in relation to human health in the Antarctic aquatic environments.
Collapse
Affiliation(s)
- Tao Zhang
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China.
| | - Zhongqiang Ji
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, PR China
| | - Jun Li
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Liyan Yu
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China.
| |
Collapse
|
16
|
Silverio MP, Kraychete GB, Rosado AS, Bonelli RR. Pseudomonas fluorescens Complex and Its Intrinsic, Adaptive, and Acquired Antimicrobial Resistance Mechanisms in Pristine and Human-Impacted Sites. Antibiotics (Basel) 2022; 11:antibiotics11080985. [PMID: 35892375 PMCID: PMC9331890 DOI: 10.3390/antibiotics11080985] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/16/2022] Open
Abstract
Pseudomonas spp. are ubiquitous microorganisms that exhibit intrinsic and acquired resistance to many antimicrobial agents. Pseudomonas aeruginosa is the most studied species of this genus due to its clinical importance. In contrast, the Pseudomonas fluorescens complex consists of environmental and, in some cases, pathogenic opportunistic microorganisms. The records of antimicrobial-resistant P. fluorescens are quite scattered, which hinders the recognition of patterns. This review compiles published data on antimicrobial resistance in species belonging to the P. fluorescens complex, which were identified through phylogenomic analyses. Additionally, we explored the occurrence of clinically relevant antimicrobial resistance genes in the genomes of the respective species available in the NCBI database. Isolates were organized into two categories: strains isolated from pristine sites and strains isolated from human-impacted or metal-polluted sites. Our review revealed that many reported resistant phenotypes in this complex might be related to intrinsic features, whereas some of them might be ascribed to adaptive mechanisms such as colistin resistance. Moreover, a few studies reported antimicrobial resistance genes (ARGs), mainly β-lactamases. In-silico analysis corroborated the low occurrence of transferable resistance mechanisms in this Pseudomonas complex. Both phenotypic and genotypic assays are necessary to gain insights into the evolutionary aspects of antimicrobial resistance in the P. fluorescens complex and the possible role of these ubiquitous species as reservoirs of clinically important and transmissible ARGs.
Collapse
Affiliation(s)
- Myllena Pereira Silverio
- Laboratório de Ecologia Molecular Microbiana, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
- Laboratório de Investigação em Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Gabriela Bergiante Kraychete
- Laboratório de Investigação em Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Alexandre Soares Rosado
- Laboratório de Ecologia Molecular Microbiana, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Raquel Regina Bonelli
- Laboratório de Investigação em Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
17
|
Dimov SG, Strateva T. Detection of clinically relevant antimicrobial resistance determinants in warm-blooded marine animals in Livingston Island (South Shetland Islands, Antarctica): A field-based molecular genetics study. MARINE POLLUTION BULLETIN 2022; 180:113751. [PMID: 35597002 DOI: 10.1016/j.marpolbul.2022.113751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Molecular genetic studies of stools were performed to assess the spread of some clinically relevant antimicrobial resistance determinants (ARD) in a gentoo penguin (Pygoscelis papua) and an Antarctic fur seal (Arctocephalus gazella) on Livingston Island. Glycopeptide resistance genes (vanA/vanD and vanB) were detected in both fecal samples, while the penguin's one was also mecA-positive and blaNDM-positive. Because of the remoteness and the isolation of the sampling locations, the carriage of vancomycin-resistant Enterococcus spp., methicillin-resistant Staphylococcus aureus, and NDM-producing Enterobacterales or other gram-negative bacilli suggested an ocean pollution with antibiotic resistant bacteria (ARB). Additionally, due to the type of ARD we detected, our results are alarming, and they cannot be explained only with agricultural and/or aquacultural pollution. Even though the current study is a preliminary one, it also demonstrates the potential of the field genetics analyses carried out with minimal equipment as a reliable monitoring tool for pollution with ARB.
Collapse
Affiliation(s)
- S G Dimov
- Sofia University "St. Kliment Ohridski", Faculty of Biology, Dept. of Genetics, Sofia, Bulgaria.
| | - T Strateva
- Medical University of Sofia, Faculty of Medicine, Dept. of Medical Microbiology, Sofia, Bulgaria
| |
Collapse
|
18
|
Hwengwere K, Paramel Nair H, Hughes KA, Peck LS, Clark MS, Walker CA. Antimicrobial resistance in Antarctica: is it still a pristine environment? MICROBIOME 2022; 10:71. [PMID: 35524279 PMCID: PMC9072757 DOI: 10.1186/s40168-022-01250-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/23/2022] [Indexed: 05/19/2023]
Abstract
Although the rapid spread of antimicrobial resistance (AMR), particularly in relation to clinical settings, is causing concern in many regions of the globe, remote, extreme environments, such as Antarctica, are thought to be relatively free from the negative impact of human activities. In fact, Antarctica is often perceived as the last pristine continent on Earth. Such remote regions, which are assumed to have very low levels of AMR due to limited human activity, represent potential model environments to understand the mechanisms and interactions underpinning the early stages of evolution, de novo development, acquisition and transmission of AMR. Antarctica, with its defined zones of human colonisation (centred around scientific research stations) and large populations of migratory birds and animals, also has great potential with regard to mapping and understanding the spread of early-stage zoonotic interactions. However, to date, studies of AMR in Antarctica are limited. Here, we survey the current literature focussing on the following: i) Dissection of human-introduced AMR versus naturally occurring AMR, based on the premise that multiple drug resistance and resistance to synthetic antibiotics not yet found in nature are the results of human contamination ii) The potential role of endemic wildlife in AMR spread There is clear evidence for greater concentrations of AMR around research stations, and although data show reverse zoonosis of the characteristic human gut bacteria to endemic wildlife, AMR within birds and seals appears to be very low, albeit on limited samplings. Furthermore, areas where there is little, to no, human activity still appear to be free from anthropogenically introduced AMR. However, a comprehensive assessment of AMR levels in Antarctica is virtually impossible on current data due to the wide variation in reporting standards and methodologies used and poor geographical coverage. Thus, future studies should engage directly with policymakers to promote the implementation of continent-wide AMR reporting standards. The development of such standards alongside a centralised reporting system would provide baseline data to feedback directly into wastewater treatment policies for the Antarctic Treaty Area to help preserve this relatively pristine environment. Video Abstract.
