1
|
Doshi M, Rabari V, Trivedi J. A systematic review on microplastic contamination in marine sediment and water of Asia: Concentration, characterization, and polymeric risk assessment. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2025; 97:e70042. [PMID: 39956909 DOI: 10.1002/wer.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/27/2025] [Accepted: 02/04/2025] [Indexed: 02/18/2025]
Abstract
Microplastics (MPs) are ubiquitous in the marine environment and harmful for biodiversity. This review was based on 311 studies published on various online platforms published between 2006 and 2024 on MP contamination in marine sediment and water in different countries of Asia. The research highlights an increasing trend in MP contamination studies, with China and India. Analytical techniques for sample collection, digestion, flotation, and polymer identification are discussed. Fourier transform infrared spectroscopy (FTIR) emerged as the preferred method for polymer identification. The maximum MP contamination in marine sediments was recorded at Taiwan and Indonesia, while the maximum MP contamination in marine water was recorded in China, Malaysia, and India. The fiber was the most dominant shape. The 1-2 mm and 500 μ-1 mm-sized MPs having blue color were found dominantly. The pollution indices revealed a very high risk of MP contamination in all the Asian countries. PRACTITIONER POINTS: China and India are the leading in publications on MP contamination studies. Common tools used are steel scoop/spatula/shovel for sediment, nets for water. FTIR is the preferred method for polymer identification. Highest MP in sediment of Indonesia and in water of China, Malaysia, and India. Dominant MP shape: fiber; size 1-2 mm and 500 μ-1 mm, blue color.
Collapse
Affiliation(s)
- Mahima Doshi
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Vasantkumar Rabari
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Jigneshkumar Trivedi
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| |
Collapse
|
2
|
Arteaga I, Pinos-Vélez V, Capparelli M, Moulatlet GM, Cipriani-Avila I, Cabrera M, Rebolledo E, Arnés-Urgellés C, Cazar ME. Microplastic occurrence and distribution in the Gulf of Guayaquil, Ecuador. MARINE POLLUTION BULLETIN 2024; 209:117288. [PMID: 39547069 DOI: 10.1016/j.marpolbul.2024.117288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024]
Abstract
Microplastics (MPs) were assessed in water and sediment samples along the Salado Estuary, an estuarine system composed of a complex river drainage network in Guayas, Ecuador. MPs were quantified and categorized according to shape, size, and composition. Pellet morphology (237,490 MP/L) and transparent color MPs (252,990 MP/L) were the most common in water, while fragments (27,330 MP/m3) and silver color MPs (25,310 MP/kg) were the most common in solid samples (river sediments, mangrove mud, and sand). MPs made of Polycarbonate, Polyestyrene, and Polypropylene were the most common in all samples. Giving MPs characteristics, likely mapped sources were wastewater from Guayaquil and surrounding towns, boats, and shrimp farms. The samples with the highest MPs were found near Guayaquil, and those with the least were found in the estuary mouth. Monitoring and managing plastic disposal in estuaries are fundamental, as we report a small part of an undocumented issue here.
Collapse
Affiliation(s)
- Inés Arteaga
- IRCMA, Departamento de Biociencias, Facultad de Ciencias Químicas, Universidad de Cuenca, Cuenca, Ecuador; Departamento de Recursos Hídricos y Ciencias Ambientales, Universidad de Cuenca, Cuenca, Ecuador
| | - Verónica Pinos-Vélez
- IRCMA, Departamento de Biociencias, Facultad de Ciencias Químicas, Universidad de Cuenca, Cuenca, Ecuador; Departamento de Recursos Hídricos y Ciencias Ambientales, Universidad de Cuenca, Cuenca, Ecuador.
