1
|
Chanchpara A, Sahoo TP, Panja AK, Maheshwari N, Mehta G, Haldar S, Madhava AK, Saravaia HT. Chemo-metric appraisal on the distribution of polycyclic aromatic hydrocarbons in marine environment of Alang Ship Breaking Yard, India. MARINE POLLUTION BULLETIN 2025; 217:118099. [PMID: 40349613 DOI: 10.1016/j.marpolbul.2025.118099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 03/17/2025] [Accepted: 05/02/2025] [Indexed: 05/14/2025]
Abstract
This study investigated the comparative assessment of 15 priority USEPA polycyclic aromatic hydrocarbons (PAHs) in marine sediments and seawater at the world's largest shipbreaking yard Alang, Gujarat. The ∑PAHs concentration was found in between 0.30 and 31.35 μg/g in marine sediment and 0.02 to 3.22 μg/L found in seawater among all sampling spots. Furthermore among all PAHs fluoranthene showed a higher concentration followed by pyrene, indeno [1,2,3-cd]pyrene, and benz[a]anthracene in marine sediment. Four-ring compounds present higher compared to 2-3 rings, 5 rings, and 6 rings of PAHs from selected study areas. Diagnostic ratios were also applied for the possible sources of identification and present study area contaminated by both pyrogenic and petrogenic sources. The analysed data were also used for correlation study with seawater physicochemical parameters to identify positive correlations for their occurrences. The Nap, Flu, Flt, Pyr and BaA having the strong positive correlation with the seawater quality. Dibenz[a,h]anthracene showing zero coefficient with measured sea water quality. Hierarchical cluster analysis indicates, the control sampling spot is significantly different from other spots and this pattern was found in both sediments and water.
Collapse
Affiliation(s)
- Amit Chanchpara
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar 364 002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad 201 002, Uttar Pradesh, India
| | - Tarini Prasad Sahoo
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar 364 002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad 201 002, Uttar Pradesh, India
| | - Atanu Kumar Panja
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar 364 002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad 201 002, Uttar Pradesh, India
| | - Neeta Maheshwari
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar 364 002, Gujarat, India
| | - Gauravkumar Mehta
- Environment Cell, Gujarat Maritime Board, Gandhinagar 382 010, Gujarat, India
| | - Soumya Haldar
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar 364 002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad 201 002, Uttar Pradesh, India.
| | - Anil Kumar Madhava
- Department of Rural and Entrepreneurship Development, National Institute of Technical Teachers Training and Research, Chennai 600113, Tamil Nadu, India.
| | - Hitesh Thakarshibhai Saravaia
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar 364 002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad 201 002, Uttar Pradesh, India.
| |
Collapse
|
2
|
Deng X, Mao L, Peng M, Cai Y, Wang T, Luo Z, Kumar A. Polycyclic aromatic hydrocarbons in coastal rivers in Jiangsu Province, China: Spatial distribution, source apportionment and human impacts. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133576. [PMID: 38278070 DOI: 10.1016/j.jhazmat.2024.133576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
The ocean is the ultimate sink for all pollutants, rivers are important channels for land-based pollutants to enter the oceans. Riverine transport of polycyclic aromatic hydrocarbons (PAHs) to coastal seas in China poses environmental threats. This study examined the spatial and temporal distribution of PAHs in coastal rivers in Yancheng City in Jiangsu Province of China, with the aim of identifying their likely sources, concentrations, and influencing factors. Surface sediments were taken from the Xinyanggang River (XYR) and the Sheyang River (SYR). The concentrations of Ʃ16PAHs in river sediments were measured on average 477.05 ng/g dry weight (dw), with values varying from 2.18 to 6351.42 ng/g, indicating a moderate pollution level, with a dominance of high molecular weight (HMW) PAHs. The XYR exhibited significantly higher PAHs concentrations compared to the SYR. The key sources of PAHs were vehicle emissions (47.87%), coal and natural gas combustion (35.07%). Geographically weighted regression and redundancy analysis linked PAHs pollution to distinct land use patterns and socioeconomic indicators, highlighting urban land as the major contributor, driven by high urbanization and industrialization (70.91%). In XYR, industrial activities and transport emissions were major contributors, while in SYR, agricultural activities predominantly influenced PAHs pollution. Urgent mitigation strategies are needed to reduce PAHs pollution in river sediments, mitigating ecological and human risks associated with these contaminants.
