1
|
Han Y, Chen C, Liu W, He Y, Yin F, Chen Q. Health risks and sources of PCDD/Fs and PCBs residue in cultured crabs. Sci Rep 2024; 14:24633. [PMID: 39428418 PMCID: PMC11491457 DOI: 10.1038/s41598-024-75660-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024] Open
Abstract
The Chinese mitten crab (Eriocheir sinensis) holds significant importance as a popular aquaculture food source; however, there are concerns about its potential contamination with polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs) from both food and aquatic environment. To assess the associated health risks and identify potential sources of contamination in crabs, a comprehensive investigation was conducted, including a total of 70 samples from the crab food web. The results demonstrated that crabs predominantly exhibited elevated concentrations of PCBs and dl-PCBs, with mean concentrations of 12 207 ± 11 962 pg g-1 and 554 ± 203 pg g-1, respectively, while PCDD/Fs concentrations were comparatively lower at 20 ± 17 pg g-1. The accumulation of PCBs in crabs significantly surpassed that of PCDD/Fs. The material balance of PCDD/Fs and PCBs in the crab food web was estimated, indicating that sediments and feeds likely constitute the two primary sources of PCDD/Fs and PCBs in crabs. The monthly intake of PCDD/Fs and PCBs through crab consumption accounted for 30% of the dietary intake, which was well below the provisional tolerable monthly intake (PTMI) limit. The weekly intake of PCDD/Fs and PCBs for adults consuming one crab (100 g) does not pose health risks and the recommended weekly intake of white crabmeat and brown crabmeat is 443 g and 21 g, respectively.
Collapse
Affiliation(s)
- Ying Han
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Chunci Chen
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Wenbin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China.
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Yunchen He
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Fei Yin
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Quan Chen
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
2
|
Pizzini S, Giubilato E, Morabito E, Barbaro E, Bonetto A, Calgaro L, Feltracco M, Semenzin E, Vecchiato M, Zangrando R, Gambaro A, Marcomini A. Contaminants of emerging concern in water and sediment of the Venice Lagoon, Italy. ENVIRONMENTAL RESEARCH 2024; 249:118401. [PMID: 38331156 DOI: 10.1016/j.envres.2024.118401] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/10/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
This study investigates for the first time the contamination of water and sediment of the Venice Lagoon by twenty Contaminants of Emerging Concern (CECs): three hormones, six pharmaceutical compounds (diclofenac and five antibiotics, three of which are macrolides), nine pesticides (methiocarb, oxadiazon, metaflumizone, triallate, and five neonicotinoids), one antioxidant (BHT), and one UV filter (EHMC). Water and sediment samples were collected in seven sites in four seasons, with the aim of investigating the occurrence, distribution, and possible emission sources of the selected CECs in the studied transitional environment. The most frequently detected contaminants in water were neonicotinoid insecticides (with a frequency of quantification of single contaminants ranging from 73% to 92%), and EHMC (detected in the 77% of samples), followed by BHT (42%), diclofenac (39%), and clarithromycin (35%). In sediment the highest quantification frequencies were those of BHT (54%), estrogens (ranging from 35% to 65%), and azithromycin (46%). Although this baseline study does not highlight seasonal or spatial trends, results suggested that two of the major emission sources of CECs in the Venice Lagoon could be tributary rivers from its drainage basin and treated wastewater, due to the limited removal rates of some CECs in WWTPs. These preliminary results call for further investigations to better map priority emission sources and improve the understanding of CECs environmental behavior, with the final aim of drawing up a site-specific Watch List of CECs for the Venice Lagoon and support the design of more comprehensive monitoring plans in the future.