| | - Mariana Capparelli
- Estación el Carmen, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Carretera Carmen-Puerto Real Km 9.5, C. P 24157 Ciudad del Carmen, Campeche, Mexico
| | - Gabriel M Moulatlet
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Isabel Cipriani-Avila
- Escuela de Ciencias Químicas, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Marcela Cabrera
- Laboratorio Nacional de Referencia del Agua, Universidad Regional Amazónica Ikiam, Tena 150150, Ecuador
| | - Eduardo Rebolledo
- Área de Industria, Construcción y Ambiente, Pontificia Universidad Católica del Ecuador, Sede Esmeraldas 080150, Ecuador
| | - Camila Arnés-Urgellés
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, La Paz, Baja California Sur, Mexico; Universidad San Francisco de Quito, Galapagos Science Center, Isla San Cristóbal, Galapagos Islands, Ecuador
| | - María Elena Cazar
- Biotechnology and Biodiversity Group, Department of Applied Chemistry and Production Systems, Chemical Sciences Faculty, Universidad de Cuenca, Av. 12 de Abril s/n, Cuenca, Ecuador
| |
Collapse
|
3
|
Nikhil VG, Amritha GG, Ranjeet K, Varghese GK. Distribution of microplastics in seafloor sediments and their differential assimilation in nearshore benthic molluscs along the south-west coast of India. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123350. [PMID: 38219899 DOI: 10.1016/j.envpol.2024.123350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
Spatial and temporal distribution of microplastics (MPs) in the nearshore seafloor sediments along the Southwest coast of India and their patterns of accumulation in selected infaunal and epibenthic molluscs with diverse feeding strategies were investigated. Along the 300-km coastal stretch, which is one of the most productive and biodiversity rich regions of the eastern Arabian Sea, notable levels of MP contamination in both sediment (617.7 items/kg dry weight) and molluscs (5.39 items/g) was recorded. The concentration of MPs in sediments also varied seasonally, with a higher prevalence during the post-monsoon season. Among the four molluscan groups studied, the highest MP abundance was recorded among scavenging gastropod Pseudominolia biangulosa (9.13 items/g), followed by microcarnivore scaphopod Tesseracme quadrapicalis (5.96 items/g). In comparison, the suspension feeding bivalve, Anadara hankeyana and deposit feeding clam Jitlada philippinarum had lesser accumulation of MPs (2.98 items/g and 3.50 items/g respectively). The majority of MPs in sediments and within molluscs were less than 250 μm in size (89.14%) and were predominantly fibres and fragments. Chemical characterisation of MPs revealed eleven types of polymers dominated by polyethylene (PE) and polypropylene (PP). Present study identified positive correlations between ingested MP polymers and the feeding strategies of molluscs. Higher values for the ecological risk assessment indices (PHI, PLI and PERI) in most of the stations indicated the severity of plastic pollution in the region. Molluscs being a major contributor to the benthic food web is also a connecting link to higher trophic levels. Hence understanding the specificity in the MPs accumulation pattern within this group has far reaching significance in utilizing them as potential bioindicators for pollution studies in marine ecosystems.
Collapse
Affiliation(s)
- V G Nikhil
- Faculty of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Kochi, India
| | - G G Amritha
- Faculty of Fisheries Science, Kerala University of Fisheries and Ocean Studies, Kochi, India
| | - K Ranjeet
- Faculty of Fisheries Science, Kerala University of Fisheries and Ocean Studies, Kochi, India.
| | - George K Varghese
- Department of Civil Engineering, National Institute of Technology, Kozhikode, India
| |
Collapse
|
4
|
Anderson RJ, Turner A. Microplastic transport and deposition in a beach-dune system (Saunton Sands-Braunton Burrows, southwest England). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168535. [PMID: 37977395 DOI: 10.1016/j.scitotenv.2023.168535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Although microplastics (MPs) are ubiquitous contaminants that have been extensively studied in the marine setting, there remain gaps in our understanding of their transport and fate in the coastal zone. In this study, MPs isolated from surface sediments sampled from a large beach-dune complex in southwest England have been quantified and characterised. Concentrations above a detectable size limit of 30 to 50 μm ranged from about 40 to 560 MP kg-1 dry weight but, despite local sources of plastics such as an estuary and seasonal tourism, there were no significant differences in median concentrations between different orthogonal foreshore transects and the dunes or according to zonal location on the beach. The majority of MPs were black and blue fibres of <1 mm in length that were constructed of polymers of density > 1 g cm-3 (e.g., rayon, polyester, acrylic). A significant correlation was found between MP concentration and the proportion of very fine sand (100 to 250 μm) but relationships with other granulometric or compositional markers of sediment (e.g., volume-weighted mean diameter, circularity, calcium content) were not evident. An association of MP concentration with very fine sand was attributed to similar particle depositional characteristics and the entrapment of fibres within small interstitial spaces. Overall, the observations reflect the wavelaid and windlaid deposition of MPs from a diffuse, offshore source, and, despite their role as accumulators of particles from the foreshore, dunes do not appear to act as a landward barrier of MPs.
