1
|
Quintanilla-Ahumada D, Quijón PA, Jahnsen-Guzmán N, Zúñiga-Cueto N, Miranda-Benabarre C, Lynn KD, Pulgar J, Palma J, Manríquez PH, Duarte C. The impacts of artificial light at night (ALAN) spectral composition on key behavioral traits of a sandy beach isopod. MARINE POLLUTION BULLETIN 2024; 208:116924. [PMID: 39278176 DOI: 10.1016/j.marpolbul.2024.116924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/23/2024] [Accepted: 08/30/2024] [Indexed: 09/17/2024]
Abstract
Artificial light at night (ALAN) is a widespread human-induced disturbance, whose effects have been documented in many ecosystems. However, limited attention has been given to the source of the lights behind ALAN, so this study examined three of them: High-Pressure Sodium (HPS) lamps and warm and cool white Light-Emitting Diodes (LEDs). Laboratory experiments compared the effects of each type of light to natural day/night conditions, upon the activity, feeding behavior and growth of the isopod Tylos spinulosus. Tanks equipped with actographs monitored locomotor activity, while separate tanks were utilized to assess food consumption and growth under natural and ALAN conditions. Our results show that all ALAN sources disrupt and reduce isopods' activity and feeding behavior, with cool and warm LEDs being the most severe and mildest, respectively. Instead, ALAN had only minor effects on isopod growth. Our findings suggest that warm LEDs may be preferable for ALAN mitigation purposes.
Collapse
Affiliation(s)
- Diego Quintanilla-Ahumada
- Programa de Doctorado en Medicina de la Conservación, Universidad Andrés Bello, Santiago, Chile; Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Coastal Ecology Laboratory, Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Pedro A Quijón
- Coastal Ecology Laboratory, Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Nicole Jahnsen-Guzmán
- Programa de Doctorado en Medicina de la Conservación, Universidad Andrés Bello, Santiago, Chile; Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Nicol Zúñiga-Cueto
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Cristian Miranda-Benabarre
- Programa de Doctorado en Medicina de la Conservación, Universidad Andrés Bello, Santiago, Chile; Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - K Devon Lynn
- Coastal Ecology Laboratory, Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
| | - José Pulgar
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Centro de Investigaciones Marinas de Quintay (CIMARQ), Chile
| | | | - Patricio H Manríquez
- Laboratorio de Ecología y Conducta de la Ontogenia Temprana (LECOT), Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile
| | - Cristian Duarte
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Centro de Investigaciones Marinas de Quintay (CIMARQ), Chile.
| |
Collapse
|
2
|
Quintanilla-Ahumada D, Quijón PA, Jahnsen-Guzmán N, Lynn KD, Pulgar J, Palma J, Manríquez PH, Duarte C. Splitting light pollution: Wavelength effects on the activity of two sandy beach species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124317. [PMID: 38844041 DOI: 10.1016/j.envpol.2024.124317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/14/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Artificial Light at Night (ALAN) threatens to disrupt most natural habitats and species, including those in coastal settings, where a growing number of studies have identified ALAN impacts. A careful examination of the light properties behind those impacts is important to better understand and manage the effects of this stressor. This study focused on ALAN monochromatic wavelengths and examined which types of light spectra altered the natural activity of two prominent coastal species from the Pacific southeast: the talitroid amphipod Orchestoidea tuberculata and the oniscoid isopod Tylos spinulosus. We compared the natural daylight/night activity of these organisms with the one they exhibit when exposed to five different ALAN wavelengths: lights in the violet, blue, green, amber, and red spectra. Our working hypothesis was that ALAN alters these species' activity at night, but the magnitude of such impact differs depending on light wavelengths. Measurements of activity over 24 h cycles for five consecutive days and in three separate experiments confirmed a natural circadian activity pattern in both species, with strong activity at night (∼90% of probability) and barely any activity during daylight. However, when exposed to ALAN, activity declined significantly in both species under all light wavelengths. Interestingly, amphipods exhibited moderate activity (∼40% of probability) when exposed to red lights at night, whereas isopods shifted some of their activity to daylight hours in two of the experiments when exposed to blue or amber lights, suggesting a possible alteration in this species circadian rhythm. Altogether, our results were consistent with our working hypothesis, and suggest that ALAN reduces night activity, and some wavelengths have differential effects on each species. Differences between amphipods and isopods are likely related to their distinct adaptations to natural low-light habitat conditions, and therefore distinct sensitivity to ALAN.