Collapse
Affiliation(s)
- Sarah Pizzini
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, 30172, Venice Mestre (VE), Italy; Institute for Marine Biological Resources and Biotechnology, National Research Council (CNR-IRBIM), Largo Fiera della Pesca, 2, 60125, Ancona, Italy.
| | - Elisa Giubilato
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, 30172, Venice Mestre (VE), Italy.
| | - Elisa Morabito
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, 30172, Venice Mestre (VE), Italy.
| | - Elena Barbaro
- Institute of Polar Sciences, National Research Council (CNR-ISP), Via Torino, 155, 30172, Venice Mestre (VE), Italy.
| | - Alessandro Bonetto
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, 30172, Venice Mestre (VE), Italy.
| | - Loris Calgaro
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, 30172, Venice Mestre (VE), Italy.
| | - Matteo Feltracco
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, 30172, Venice Mestre (VE), Italy.
| | - Elena Semenzin
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, 30172, Venice Mestre (VE), Italy.
| | - Marco Vecchiato
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, 30172, Venice Mestre (VE), Italy.
| | - Roberta Zangrando
- Institute of Polar Sciences, National Research Council (CNR-ISP), Via Torino, 155, 30172, Venice Mestre (VE), Italy.
| | - Andrea Gambaro
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, 30172, Venice Mestre (VE), Italy.
| | - Antonio Marcomini
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, 30172, Venice Mestre (VE), Italy.
| |
Collapse
|
3
|
Zhang J, Sun W, Shi C, Li W, Liu A, Guo J, Zheng H, Zhang J, Qi S, Qu C. Investigation of organochlorine pesticides in the Wang Lake Wetland, China: Implications for environmental processes and risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165450. [PMID: 37451441 DOI: 10.1016/j.scitotenv.2023.165450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
Wang Lake Wetland is an important habitat for many fish and migratory birds. To explore the effect of periodic hydrological changes on the transfer and ecological risk of OCPs in the multimedia system of the wetland, eight sampling sites were selected for collecting soil (SS), sediment (SD) and water, to acquire dissolved phase (DP) and suspended particulate matter (SPM) samples during low- and high-flow periods. The results indicated that OCPs are pervasive in the various media of Wang Lake Wetland, and there was a significant temporal variability in concentration of ∑23OCPs in the SPM samples. Several OCPs exist certain ecological risks to aquatic organisms, but higher level of OCPs do not always equal to higher ecological risk. The residues of OCPs are largely attributed to their historical use, but recent inputs of some of them are still non-ignorable. The relatively higher values of organic carbon normalized partition coefficient (KOC) for SPM-W (KOC(SPM-W)) were obtained, which reflected the more frequent exchange of OCPs in the SPM samples. The sediment of the Wang Lake Wetland is likely to be a sink for several OCPs with high n-octanol/water partition coefficient (KOW) (e.g., DDTs and its metabolites), and high-temperature and rainfall-driven changes may promote the migration of OCPs with low KOW to the DP.
Collapse
Affiliation(s)
- Jiawei Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Wen Sun
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi 435003, China
| | - Changhe Shi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Wenping Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Ao Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Jiahua Guo
- College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Hesong Zheng
- Huangshi City Network Lake Wetland Nature Reserve Administration, Huangshi 435200, China
| | - Jiaquan Zhang
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi 435003, China
| | - Shihua Qi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Chengkai Qu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
4
|
Baldrighi E, Pizzini S, Punzo E, Santelli A, Strafella P, Scirocco T, Manini E, Fattorini D, Vasapollo C. Multi-benthic size approach to unveil different environmental conditions in a Mediterranean harbor area (Ancona, Adriatic Sea, Italy). PeerJ 2023; 11:e15541. [PMID: 37397025 PMCID: PMC10314744 DOI: 10.7717/peerj.15541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/21/2023] [Indexed: 07/04/2023] Open
Abstract