Collapse
Affiliation(s)
- Rachael J Anderson
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Andrew Turner
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK.
| |
Collapse
|
5
|
Le XTT, Nguyen DT, Pham MT, Trinh MV, Le PC, Do VM. Risk assessment of microplastic exposure: A case study near a refinery factory at the central coast of Vietnam. MARINE POLLUTION BULLETIN 2023; 196:115636. [PMID: 37813060 DOI: 10.1016/j.marpolbul.2023.115636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/11/2023]
Abstract
The goal of this study was to identify the presence of microplastics on the beach near a refinery in the central coast of Vietnam. In this study, 11 sampling sites were selected within a length of 300 m of the beach. The results showed that microplastics were presented in all collected samples with an average concentration of 1582 ± 660 MPs/kg. Fibers were the predominant shape of microplastics found in the samples, which accounted for 57.11 %, while the rest were classified as fragments. The average size of microplastics varied greatly around 83.1 ± 74.3 μm with the vast majority having a size smaller than 50 μm (41.84 %). A total of 11 polymers of microplastics were detected from collected samples, Polyethylene Terephthalate was the main polymer with 46.43 %. The pollution load index of microplastics was 3.15 showing that refinery activities could expose microplastic to the environment.
Collapse
Affiliation(s)
- Xuan Thanh Thao Le
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi 11300, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi 11300, Viet Nam
| | - Duy Thanh Nguyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi 11300, Viet Nam
| | - Minh Tuan Pham
- Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hai Ba Trung District, Hanoi 11600, Viet Nam
| | - Minh Viet Trinh
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi 11300, Viet Nam
| | - Phuoc Cuong Le
- Faculty of Environmental Engineering, The University of Danang-University of Science and Technology, Danang 550000, Viet Nam
| | - Van Manh Do
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi 11300, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi 11300, Viet Nam.
| |
Collapse
|
6
|
Wani AK, Akhtar N, Naqash N, Rahayu F, Djajadi D, Chopra C, Singh R, Mulla SI, Sher F, Américo-Pinheiro JHP. Discovering untapped microbial communities through metagenomics for microplastic remediation: recent advances, challenges, and way forward. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:81450-81473. [PMID: 36637649 PMCID: PMC9838310 DOI: 10.1007/s11356-023-25192-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 01/04/2023] [Indexed: 06/01/2023]
Abstract
Microplastics (MPs) are ubiquitous pollutants persisting almost everywhere in the environment. With the increase in anthropogenic activities, MP accumulation is increasing enormously in aquatic, marine, and terrestrial ecosystems. Owing to the slow degradation of plastics, MPs show an increased biomagnification probability of persistent, bioaccumulative, and toxic substances thereby creating a threat to environmental biota. Thus, remediation of MP-pollutants requires efficient strategies to circumvent the mobilization of contaminants leaching into the water, soil, and ultimately to human beings. Over the years, several microorganisms have been characterized by the potential to degrade different plastic polymers through enzymatic actions. Metagenomics (MGs) is an effective way to discover novel microbial communities and access their functional genetics for the exploration and characterization of plastic-degrading microbial consortia and enzymes. MGs in combination with metatranscriptomics and metabolomics approaches are a powerful tool to identify and select remediation-efficient microbes in situ. Advancement in bioinformatics and sequencing tools allows rapid screening, mining, and prediction of genes that are capable of polymer degradation. This review comprehensively summarizes the growing threat of microplastics around the world and highlights the role of MGs and computational biology in building effective response strategies for MP remediation.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Nafiaah Naqash
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Farida Rahayu
- Research Center for Applied Microbiology, National Research and Innovation Agency, Bogor, 16911, Indonesia
| | - Djajadi Djajadi
- Research Center for Horticulture and Plantation, National Research Innovation Agency, Bogor, 16111, Indonesia
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Sikandar I Mulla
- Department of Biochemistry, School of Allied Health Sciences, REVA University, Bengaluru, 560064, Karnataka, India
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Juliana Heloisa Pinê Américo-Pinheiro
- Department of Forest Science, Soils and Environment, School of Agronomic Sciences, São Paulo State University (UNESP), Ave. Universitária, 3780, Botucatu, SP, 18610-034, Brazil.