Collapse
Affiliation(s)
- Diego Quintanilla-Ahumada
- Programa de Doctorado en Medicina de la Conservación, Universidad Andrés Bello, Santiago, Chile; Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Pedro A Quijón
- Coastal Ecology Laboratory, Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Nicole Jahnsen-Guzmán
- Programa de Doctorado en Medicina de la Conservación, Universidad Andrés Bello, Santiago, Chile; Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - K Devon Lynn
- Coastal Ecology Laboratory, Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
| | - José Pulgar
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Centro de Investigaciones Marinas de Quintay (CIMARQ), Chile
| | | | - Patricio H Manríquez
- Laboratorio de Ecología y Conducta de la Ontogenia Temprana (LECOT), Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile
| | - Cristian Duarte
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Centro de Investigaciones Marinas de Quintay (CIMARQ), Chile.
| |
Collapse
|
3
|
Lynn KD, Quintanilla-Ahumada D, Duarte C, Quijón PA. Artificial light at night alters the feeding activity and two molecular indicators in the plumose sea anemone Metridium senile (L.). MARINE POLLUTION BULLETIN 2024; 202:116352. [PMID: 38604080 DOI: 10.1016/j.marpolbul.2024.116352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
Artificial light at night (ALAN) is becoming a widespread stressor in coastal ecosystems, affecting species that rely on natural day/night cycles. Yet, studies examining ALAN effects remain limited, particularly in the case of sessile species. This study assessed the effects of ALAN upon the feeding activity and two molecular indicators in the widespread plumose sea anemone Metridium senile. Anemones were exposed to either natural day/night or ALAN conditions to monitor feeding activity, and tissue samples were collected to quantify proteins and superoxide dismutase (SOD) enzyme concentrations. In day/night conditions, sea anemones showed a circadian rhythm of activity in which feeding occurs primarily at night. This rhythm was altered by ALAN, which turned it into a reduced and more uniform pattern of feeding. Consistently, proteins and SOD concentrations were significantly lower in anemones exposed to ALAN, suggesting that ALAN can be harmful to sea anemones and potentially other marine sessile species.
Collapse
Affiliation(s)
- K Devon Lynn
- Coastal Ecology Laboratory, Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Diego Quintanilla-Ahumada
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Programa de Doctorado en Medicina de la Conservación, Universidad Andrés Bello, Santiago, Chile
| | - Cristian Duarte
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Pedro A Quijón
- Coastal Ecology Laboratory, Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada.
| |
Collapse
|
4
|
Fobert EK, Miller CR, Swearer SE, Mayer-Pinto M. The impacts of artificial light at night on the ecology of temperate and tropical reefs. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220362. [PMID: 37899007 PMCID: PMC10613546 DOI: 10.1098/rstb.2022.0362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/19/2023] [Indexed: 10/31/2023] Open
Abstract
Despite 22% of the world's coastal regions experiencing some degree of light pollution, and biologically important artificial light at night (ALAN) reaching large portions of the seafloor (greater than 75%) near coastal developments, the impacts of ALAN on temperate and tropical reefs are still relatively unknown. Because many reef species have evolved in response to low-light nocturnal environments, consistent daily, lunar, and seasonal light cycles, and distinct light spectra, these impacts are likely to be profound. Recent studies have found ALAN can decrease reproductive success of fishes, alter predation rates of invertebrates and fishes, and impact the physiology and biochemistry of reef-building corals. In this paper, we integrate knowledge of the role of natural light in temperate and tropical reefs with a synthesis of the current literature on the impacts of ALAN on reef organisms to explore potential changes at the system level in reef communities exposed to ALAN. Specifically, we identify the direct impacts of ALAN on individual organisms and flow on effects for reef communities, and present potential scenarios where ALAN could significantly alter system-level dynamics, possibly even creating novel ecosystems. Lastly, we highlight large knowledge gaps in our understanding of the overall impact of ALAN on reef systems. This article is part of the theme issue 'Light pollution in complex ecological systems'.