Harbors are hubs of human activity and are subject to the continuous discharge and release of industrial, agricultural, and municipal waste and contaminants. Benthic organisms are largely known to reflect environmental conditions they live in. Despite meio- and macrofauna interacting within the benthic system, they are ecologically distinct components of the benthos and as such may not necessarily respond to environmental conditions and/or disturbances in the same way. However, in a few field studies the spatial patterns of meio- and macrofauna have been simultaneously compared. In the present study, we assess the response and patterns in the abundance, diversity, and distribution of the two benthic size classes to the different environmental conditions they live in (i.e., sediment concentrations of selected trace metals and polycyclic aromatic hydrocarbons (PAHs); organic matter contents and grain size) characterizing the Ancona Harbor (Adriatic Sea). Meio- and macrofauna provided partially similar types of information depending on the indices used (univariate measures or community structure/species composition) and the different 'response-to-stress'. The community structure (i.e., taxa composition) of both benthic size components clearly showed differences among sampling stations located from inside to outside the harbor, reflecting the marked environmental heterogeneity and disturbance typically characterizing these systems. Notwithstanding, the univariate measures (i.e., meio- and macrofauna total abundance, diversity indices and equitability) didn't show similar spatial patterns. Meiofauna were likely to be more sensitive to the effects of environmental features and contaminants than macrofauna. Overall, trace metals and PAHs affected the community composition of the two benthic components, but only the meiofauna abundance and diversity were related to the environmental variables considered (i.e., quantity and quality of organic matter). Our results pinpoint the importance of studying both meio- and macrofauna communities, which could provide greater insight into the processes affecting the investigated area and reveal different aspects of the benthic ecosystems in response to harbor conditions.
Collapse
Affiliation(s)
- Elisa Baldrighi
- Institute for Biological Resources and Marine Biotechnologies—IRBIM, National Research Council—CNR, Italy, Ancona, Marche, Italy
- Department of Biology, University of Nevada-Reno, Reno, Nevada, USA
| | - Sarah Pizzini
- Institute for Biological Resources and Marine Biotechnologies—IRBIM, National Research Council—CNR, Italy, Ancona, Marche, Italy
- Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
| | - Elisa Punzo
- Institute for Biological Resources and Marine Biotechnologies—IRBIM, National Research Council—CNR, Italy, Ancona, Marche, Italy
| | - Angela Santelli
- Institute for Biological Resources and Marine Biotechnologies—IRBIM, National Research Council—CNR, Italy, Ancona, Marche, Italy
| | - Pierluigi Strafella
- Institute for Biological Resources and Marine Biotechnologies—IRBIM, National Research Council—CNR, Italy, Ancona, Marche, Italy
| | - Tommaso Scirocco
- Institute for Biological Resources and Marine Biotechnologies—IRBIM, National Research Council—CNR, Italy, Lesina, Italy
| | - Elena Manini
- Institute for Biological Resources and Marine Biotechnologies—IRBIM, National Research Council—CNR, Italy, Ancona, Marche, Italy
| | - Daniele Fattorini
- Dipartimento di Scienze della Vita e dell’Ambiente (Disva), Università Politecnica delle Marche (Univpm), Ancona, Italy
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (Conisma), Unità di Ricerca di Ancona (Italy), Ancona, Marche, Italy
| | - Claudio Vasapollo
- Institute for Biological Resources and Marine Biotechnologies—IRBIM, National Research Council—CNR, Italy, Ancona, Marche, Italy
| |
Collapse
|
5
|
Li S, Gao H, Zhang H, Wei G, Shu Q, Li R, Jin S, Na G, Shi Y. The fate of antibiotic resistance genes in the coastal lagoon with multiple functional zones. J Environ Sci (China) 2023; 128:93-106. [PMID: 36801045 DOI: 10.1016/j.jes.2022.07.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 06/18/2023]
Abstract
Coastal lagoons provide many important services to human society, but their year-round use for aquaculture introduces large amounts of sewage. The contamination of antibiotic resistance genes (ARGs) is therefore of great concern. In this study, 50 ARGs subtypes, two integrase genes (intl1, intl2), and 16S rRNA genes were detected by high-throughput quantitative PCR, and standard curves of all target genes were prepared for quantification. The occurrence and distribution of ARGs in a typical coastal lagoon (XinCun lagoon, China) were comprehensively explored. We detected 44 and 38 subtypes of ARGs in the water and sediment, respectively, and discuss the various factors influencing the fate of ARGs in the coastal lagoon. Macrolides-lincosamides-streptogramins B was the primary ARG type, and macB was the predominant subtype. Antibiotic efflux and antibiotic inactivation were the main ARG resistance mechanisms. The XinCun lagoon was divided into eight functional zones. The ARGs showed a distinct spatial distribution owing to the influence of microbial biomass and anthropogenic activity in different functional zones. Fishing rafts, abandoned fish ponds, the town sewage zone, and mangrove wetlands provided a large quantity of ARGs to the XinCun lagoon. Nutrients and heavy metals also significantly correlated with the fate of the ARGs, especially NO2--N and Cu, which cannot be ignored. It is noteworthy that lagoon-barrier systems coupled with persistent pollutant inputs result in coastal lagoons acting as a "buffer pool" for ARGs, which can then accumulate and threaten the offshore environment.