- Graduate Program in Environmental Sciences, Brazil University, Street Carolina Fonseca, 584, São Paulo, SP, 08230-030, Brazil.
| |
Collapse
|
7
|
Nikhil VG, Ranjeet K, Varghese GK. Spatio-temporal evaluation and risk assessment of microplastics in nearshore surface waters post-2018 Kerala deluge along the southwest coast of India. MARINE POLLUTION BULLETIN 2023; 192:115058. [PMID: 37210987 DOI: 10.1016/j.marpolbul.2023.115058] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/23/2023]
Abstract
Spatial and temporal distribution of microplastics along the nearshore surface waters of Kerala after the floods of 2018 was studied. Results indicated a seven-fold increase in its mean concentration (7.14 ± 3.03 items/m3) post deluge. The average abundance was highest during pre-monsoon (8.27 ± 3.09 items/m3). Fibres were the dominant group, with blue and black being the most prevalent colours. Polyethylene and polypropylene were the most commonly found polymers, possibly gaining entry through sewage waste or land-based plastic litter. Highest abundance of microplastic was recorded off Kochi categorising it at Hazard Level I under Pollution Load Index assessment. Similarly high levels of Pollution Hazard Index and Potential Ecological Risk Index were also reported due to the presence of hazardous polymers PVC and PU that can cause concern to marine life. The differential weathering pattern and surface morphology analysis suggested microplastics to be relatively old that had undergone substantial mechanical and oxidative weathering.
Collapse
Affiliation(s)
- V G Nikhil
- Faculty of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Kochi, India
| | - K Ranjeet
- Department of Aquatic Environment Management, Kerala University of Fisheries and Ocean Studies, Kochi, India.
| | - George K Varghese
- Department of Civil Engineering, National Institute of Technology, Kozhikode, India
| |
Collapse
|
8
|
Reethu M, Biswajit R, Aravind GH, Rafaz AK, Sandeep K, Sijinkumar AV, Warrier AK. A first report on the spatial and temporal variability of microplastics in coastal soils of an urban town in south-western India: Pre- and post-COVID scenario. MARINE POLLUTION BULLETIN 2023; 190:114888. [PMID: 37031557 DOI: 10.1016/j.marpolbul.2023.114888] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
We present a first study on the temporal changes (2019-2021) in the microplastic abundance in the coastal soils of an urban town in the south-western part of India. All sampling stations exhibited higher abundances of microplastics in soils collected during 2021 (959.7 ± 277.7 particles/kg) compared to those collected in 2019 (515.1 ± 182.7 particles/kg). Morphologically, flakes, fibres, and films are the most abundant types documented in the soil environment. The microplastics of 0.3-5 mm size are relatively more abundant (60.6 %) compared to those of 0.03-0.3 mm size (39.4 %) in 2021. The three main types of polymers (polypropylene and high- and low-density polyethylene) in the soil exhibited an increase in abundance during an interval of 15 months (October 2019 to March 2021). In addition to packaging materials, the enhanced use of surgical masks during the COVID-19 period might have acted as a source of microplastic contamination in the soils.