Collapse
Affiliation(s)
- Emily K. Fobert
- School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Colleen R. Miller
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Stephen E. Swearer
- National Centre for Coasts and Climate (NCCC), School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Mariana Mayer-Pinto
- Centre for Marine Science and Innovation, Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Science, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
5
|
Tidau S, Brough FT, Gimenez L, Jenkins SR, Davies TW. Impacts of artificial light at night on the early life history of two ecosystem engineers. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220363. [PMID: 37899009 PMCID: PMC10613533 DOI: 10.1098/rstb.2022.0363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/26/2023] [Indexed: 10/31/2023] Open
Abstract
Sessile marine invertebrates play a vital role as ecosystem engineers and in benthic-pelagic coupling. Most benthic fauna develop through larval stages and the importance of natural light cycles for larval biology and ecology is long-established. Natural light-dark cycles regulate two of the largest ocean-scale processes that are fundamental to larvae's life cycle: the timing of broadcast spawning for successful fertilization and diel vertical migration for foraging and predator avoidance. Given the reliance on light and the ecological role of larvae, surprisingly little is known about the impacts of artificial light at night (ALAN) on the early life history of habitat-forming species. We quantified ALAN impacts on larval performance (survival, growth, development) of two cosmopolitan ecosystem engineers in temperate marine ecosystems, the mussel Mytilus edulis and the barnacle Austrominius modestus. Higher ALAN irradiance reduced survival in both species (57% and 13%, respectively). ALAN effects on development and growth were small overall, and different between species, time-points and parentage. Our results show that ALAN adversely affects larval survival and reiterates the importance of paternal influence on offspring performance. ALAN impacts on the early life stages of ecosystem engineering species have implications not only for population viability but also the ecological communities that these species support. This article is part of the theme issue 'Light pollution in complex ecological systems'.
Collapse
Affiliation(s)
- Svenja Tidau
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Fraser T. Brough
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Luis Gimenez
- School of Ocean Sciences, Bangor University, Menai Bridge LL59 5AB, UK
| | - Stuart R. Jenkins
- School of Ocean Sciences, Bangor University, Menai Bridge LL59 5AB, UK
| | - Thomas W. Davies
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| |
Collapse
|
6
|
Pulgar J, Manríquez PH, Widdicombe S, García-Huidobro R, Quijón PA, Carter M, Aldana M, Quintanilla-Ahumada D, Duarte C. Artificial Light at Night (ALAN) causes size-dependent effects on intertidal fish decision-making. MARINE POLLUTION BULLETIN 2023; 193:115190. [PMID: 37336043 DOI: 10.1016/j.marpolbul.2023.115190] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
Artificial Light at Night (ALAN) alters cycles of day and night, potentially modifying species' behavior. We assessed whether exposure to ALAN influences decision-making (directional swimming) in an intertidal rockfish (Girella laevisifrons) from the Southeastern Pacific. Using a Y-maze, we examined if exposure to ALAN or natural day/night conditions for one week affected the number of visits and time spent in three Y-maze compartments: dark and lit arms ("safe" and "risky" conditions, respectively) and a neutral "non-decision" area. The results showed that fish maintained in natural day/night conditions visited and spent more time in the dark arm, regardless of size. Instead, fish exposed to ALAN visited and spent more time in the non-decision area and their response was size-dependent. Hence, prior ALAN exposure seemed to disorient or reduce the ability of rock fish to choose dark conditions, deemed the safest for small fish facing predators or other potential threats.