Collapse
Affiliation(s)
- Xiaoqian Deng
- School of Marine Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Longjiang Mao
- School of Marine Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Mo Peng
- Jiangsu Provincial Environmental Monitoring Center, Nanjing 210019, China
| | - Yuqi Cai
- School of Marine Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Ting Wang
- School of Marine Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Zhuhua Luo
- School of Marine Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China; Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Amit Kumar
- School of Hydrology and Water resources, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
3
|
Fu L, Sun Y, Li H, Chen Y, Du H, Liang SX. Distribution, sources, and ecological risk assessment of polycyclic aromatic hydrocarbons in sediments from Baiyang Lake, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1035. [PMID: 37572161 DOI: 10.1007/s10661-023-11607-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/14/2023] [Indexed: 08/14/2023]
Abstract
The issue of polycyclic aromatic hydrocarbons (PAHs) has been an environmental focus worldwide. In this study, the contents, sources, and ecological risks of sixteen PAHs in the sediment of Baiyang Lake were estimated, and a list of priority pollutants was established. The total PAH contents ranged from 114 to 1010 ng·g-1. The composition of PAHs indicated that 4- to 6-ring PAHs predominated in the sediment samples. The diagnostic ratio analysis showed that combustion sources were predominant for PAHs in Baiyang Lake. Specifically, the positive matrix factorization model indicated that diesel engine emissions, gasoline engine emissions, wood combustion sources, and coal combustion sources contributed 22, 32, 24, and 22% of ∑PAHs, respectively. Based on the sediment quality guidelines, mean effects range median quotient, ecological risk quotient, and toxicity equivalent quotient methods, the comprehensive assessment results of PAHs in Baiyang Lake sediments indicated that the ecological risks were at medium and low levels. The priority pollutant list showed that benzo[b]fluoranthene and benzo[a]pyrene were the highest-priority pollutants and thus should be given more attention.
Collapse
Affiliation(s)
- Liguo Fu
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, People's Republic of China
| | - Yaxue Sun
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, People's Republic of China
| | - Hongbo Li
- Baiyangdian Basin Eco-environmental Support Center, Shijiazhuang, 050056, China
| | - Yan Chen
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, People's Republic of China
| | - Hui Du
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, People's Republic of China
| | - Shu-Xuan Liang
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, People's Republic of China.
- Institute of Life Science and Green Development, Hebei University, Baoding, 071002, People's Republic of China.
| |
Collapse
|
4
|
Wang Q, Xu H, Yin J, Du S, Liu C, Li JY. Significance of the great protection of the Yangtze River: Riverine input contributes primarily to the presence of PAHs and HMs in its estuary and the adjacent sea. MARINE POLLUTION BULLETIN 2023; 186:114366. [PMID: 36436271 DOI: 10.1016/j.marpolbul.2022.114366] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
The Yangtze River protection strategies are expected to improve the water quality and ecological function of the Yangtze River Estuary (YRE). The concentrations of 16 polycyclic aromatic hydrocarbons (PAHs) and 6 heavy metals (HMs) in the YRE were measured and the riverine fluxes were calculated subsequently. In particular, the concentrations of low molecular weight PAHs (LMW-PAHs), arsenic (As) and mercury (Hg) in seawater decreased over time, while those of other studied pollutants did not change a lot. In sediments, the concentration changes for all the pollutants were insignificant. For the present pollutants, the river input is the dominant source, and the flux decreased after the protection. The contribution of the discharge from wastewater treatment plants (WWTPs) was quantified. Its influence cannot be ignored. The seafood quality remained stable and the risk via diet was insignificant. Long-term monitoring is necessary, and the positive impact of the Protection Strategy is gradually emerging.
Collapse
Affiliation(s)
- Qian Wang
- College of Marine Ecology and Environment, Shanghai Ocean University, Pudong, Shanghai, China
| | - Hanwen Xu
- College of Marine Ecology and Environment, Shanghai Ocean University, Pudong, Shanghai, China
| | - Jie Yin
- College of Marine Ecology and Environment, Shanghai Ocean University, Pudong, Shanghai, China
| | - Shengnan Du
- College of Marine Ecology and Environment, Shanghai Ocean University, Pudong, Shanghai, China
| | - Caicai Liu
- Key Laboratory of Marine Ecological Monitoring and Restoration Technologies, The Ministry of Nature Resources, Pudong, Shanghai, China
| | - Juan-Ying Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Pudong, Shanghai, China.