Collapse
Affiliation(s)
- M Reethu
- Department of Geology, Central University of Kerala, Tejaswini Hills, Periye (P.O.), Kasaragod, India
| | - R Biswajit
- Department of Geology, Central University of Kerala, Tejaswini Hills, Periye (P.O.), Kasaragod, India
| | - G H Aravind
- Department of Geology, Central University of Kerala, Tejaswini Hills, Periye (P.O.), Kasaragod, India
| | - A K Rafaz
- Department of Geology, Central University of Kerala, Tejaswini Hills, Periye (P.O.), Kasaragod, India
| | - K Sandeep
- Department of Geology, Central University of Kerala, Tejaswini Hills, Periye (P.O.), Kasaragod, India.
| | - A V Sijinkumar
- Department of Geology, Central University of Kerala, Tejaswini Hills, Periye (P.O.), Kasaragod, India
| | - Anish Kumar Warrier
- Centre for Climate Studies, Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
9
|
Silori R, Shrivastava V, Mazumder P, Mootapally C, Pandey A, Kumar M. Understanding the underestimated: Occurrence, distribution, and interactions of microplastics in the sediment and soil of China, India, and Japan. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:120978. [PMID: 36586556 DOI: 10.1016/j.envpol.2022.120978] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) are non-biodegradable substances that can sustain our environment for up to a century. What is more worrying is the incapability of modern technologies to annihilate MPs from om environment. One ramification of MPs is their impact on every kind of life form on this planet, which has been discussed ahead; that is why these substances are surfacing in everyday discussions of scholars and researchers. This paper discusses the overview of the global occurrence, abundance, analysis, and remediation techniques of MPs in the environment. This paper primarily reviews the event and abundance of MPs in coastal sediments and agricultural soil of three major Asian countries, India, China, and Japan. A significant concentration of MPs has been recorded from these countries, which affirms its strong presence and subsequent environmental impacts. Concentrations such as 73,100 MPs/kg in Indian coastal sediments and 42,960 particles/kg in the agricultural soil of China is a solid testimony to prove their massive outbreak in our environment and require urgent attention towards this issue. Conclusions show that human activities, rivers, and plastic mulching on agricultural fields have majorly acted as carriers of MPs towards coastal and terrestrial soil and sediments. Later, based on recorded concentrations and gaps, future research studies are recommended in the concerned domain; a dearth of studies on MPs influencing Indian agricultural soil make a whole sector and its consumer vulnerable to the adverse effects of this emerging contaminant.
Collapse
Affiliation(s)
- Rahul Silori
- School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Vikalp Shrivastava
- School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Payal Mazumder
- School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Chandrashekar Mootapally
- School of Applied Sciences & Technology (SAST), Gujarat Technological University (GTU), Ahmedabad, Gujarat, India
| | - Ashok Pandey
- School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India; Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India
| | - Manish Kumar
- School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501 Sur, Monterrey, 64849, Mexico.
| |
Collapse
|
10
|
Leads RR, Weinstein JE, Kell SE, Overcash JM, Ertel BM, Gray AD. Spatial and temporal variability of microplastic abundance in estuarine intertidal sediments: Implications for sampling frequency. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160308. [PMID: 36403830 DOI: 10.1016/j.scitotenv.2022.160308] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/23/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (<5 mm) are well documented across shorelines worldwide; however, high variability in microplastic abundance is often observed within and among field studies. The majority of microplastic surveys to date consist of single sampling events that do not consider spatiotemporal variability as a potential confounding factor in the interpretation of their results. Therefore, these surveys may not accurately capture or reflect levels of microplastic contamination in the environment. Here, we provide the first investigation of small-scale spatial and temporal variability of microplastic abundance, distribution, and composition in the intertidal zone of an urbanized US estuary to better understand the short-term, daily spatiotemporal variability of microplastics in dynamic coastal environments. Intertidal sediment was collected from both the low and high intertidal zones of a sandy estuarine beach located in South Carolina, southeastern US every 1 to 2 days at low tide over 17 days (12 sampling events; total n = 72). Study-wide, microplastic abundance ranged from 44 to 912 microplastics/m2 and consisted primarily of polyethylene, nylon, polyester, and tire (or tyre) wear particles. High temporal variability was observed, with microplastic abundance differing significantly among sampling events (p = 0.00025), as well as among some consecutive tidal cycles occurring within 12 h of each other (p = 0.007). By contrast, low spatial variability was observed throughout the study with no significant differences in microplastic abundance detected between the low and high intertidal zones (p = 0.76). Of the environmental factors investigated, wind direction on the day of sampling had the greatest effect on temporal microplastic variability. Our results demonstrate that there can be significant temporal variability of microplastic abundance in estuarine intertidal sediments and are important for informing the methods and interpretation of future microplastic surveys in dynamic coastal environments worldwide.