Collapse
Affiliation(s)
- José Pulgar
- Departamento de Ecología & Biodiversidad, Facultad Ciencias de la Vida, Universidad Andrés Bello, Av. República 440, Santiago, Chile; Centro de Investigaciones Marinas de Quintay (CIMARQ), Chile.
| | - Patricio H Manríquez
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile; Laboratorio de Ecología y Conducta de la Ontogenia Temprana (LECOT), Coquimbo, Chile
| | - Stephen Widdicombe
- Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth PL1 3DH, UK
| | - Roberto García-Huidobro
- Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Facultad de Ciencias, Universidad Santo Tomás, Ejército 146, Santiago, Chile
| | - Pedro A Quijón
- Department of Biology, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
| | - Mauricio Carter
- Departamento de Ecología & Biodiversidad, Facultad Ciencias de la Vida, Universidad Andrés Bello, Av. República 440, Santiago, Chile
| | - Marcela Aldana
- Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Facultad de Ciencias, Universidad Santo Tomás, Ejército 146, Santiago, Chile
| | - Diego Quintanilla-Ahumada
- Departamento de Ecología & Biodiversidad, Facultad Ciencias de la Vida, Universidad Andrés Bello, Av. República 440, Santiago, Chile
| | - Cristian Duarte
- Departamento de Ecología & Biodiversidad, Facultad Ciencias de la Vida, Universidad Andrés Bello, Av. República 440, Santiago, Chile; Centro de Investigaciones Marinas de Quintay (CIMARQ), Chile
| |
Collapse
|
7
|
Botté A, Payton L, Tran D. Artificial light at night at environmental intensities disrupts daily rhythm of the oyster Crassostrea gigas. MARINE POLLUTION BULLETIN 2023; 191:114850. [PMID: 37019034 DOI: 10.1016/j.marpolbul.2023.114850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 05/13/2023]
Abstract
Artificial Light At Night (ALAN) masks the natural light cycles and thus can disturb the synchronization of organisms' biological rhythms with their environment. Although coastlines are highly exposed to this growing threat, studies concerning the impacts of ALAN on coastal organisms remain scarce. In this study, we investigated the ALAN exposure effects at environmentally realistic intensities (0.1, 1, 10, 25 lx) on the oyster Crassostrea gigas, a sessile bivalve subject to light pollution on shores. We focused on the effects on oyster's daily rhythm at behavioral and molecular levels. Our results showed that ALAN disrupts the oyster's daily rhythm by increasing valve activity and annihilating day / night differences of expression of circadian clock and clock-associated genes. ALAN effects occur starting from 0.1 lx, in the range of artificial skyglow illuminances. We concluded that realistic ALAN exposure affects oysters' biological rhythm, which could lead to severe physiological and ecological consequences.
Collapse
Affiliation(s)
- Audrey Botté
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33120 Arcachon, France
| | - Laura Payton
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33120 Arcachon, France
| | - Damien Tran
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33120 Arcachon, France.
| |
Collapse
|
8
|
Lynn KD, Quintanilla-Ahumada D, Duarte C, Quijón PA. Hemocyanin as a biological indicator of artificial light at night stress in sandy beach amphipods. MARINE POLLUTION BULLETIN 2022; 184:114147. [PMID: 36152494 DOI: 10.1016/j.marpolbul.2022.114147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
The influence of artificial light at night (ALAN) is becoming evident in marine sandy beaches. These habitats are dominated by species reliant on natural daylight/night regimes, making the identification of biological indicators a priority. We assessed the applicability of hemocyanin, an oxygen-transport protein in the hemolymph of many invertebrates, as an indicator of ALAN-related stress. Unlike total proteins, hemocyanins signal metabolic function and stress, so we expected them to increase in response to ALAN. We adapted spectrophotometry protocols to describe spatial variation in hemocyanins and total proteins in four populations of the talitroid amphipod Americorchestia longicornis. Then, a two-week experiment tested for changes in response to ALAN. Hemocyanin levels increased by 17 % and 40 % with respect to experimental controls after 7 and 14 d, respectively, and were higher than any measurements conducted in the field. These results suggest good prospects for hemocyanin as an indicator of ALAN effects.