Collapse
Affiliation(s)
- Shisheng Li
- National Marine Environmental Monsitoring Center, Dalian 116023, China; College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Hui Gao
- National Marine Environmental Monsitoring Center, Dalian 116023, China
| | - Haibo Zhang
- National Marine Environmental Monsitoring Center, Dalian 116023, China
| | - Guangke Wei
- Laboratory for coastal marine eco-environment process and carbon sink of Hainan provincet/Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya 572022, China
| | - Qin Shu
- National Marine Environmental Monsitoring Center, Dalian 116023, China; College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Ruijing Li
- National Marine Environmental Monsitoring Center, Dalian 116023, China
| | - Shuaichen Jin
- National Marine Environmental Monsitoring Center, Dalian 116023, China
| | - Guangshui Na
- Laboratory for coastal marine eco-environment process and carbon sink of Hainan provincet/Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya 572022, China; National Marine Environmental Monsitoring Center, Dalian 116023, China; College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China.
| | - Yali Shi
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.
| |
Collapse
|
6
|
McGinley J, Healy MG, Ryan PC, O'Driscoll H, Mellander PE, Morrison L, Siggins A. Impact of historical legacy pesticides on achieving legislative goals in Europe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162312. [PMID: 36805066 DOI: 10.1016/j.scitotenv.2023.162312] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Pesticides are widely used in agriculture to optimise food production. However, the movement of pesticides into water bodies negatively impacts aquatic environments. The European Union (EU) aims to make food systems fair, healthy and environmentally friendly through its current Farm to Fork strategy. As part of this strategy, the EU plans to reduce the overall use and risk of chemical pesticides by 50 % by 2030. The attainment of this target may be compromised by the prevalence of legacy pesticides arising from historical applications to land, which can persist in the environment for several decades. The current EU Farm to Fork policy overlooks the potential challenges of legacy pesticides and requirements for their remediation. In this review, the current knowledge regarding pesticide use in Europe, as well as pathways of pesticide movement to waterways, are investigated. The issues of legacy pesticides, including exceedances, are examined, and existing and emerging methods of pesticide remediation, particularly of legacy pesticides, are discussed. The fact that some legacy pesticides can be detected in water samples, more than twenty-five years after they were prohibited, highlights the need for improved EU strategies and policies aimed at targeting legacy pesticides in order to meet future targets.