Collapse
Affiliation(s)
- Rachel R Leads
- Grice Marine Laboratory, College of Charleston, 205 Ft. Johnson Rd., Charleston, SC 29412, USA.
| | - John E Weinstein
- Department of Biology, The Citadel, Military College of South Carolina, 171 Moultrie St., Charleston, SC 29409, USA.
| | - Sarah E Kell
- Grice Marine Laboratory, College of Charleston, 205 Ft. Johnson Rd., Charleston, SC 29412, USA.
| | - Johnathan M Overcash
- Department of Biology, The Citadel, Military College of South Carolina, 171 Moultrie St., Charleston, SC 29409, USA.
| | - Bonnie M Ertel
- Department of Biology, The Citadel, Military College of South Carolina, 171 Moultrie St., Charleston, SC 29409, USA.
| | - Austin D Gray
- Virginia Polytechnic Institute and State University, Department of Biological Sciences, 926 W Campus Dr., Blacksburg, VA 24060, USA.
| |
Collapse
|
11
|
Zhang Z, Wu X, Liu H, Huang X, Chen Q, Guo X, Zhang J. A systematic review of microplastics in the environment: Sampling, separation, characterization and coexistence mechanisms with pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160151. [PMID: 36423843 DOI: 10.1016/j.scitotenv.2022.160151] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/22/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (<5 mm) (MPs) are widely distributed throughout the world, and their accumulation and migration in the environment have caused health and safety concerns. Currently, most of the reviewed literatures mainly focus on the distribution in various environmental media, adsorption mechanisms with different pollutants, and characterization of MPs. Therefore, the present review mainly highlights the characterization techniques of MPs and the underlying mechanisms of their combination with conventional coexisting substances (heavy metals, organic pollutants, and nutrients). We observed that massive MP pollution has been found in many areas, especially in Africa, Asia, India, South Africa, North America and Europe. The separation methods of MPs in different environmental media are basically similar, including sampling, pre-treatment, flotation, filtration and digestion. The combination of multiple characterization technologies can more precisely identify the shape, abundance, colour, and particle size of MPs. Notably, although recent reports have confirmed that MPs can act as carriers of heavy metals and carry them into organisms to cause harm, MPs have different adsorption and desorption characteristics for various heavy metals. The adsorption capacity of organic pollutants onto MPs is closely related to their hydrophobicity, specific surface area and functional group characteristics. The relative abundance of MPs in sediments and lakes had a significantly positive correlation with the mass concentration of total nitrogen in lake water, but this finding still needs to be further verified. Based on current research, we suggest that future MP research should focus on characterization technology, environmental migration, ecological effects, health risks and degradation methods.
Collapse
Affiliation(s)
- Zhenming Zhang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550003, China; Guizhou Institute of Biology, Guizhou Academy of Sciences, Guiyang, Guizhou, 550009, China
| | - Xianliang Wu
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Guiyang, Guizhou, 550009, China
| | - Huijuan Liu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Xianfei Huang
- Guizhou Provincial Key Laboratory for Environment, Guizhou Normal University, Guiyang 550001, Guizhou, China
| | - Qina Chen
- College of Eco-Environmental Engineering, Institutute of Karst wetland ecology, Guizhou Minzu University, Guiyang 550025, Guizhou, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China.
| | - Jiachun Zhang
- Guizhou Botanical Garden, Guizhou Academy of Sciences, Guiyang 550004, Guizhou, China.