Collapse
Affiliation(s)
- K. Hwengwere
- School of Life Sciences, Faculty of Science and Engineering, Anglia Ruskin University, East Road, Cambridge, CB1 1PT UK
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA UK
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET UK
| | - H. Paramel Nair
- School of Life Sciences, Faculty of Science and Engineering, Anglia Ruskin University, East Road, Cambridge, CB1 1PT UK
| | - K. A. Hughes
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET UK
| | - L. S. Peck
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET UK
| | - M. S. Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET UK
| | - C. A. Walker
- School of Life Sciences, Faculty of Science and Engineering, Anglia Ruskin University, East Road, Cambridge, CB1 1PT UK
| |
Collapse
|
19
|
Wang Y, Ma L, He J, He Z, Wang M, Liu Z, Li Z, Wang L, Weng S, Guo C, He J. Environmental risk characteristics of bacterial antibiotic resistome in Antarctic krill. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113289. [PMID: 35144128 DOI: 10.1016/j.ecoenv.2022.113289] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Antibiotic resistance genes (ARGs) are ubiquitous in nature, especially in the current era of antibiotic abuse, and their existence is a global concern. In the present study, we discovered that Antarctic krill-related culturable bacteria are resistant to β-lactam, tetracyclines, aminoglycosides, and sulphamethoxazole/trimethoprim based on the antibiotic efflux mechanism. In addition, the co-occurrence of ARGs with insertion sequence (IS) (tnpA, IS91) and Intl1 on the isolates and the phylogenetic analysis results of the whole-genome revealed low-frequency ARG transfer events, implying the transferability of these ARGs. These findings provide an early warning for the wide assessment of Antarctic microbiota in the spread of ARGs. Our work provides novel insights into understanding ARGs in culturable host-associated microorganisms, and their ecological risks and has important implications for future risk assessments of antibiotic resistance in extreme environments.
Collapse
Affiliation(s)
- Yuanyuan Wang
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Lingbo Ma
- Key Laboratory of the East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Shanghai 116023, PR China
| | - Jian He
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Muhua Wang
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Zixuan Liu
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Zhimin Li
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Lumin Wang
- Key Laboratory of the East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Shanghai 116023, PR China
| | - Shaoping Weng
- Guangdong Provincial Key Laboratory of Marine Resources, and Coastal Engineering and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Changjun Guo
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Marine Resources, and Coastal Engineering and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China.
| | - Jianguo He
- State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Marine Resources, and Coastal Engineering and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China.
| |
Collapse
|
20
|
Zakaria NN, Convey P, Gomez-Fuentes C, Zulkharnain A, Sabri S, Shaharuddin NA, Ahmad SA. Oil Bioremediation in the Marine Environment of Antarctica: A Review and Bibliometric Keyword Cluster Analysis. Microorganisms 2021; 9:microorganisms9020419. [PMID: 33671443 PMCID: PMC7922015 DOI: 10.3390/microorganisms9020419] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
Bioremediation of hydrocarbons has received much attention in recent decades, particularly relating to fuel and other oils. While of great relevance globally, there has recently been increasing interest in hydrocarbon bioremediation in the marine environments of Antarctica. To provide an objective assessment of the research interest in this field we used VOSviewer software to analyze publication data obtained from the ScienceDirect database covering the period 1970 to the present, but with a primary focus on the years 2000–2020. A bibliometric analysis of the database allowed identification of the co-occurrence of keywords. There was an increasing trend over time for publications relating to oil bioremediation in maritime Antarctica, including both studies on marine bioremediation and of the metabolic pathways of hydrocarbon degradation. Studies of marine anaerobic degradation remain under-represented compared to those of aerobic degradation. Emerging keywords in recent years included bioprospecting, metagenomic, bioindicator, and giving insight into changing research foci, such as increasing attention to microbial diversity. The study of microbial genomes using metagenomic approaches or whole genome studies is increasing rapidly and is likely to drive emerging fields in future, including rapid expansion of bioprospecting in diverse fields of biotechnology.
Collapse
Affiliation(s)
- Nur Nadhirah Zakaria
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.N.Z.); (N.A.S.)
| | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 0ET, UK;
| | - Claudio Gomez-Fuentes
- Department of Chemical Engineering, Universidad de Magallanes, Avda, Bulnes 01855, Chile;
- Center for Research and Antarctic Environmental Monitoring (CIMAA), Universidad de Magallanes, Avda, Bulnes 01855, Chile
| | - Azham Zulkharnain
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan;
| | - Suriana Sabri
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Noor Azmi Shaharuddin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.N.Z.); (N.A.S.)
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.N.Z.); (N.A.S.)
- Center for Research and Antarctic Environmental Monitoring (CIMAA), Universidad de Magallanes, Avda, Bulnes 01855, Chile
- National Antarctic Research Centre, B303 Level 3, Block B, IPS Building, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence:
| |
Collapse
|