Collapse
Affiliation(s)
- J McGinley
- Civil Engineering, University of Galway, Ireland; Ryan Institute, University of Galway, Ireland
| | - M G Healy
- Civil Engineering, University of Galway, Ireland; Ryan Institute, University of Galway, Ireland
| | - P C Ryan
- Discipline of Civil, Structural and Environmental Engineering, School of Engineering, University College Cork, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland
| | - Harmon O'Driscoll
- Discipline of Civil, Structural and Environmental Engineering, School of Engineering, University College Cork, Ireland
| | - P-E Mellander
- Agricultural Catchments Programme, Teagasc Environmental Research Centre, Johnstown Castle, Co. Wexford, Ireland
| | - L Morrison
- Ryan Institute, University of Galway, Ireland; Earth and Ocean Sciences, Earth and Life Sciences, School of Natural Sciences, University of Galway, Ireland
| | - A Siggins
- Ryan Institute, University of Galway, Ireland; School of Biological and Chemical Sciences, University of Galway, Ireland.
| |
Collapse
|
7
|
Soukarieh B, Hamieh M, Malak IA, Budzinski H, Jaber F. Assessment of organochlorine contamination source and ecological risk in the Litani River: polychlorinated biphenyls and organochlorinated pesticides in surface sediments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:66125-66134. [PMID: 37186181 DOI: 10.1007/s11356-023-27128-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/16/2023] [Indexed: 05/17/2023]
Abstract
In this paper, we investigate for the first time the contamination source and the ecological risk associated to organochlorinated compounds in the Litani system. For this purpose, the levels of 7 polychlorinated biphenyls (PCBs) and 13 organochlorinated pesticides (OCPs) were assessed, using a microwave-assisted extraction coupled to gas chromatography-electron capture detector (MAE/GC-ECD) method, in surficial sediments from 30 sites along the main course of the river, two major tributaries, and the Quaraoun Lake. ∑7PCBs exhibited total concentrations ranging from 0.11 to 8 ng g-1 of dry weight and are not able apparently to pose ecological risks since none of the samples showed concentration above the effects range low (ERL) guideline (22.7 ng g-1). The detected levels of OCPs in the river were significantly higher than those of PCBs; ∑13OCPs range from 0.5 to 46.5 ng g-1 of dry weight. Overall, the integrated eco-toxicological risk imposed by the organochlorine contamination in the Litani River, estimated as the mean effects range medium quotient (mERMq), is considered low with risk probability lower than 21% in all sites. The six dichlorodiphenyltrichloroethane-based pesticides (∑6DDT) contributed to more than 70% of the mERMq in 15 over the 29 included sites. Moreover, the approach of ∑6DDT/∑7PCB ratios was applied to investigate the contamination source. ∑6DDT/∑7PCB was higher than one in all samples suggesting that the organochlorine contamination result from agricultural activities set in the surrounding areas of the Litani River.
Collapse
Affiliation(s)
- Banan Soukarieh
- Laboratory for Analysis of Organic Compound (LAOC), Lebanese Atomic Energy Commission (LAEC), National Council for Scientific research CNRS, B. P. 11-8281, Riad El Solh, Beirut, 1107 2260, Lebanon
- UMR 5805 EPOC, LPTC Research Group, CNRS, 33405, Talence, France
| | - Mostafa Hamieh
- Analysis of Organic Compounds Laboratory (LACO), Faculty of Sciences, Doctoral School of Science and Technology, Lebanese University, Hadath, Beirut, Lebanon
| | - Inas Abdel Malak
- Analysis of Organic Compounds Laboratory (LACO), Faculty of Sciences, Doctoral School of Science and Technology, Lebanese University, Hadath, Beirut, Lebanon
| | - Helene Budzinski
- UMR 5805 EPOC, LPTC Research Group, CNRS, 33405, Talence, France
| | - Farouk Jaber
- Laboratory for Analysis of Organic Compound (LAOC), Lebanese Atomic Energy Commission (LAEC), National Council for Scientific research CNRS, B. P. 11-8281, Riad El Solh, Beirut, 1107 2260, Lebanon.