| |
Collapse
|
12
|
Wang C, O'Connor D, Wang L, Wu WM, Luo J, Hou D. Microplastics in urban runoff: Global occurrence and fate. WATER RESEARCH 2022; 225:119129. [PMID: 36170770 DOI: 10.1016/j.watres.2022.119129] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Public concerns on microplastic (MP) pollution and its prevalence in urban runoff have grown exponentially. Huge amounts of MPs are transported from urban environments via surface runoff to different environment compartments, including rivers, lakes, reservoirs, estuaries, and oceans. The global concentrations of MPs in urban runoff range from 0 to 8580 particles/L. Understanding the sources, abundance, composition and characteristics of MPs in urban runoff on a global scale is a critical challenge because of the existence of multiple sources and spatiotemporal heterogeneity. Additionally, dynamic processes in the mobilization, aging, fragmentation, transport, and retention of MPs in urban runoff have been largely overlooked. Furthermore, the MP flux through urban runoff into rivers, lakes and even oceans is largely unknown, which is very important for better understanding the fate and transport of MPs in urban environments. Here, we provide a critical review of the global occurrence, transport, retention process, and sinks of MPs in urban runoff. Relevant policies, regulations and measures are put forward. Future global investigations and mitigation efforts will require us to address this issue cautiously, cooperating globally, nationally and regionally, and acting locally.
Collapse
Affiliation(s)
- Chengqian Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - David O'Connor
- School of Real Estate and Land Management, Royal Agricultural University, Cirencester GL7 1RS, United Kingdom
| | - Liuwei Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Center for Sustainable Development & Global Competitiveness, Stanford University, Stanford, California 94305-4020, United States
| | - Jian Luo
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0355, United States
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
13
|
Anak Alexander Tampang AM, Mohan Viswanathan P. Occurrence, distribution and sources of microplastics in beach sediments of Miri coast, NW Borneo. CHEMOSPHERE 2022; 305:135368. [PMID: 35716711 DOI: 10.1016/j.chemosphere.2022.135368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) pollution has gained a lot of global interests due to its toxicity to the surrounding ecosystems. The aim of this study is to identify the abundances, physical characteristics, polymer type and elemental composition of MPs in beach sediments of Miri coast, located in Sarawak State, East Malaysia. A total of 1553 particles from 24 sediment samples, collected from eight different beaches along Miri coastline were identified. MPs from the sediments were extracted using density separation method and analyzed through stereoscopic microscope, ATR-FTIR and SEM-EDX. MPs were present most abundant in Lutong Beach, which is the hotspot for the recreational activities. Fragments were identified as the highest abundance type of MPs, followed by fiber, foam and pellet. MPs of size of <1 mm were predominantly present in the samples. Varieties of colors were distinguished in which transparent or no color MPs were the highest quantity studied in the samples. Polymers identified were mainly polyethylene (PE), polyester (PET), polystyrene (PS) and polypropylene (PP), derived from primary and secondary MPs. Carbon and oxygen were dominant and have the highest concentration identified with other elements such as Ca, Al, Ti and Cl. The primary use of these elements as additives are associated with the manufacturing process as they are used to enhance the quality during plastic production. The outcome of this study is to be the first report to identify and characterize the MPs in beach sediments of Miri coast. The occurrence of MPs in Miri beaches may negatively impact marine organisms as this affects their food chain. As consumers, humans are most likely to be affected by the presence of MPs due to their consumption of marine animals, particularly fish present in this region.
Collapse
Affiliation(s)
| | - Prasanna Mohan Viswanathan
- Department of Applied Sciences, Faculty of Engineering and Science, Curtin University, Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia.