| |
Collapse
|
5
|
Li JM, Yao CL, Lin WH, Surampalli RY, Zhang TC, Tseng TY, Kao CM. Toxicity determination, pollution source delineation, and microbial diversity evaluation of PAHs-contaminated sediments for an urban river. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10810. [PMID: 36433735 DOI: 10.1002/wer.10810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/22/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
The Feng-Sang River is a metropolitan river in Kaohsiung City, Taiwan. In this study, Feng-Sang River sediments were analyzed to investigate the distributions and sources of polycyclic aromatic hydrocarbons (PAHs). The Sediment Quality Guidelines (SQGs), potentially carcinogenic PAHs (TEQcarc), and toxic equivalence quotient (TEQ) were applied to evaluate influences of PAHs on ecosystems and microbial diversities. Results indicate that PAHs concentrations varied between seasons and locations. The concentrations of ∑16PAHs ranged from 73.6 to 603.8 ng/kg in dry seasons and from 2.3 to 199.3 ng/kg in wet seasons. This could be because of the flushing effect during wet seasons, which caused the movement and dilution of the PAH-contaminated sediments. Diagnostic ratio analysis infers that high PAHs levels were generated by combustion processes and vehicle traffic, and results from multivariate descriptive statistical analysis also demonstrate that the vehicular traffic pollution could be the major emission source of PAHs contamination. Comparisons of PAHs with SQGs indicate that PAHs concentrations in sediment were below the effects range low (ERL) values, and thus, the immediate threat to organisms might not be significant. The diagnostic ratio analyses are effective methods for PAH source appointment. The metagenomic assay results imply that sediments contained essential microbial species with eminent diversity. The detected PAH-degrading bacteria (Desulfatiglans, Dechloromonas, Sphingomonas, Methylobacterium, Rhodobacter, Clostridium, and Exiguobacterium) played a key role in PAHs biotransformation, and Dechloromonas and Rhodobacter had a higher relative abundance. Results of microbial diversity analyses indicate that the contaminated environment induced the changes of governing microbial groups in sediments. PRACTITIONER POINTS: Diagnostic ratio analyses are effective methods for PAHs source appointment. Microbial composition in sediments are highly affected by anthropogenic pollution. Combustion and vehicle traffic contribute to urban river sediments pollution by PAHs. Dechloromonas and Rhodobacter are dominant PAHs-degrading bacteria in sediments.
Collapse
Affiliation(s)
- Jin-Min Li
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chao-Ling Yao
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Han Lin
- School of Environment, Tsinghua University, Beijing, China
| | - Rao Y Surampalli
- Global Institute for Energy, Environment and Sustainability, Lenexa, Kansas, USA
| | - Tian C Zhang
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Omaha, Nebraska, USA
| | - Tsung-Yu Tseng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Ming Kao
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
6
|
Li X, Lu Y, Shi Y, Wang P, Cao X, Cui H, Zhang M, Du D. Effects of urbanization on the distribution of polycyclic aromatic hydrocarbons in China's estuarine rivers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 301:119001. [PMID: 35176410 DOI: 10.1016/j.envpol.2022.119001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/16/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Estuarine rivers are the primary medium for transporting pollutants from human activities to the ocean. Polycyclic aromatic hydrocarbons (PAHs) have substantial toxicity and pose a significant risk to ecosystem and human health. However, the influences of urbanization on their distribution, particularly in China where urbanization is occurring rapidly, remain unclear. This study took three coastal economic circles of China as research areas, and investigated PAHs (16 species) in the estuarine river water. 95.9% of the sampling sites demonstrated moderate PAHs pollution and moderate ecological risk. Coal and petroleum combustion was the primary source of PAHs, but the source composition varied among the regions. Air pollution caused by energy emissions, particularly carbon emissions, has a critical and differential effect on PAHs distribution and deposition. With the increasing use of clean energy, PAHs emissions have been gradually reduced, which provides an effective option for PAHs reduction in a rapidly urbanizing coastal region.
Collapse
Affiliation(s)
- Xiaoqian Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yonglong Lu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China.
| | - Yajuan Shi
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pei Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China
| | - Xianghui Cao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Haotian Cui
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Di Du
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Sino-Danish Center for Education and Research, Beijing, 10019, China
| |
Collapse
|
7
|
Zeng X, Liu Y, Xu L, Hu Q, Hu J, Yu Z. Co-occurrence and potential ecological risk of parent and oxygenated polycyclic aromatic hydrocarbons in coastal sediments of the Taiwan Strait. MARINE POLLUTION BULLETIN 2021; 173:113093. [PMID: 34744012 DOI: 10.1016/j.marpolbul.2021.113093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Thirty-two surface sediment samples, collected from the Taiwan Strait (TWS), were investigated for the occurrence, composition profile, and spatial distribution of polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAHs (OPAHs). PAHs were ubiquity in the TWS with a total concentration (∑PAHs, excluding naphthalene due to its high volatility) ranging from 17.8-213 ng g-1. Benzo[b] fluoranthene, fluoranthene, phenanthrene, and pyrene were the predominant PAHs. Also, eight OPAHs were detected, having a cumulative concentration range (∑OPAHs) of 10.5-118 ng g-1, predominated by anthraquinone and 6H-Benzo[c,d]Pyren-6-one. Higher concentrations of ∑PAHs and ∑OPAHs were detected at sampling sites adjacent to the mainland and in the northwest part of the TWS. The results suggested important continental input, and particle sedimentation under the specific hydrodynamic conditions of the region. Based on the measured concentrations and sediment quality guidelines, PAHs had a limited ecological impact on the area.
Collapse
Affiliation(s)
- Xiangying Zeng
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China.
| | - Yi Liu
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Xu
- Jiangxi Academy of Eco-environmental Sciences and Planning, Nanchang 330039, China
| | - Qiongpu Hu
- Hangzhou PuYu Technology Development Co., Ltd, Hangzhou 311305, China
| | - Jianfang Hu
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| |
Collapse
|