Collapse
Affiliation(s)
- K Devon Lynn
- Department of Biology, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A4P3, Canada
| | - Diego Quintanilla-Ahumada
- Programa de Doctorado en Medicina de la Conservación, Universidad Andrés Bello, Santiago, Chile; Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Cristian Duarte
- Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Pedro A Quijón
- Department of Biology, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A4P3, Canada.
| |
Collapse
|
9
|
Marangoni LFB, Davies T, Smyth T, Rodríguez A, Hamann M, Duarte C, Pendoley K, Berge J, Maggi E, Levy O. Impacts of artificial light at night in marine ecosystems-A review. GLOBAL CHANGE BIOLOGY 2022; 28:5346-5367. [PMID: 35583661 PMCID: PMC9540822 DOI: 10.1111/gcb.16264] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 06/10/2023]
Abstract
The globally widespread adoption of Artificial Light at Night (ALAN) began in the mid-20th century. Yet, it is only in the last decade that a renewed research focus has emerged into its impacts on ecological and biological processes in the marine environment that are guided by natural intensities, moon phase, natural light and dark cycles and daily light spectra alterations. The field has diversified rapidly from one restricted to impacts on a handful of vertebrates, to one in which impacts have been quantified across a broad array of marine and coastal habitats and species. Here, we review the current understanding of ALAN impacts in diverse marine ecosystems. The review presents the current state of knowledge across key marine and coastal ecosystems (sandy and rocky shores, coral reefs and pelagic) and taxa (birds and sea turtles), introducing how ALAN can mask seabird and sea turtle navigation, cause changes in animals predation patterns and failure of coral spawning synchronization, as well as inhibition of zooplankton Diel Vertical Migration. Mitigation measures are recommended, however, while strategies for mitigation were easily identified, barriers to implementation are poorly understood. Finally, we point out knowledge gaps that if addressed would aid in the prediction and mitigation of ALAN impacts in the marine realm.
Collapse
Affiliation(s)
- Laura F. B. Marangoni
- Smithsonian Tropical Research InstituteSmithsonian InstitutionCiudad de PanamáPanamá
| | - Thomas Davies
- School of Biological and Marine SciencesUniversity of PlymouthPlymouthDevonUK
| | - Tim Smyth
- Plymouth Marine Laboratory, Prospect PlacePlymouthDevonUK
| | - Airam Rodríguez
- Grupo de Ornitología e Historia Natural de las islas Canarias, GOHNICBuenavista del NorteCanary IslandsSpain
- Terrestrial Ecology Group, Department of EcologyUniversidad Autónoma de MadridMadridSpain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC‐UAM)Universidad Autónoma de MadridMadridSpain
| | - Mark Hamann
- College of Science and Engineering, Marine BiologyJames Cook UniversityTownsvilleAustralia
| | - Cristian Duarte
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la VidaUniversidad Andres BelloSantiagoChile
| | | | - Jørgen Berge
- Department for Arctic and Marine Biology, Faculty for Biosciences, Fisheries and EconomicsUiT The Arctic University of NorwayTromsøNorway
- University Centre in SvalbardLongyearbyenNorway
- Department of Biology and Technology, Centre of Autonomous Marine Operations and SystemsNorwegian University of Science and TechnologyTrondheimNorway
| | - Elena Maggi
- Dip. di Biologia, CoNISMaUniversità di PisaPisaItaly
| | - Oren Levy
- Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat GanIsrael
- The Interuniversity Institute for Marine Sciences, The H. Steinitz Marine Biology LaboratoryEilatIsrael
| |
Collapse
|
10
|
Lynn KD, Quijón PA. Casting a light on the shoreline: The influence of light pollution on intertidal settings. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.980776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Light pollution is becoming prevalent among other coastal stressors, particularly along intertidal habitats, arguably the most exposed to anthropogenic light sources. As the number of light pollution studies on sandy beaches, rocky shores and other intertidal habitats raises, commonalities, research gaps and venues can be identified. Hence, the influence of light pollution on the behavior and ecology of a variety of intertidal macro-invertebrates and vertebrates are outlined by examining 54 published studies. To date, a large majority of the reported effects of light pollution are negative, as expected from the analysis of many species with circadian rhythms or nocturnal habits, although the severity of those effects ranges widely. Experimental approaches are well represented throughout but methodological limitations in measurement units and standardization continue to limit the proposal of general conclusions across species and habitats. In addition, studies targeting community variables and the explicit influence of skyglow are heavily underrepresented. Likewise, studies addressing the interaction between light pollution and other natural and anthropogenic stressors are critically needed and represent a key venue of research. The nature of those interactions (synergistic, additive, antagonistic) will likely dictate the impact and management of light pollution in the decades ahead.
Collapse
|