| |
Collapse
|
14
|
Liu Y, Cao W, Hu Y, Zhang J, Shen W. Horizontal and vertical distribution of microplastics in dam reservoir after impoundment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:154962. [PMID: 35378186 DOI: 10.1016/j.scitotenv.2022.154962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/18/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
In freshwater ecosystems, microplastics (MPs) are commonly found in reservoirs. However, limited information is available on the distribution of MPs in the reservoirs. In this study, we investigated the horizontal and vertical distribution characteristics of MPs in the Guanyingyan reservoir (the upper reaches of the Yangtze River, China) after impoundment and the influence of free-floating plant residues on the distribution of MPs. Results indicated that the MPs abundance in the horizontal distribution of the reservoir decreased significantly while the distance from the dam increased. The abundance of MPs in shoreline waters (average: 8.45 items L-1) was significantly higher than that in central waters (average: 4.80 items L-1). As for the vertical distribution, the percentages of fibers in the three water layers (surface, intermediate, and deep) have less variation when compared to other types of MPs. Besides, MPs who are less than 0.5 mm in size are the majority. With deeper underwater, there would be more MPs with particles smaller than 200 μm in size. At the same time, there would be fewer MPs with particles ranging from 200 to 500 μm in size. PS, PP, and PE are the main polymer types of surface water, while PVC, PE, and PET are the common type in deep water. In shoreline water, the dry weight of floating plant residues showed a positive correlation with microplastic abundance in different layers. As above said, this study confirmed that MPs in reservoirs after impoundment would tend to accumulate in the front section of the reservoir and the shoreline water. Besides, free-floating plant residues would accumulate in reservoirs, resulting in the sinking of MPs.
Collapse
Affiliation(s)
- Yixuan Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Weigang Cao
- Science and Technology Resource Coordination Center of Hanzhong, Hanzhong, Shaanxi 723000, PR China
| | - Yue Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jie Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Weibo Shen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
15
|
Sivadas SK, Mishra P, Kaviarasan T, Sambandam M, Dhineka K, Murthy MVR, Nayak S, Sivyer D, Hoehn D. Litter and plastic monitoring in the Indian marine environment: A review of current research, policies, waste management, and a roadmap for multidisciplinary action. MARINE POLLUTION BULLETIN 2022; 176:113424. [PMID: 35176547 DOI: 10.1016/j.marpolbul.2022.113424] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/26/2021] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Environmental contamination due to plastic waste mismanagement is a growing global concern. Plastic problem is of particular concern to the Indian Ocean nations as Asia currently contributes to the highest share of mismanaged plastic waste. Consequently, there is a worldwide interest to understand the distribution and transboundary movement of plastic from this region, which is crucial for implementing management measures. This review article focuses on current knowledge of plastic research, policies, waste management, socio-economics, challenges, and research opportunities. To date, marine plastic studies have focused on a few locations, providing an analysis of distribution and plastic-organism interactions in the Indian marine system. Along with scientific investigation, enforcement, improvisation, and, if necessary, framing new policies, integrated technologies to manage plastic waste, and behavioural changes are essential to mitigate plastic pollution. Such measures will be effective through a combination of actions among national and international researchers, industries, environmental managers, and the public.
Collapse
Affiliation(s)
- Sanitha K Sivadas
- National Centre for Coastal Research (NCCR), Ministry of Earth Sciences (MoES), NIOT Campus, Pallikaranai, Chennai 600100, Tamil Nadu, India
| | - Pravakar Mishra
- National Centre for Coastal Research (NCCR), Ministry of Earth Sciences (MoES), NIOT Campus, Pallikaranai, Chennai 600100, Tamil Nadu, India.
| | - T Kaviarasan
- National Centre for Coastal Research (NCCR), Ministry of Earth Sciences (MoES), NIOT Campus, Pallikaranai, Chennai 600100, Tamil Nadu, India
| | - M Sambandam
- National Centre for Coastal Research (NCCR), Ministry of Earth Sciences (MoES), NIOT Campus, Pallikaranai, Chennai 600100, Tamil Nadu, India
| | - K Dhineka
- National Centre for Coastal Research (NCCR), Ministry of Earth Sciences (MoES), NIOT Campus, Pallikaranai, Chennai 600100, Tamil Nadu, India
| | - M V Ramana Murthy
- National Centre for Coastal Research (NCCR), Ministry of Earth Sciences (MoES), NIOT Campus, Pallikaranai, Chennai 600100, Tamil Nadu, India
| | - Shailesh Nayak
- National Institute of Advanced Studies (NIAS), IISc campus, Bengaluru 560012, Karnataka, India
| | - David Sivyer
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Suffolk NR33 OHT, United Kingdom
| | - Danja Hoehn
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Suffolk NR33 OHT, United Kingdom
| |
Collapse
|