- Analysis of Organic Compounds Laboratory (LACO), Faculty of Sciences, Doctoral School of Science and Technology, Lebanese University, Hadath, Beirut, Lebanon.
| |
Collapse
|
8
|
Dataset of analyzes performed to determine the level and timing of selected organic pollutants' inputs in sediments of the Lake of Cavazzo (Italy). Data Brief 2022; 45:108633. [DOI: 10.1016/j.dib.2022.108633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 11/23/2022] Open
|
9
|
Pizzini S, Giuliani S, Polonia A, Piazza R, Bellucci LG, Gambaro A, Gasperini L. PAHs, PCBs, PBDEs, and OCPs trapped and remobilized in the Lake of Cavazzo (NE Italy) sediments: Temporal trends, quality, and sources in an area prone to anthropogenic and natural stressors. ENVIRONMENTAL RESEARCH 2022; 213:113573. [PMID: 35661732 DOI: 10.1016/j.envres.2022.113573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/29/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Under the present climatic emergency, the environmental quality of freshwater reservoirs is an increasingly urgent topic as its deterioration threatens humans and ecosystems. It is evident that pollution by natural and anthropogenic contaminants must be avoided or reduced. The Lake of Cavazzo (NE Italy) is a natural perialpine basin which, from the mid-20th century, has sustained several anthropogenic impacts that added to the effects of the intense regional seismicity. Starting from 2015, in response to concerns raised by local authorities, a multidisciplinary investigation of the lake floor and sub-floor was conducted, including a geophysical survey and the collection of sediment cores. Two of them were studied to detect contamination by Polycyclic Aromatic Hydrocarbons (PAHs) and specific Persistent Organic Pollutants (POPs; i.e. PolyChlorinated Biphenyls - PCBs, PolyBrominated Diphenyl Ethers - PBDEs, and OrganoChlorine Pesticides - OCPs), and to verify the link with known anthropogenic stressors. Results were interpreted in light of previous studies suggesting modified conditions after the '50s, and recognized the effects of the 1976-1977 MW 6.5 seismic sequence in resuspending sediments within the basin. Analyzed pollutants defined a potential critical situation only for few OCPs, above all 2,4'- and 4,4'-DDT isomers. In addition, PBDEs were found at concentrations exceeding those of other heavily polluted alpine lakes. Mass movements (either seismic or human induced) have likely resuspended and transferred pollutants from shallower locations to the lake depocenter, showing the potential of re-exposing contaminated layers to biomagnification processes along the lacustrine food chain. Local inputs of pollutants prevail over distributed sources, suggesting a link with local agricultural or industrial activities. Indeed, works connected to the construction of the hydroelectric power plant in the '50s might have reworked local sediments perturbing their natural accretion. Results of this work might inspire similar studies in other problematic lacustrine areas that sustain both natural and anthropogenic stressors.
Collapse
Affiliation(s)
- Sarah Pizzini
- DAIS-Ca' Foscari University of Venice, Via Torino 155, I-30172, Venice, Mestre (VE), Italy
| | | | | | - Rossano Piazza
- DAIS-Ca' Foscari University of Venice, Via Torino 155, I-30172, Venice, Mestre (VE), Italy
| | | | - Andrea Gambaro
- DAIS-Ca' Foscari University of Venice, Via Torino 155, I-30172, Venice, Mestre (VE), Italy
| | | |
Collapse
|
10
|
Method development and application to sediments for multi-residue analysis of organic contaminants using gas chromatography-tandem mass spectrometry. Anal Bioanal Chem 2022; 414:5845-5855. [DOI: 10.1007/s00216-022-04148-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/25/2022] [Accepted: 05/20/2022] [Indexed: 11/26/2022]
|
11
|
Polycyclic Aromatic Hydrocarbons and Polychlorinated Biphenyls in Seawater, Sediment and Biota of Neritic Ecosystems: Occurrence and Partition Study in Southern Ligurian Sea. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Mediterranean Sea is subjected to a high anthropic pressure, which determines direct or indirect discharges of persistent organic pollutants deriving from intensive industrial activities. These compounds could easily enter and contaminate the whole marine compartment, with possible transfers (and contamination) among water, sediment and biota. Based on the above-mentioned assumptions, in this work we studied the presence of 16 polycyclic aromatic hydrocarbons (PAHs) and 14 dioxin and non-dioxin-like polychlorinated biphenyls (PCBs) in the neritic protected marine area of the Southern Ligurian Sea, affected by the impact of human activities. The study was focused on the possible partition of micropollutants within seawater, sediment and zooplankton. Results showed that both seasonal and anthropic causes strongly affect contaminant transfer behaviors, with summertime periods more impacted by PAH and PCB contamination. Regarding the PAH contamination, low molecular weight congeners were mainly detected in the target matrices, revealing concentrations up to 1 µg/L in seawater (anthracene), 250 µg/Kg in sediments (benzo[b]fluoranthene) and 2.3 mg/Kg in carnivorous copepods. Concerning PCBs, only few congeners were detected in the matrices studied. To better understand the occurrence of preferential bioaccumulation pathways in zooplankton, partition studies were also performed in several taxa (hyperbenthic Isopoda, holoplanktonic crustacean copepods and ichthyoplankton) through the calculation of BAF values, observing that both living and feeding habits could influence the bioaccumulation process.
Collapse
|
12
|
Feltracco M, Barbaro E, Morabito E, Zangrando R, Piazza R, Barbante C, Gambaro A. Assessing glyphosate in water, marine particulate matter, and sediments in the Lagoon of Venice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:16383-16391. [PMID: 34651274 PMCID: PMC8827352 DOI: 10.1007/s11356-021-16957-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/05/2021] [Indexed: 05/11/2023]
Abstract
Lagoon water, suspended particulate matter, and sediment samples from seven sites at Lagoon of Venice were collected from 2019 to 2021 in order to study the presence of the herbicide glyphosate (N-(phosphonomethyl)glycine), among the most widely used agricultural chemicals worldwide, but its occurrence in lagoon water environment has not been deeply investigated. The sites were selected considering a supposed diversity of inputs and of pollution levels. An analytical method based on ion chromatography coupled with tandem mass spectrometry was optimized and validated for lagoon water, marine particulate matter, and sediment samples. Maximum concentrations of glyphosate were 260 and 7 ng L-1 for lagoon water and suspended particulate matter, respectively, and 15 ng g-1 for sediment, with some spatial and temporal fluctuations. Our results demonstrate that glyphosate content in the Venice Lagoon mainly depends on external forcing from river inlets and agricultural lagoon activities.
Collapse
Affiliation(s)
- Matteo Feltracco
- Institute of Polar Sciences, National Research Council (CNR-ISP), Via Torino, 155 - 30172, Venice Mestre, VE, Italy.
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155 - 30172, Venice Mestre, VE, Italy.
| | - Elena Barbaro
- Institute of Polar Sciences, National Research Council (CNR-ISP), Via Torino, 155 - 30172, Venice Mestre, VE, Italy
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155 - 30172, Venice Mestre, VE, Italy
| | - Elisa Morabito
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155 - 30172, Venice Mestre, VE, Italy
| | - Roberta Zangrando
- Institute of Polar Sciences, National Research Council (CNR-ISP), Via Torino, 155 - 30172, Venice Mestre, VE, Italy
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155 - 30172, Venice Mestre, VE, Italy
| | - Rossano Piazza
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155 - 30172, Venice Mestre, VE, Italy
| | - Carlo Barbante
- Institute of Polar Sciences, National Research Council (CNR-ISP), Via Torino, 155 - 30172, Venice Mestre, VE, Italy
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155 - 30172, Venice Mestre, VE, Italy
| | - Andrea Gambaro
- Institute of Polar Sciences, National Research Council (CNR-ISP), Via Torino, 155 - 30172, Venice Mestre, VE, Italy
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155 - 30172, Venice Mestre, VE, Italy
| |
Collapse
|