1
|
Larrea Valdivia AE, Larico JR, Valenzuela Huillca C, Arias AH. First evidence of microplastics in the Quilca-Vítor-Chili river basin, Arequipa region, Peru. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 269:104484. [PMID: 39693683 DOI: 10.1016/j.jconhyd.2024.104484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/12/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
The Chili, Vitor and Quilca rivers and their tributaries in Peru serve as a vital water resource for both irrigation and domestic use in the surrounding communities and agricultural areas. The purpose of this study was to establish, for the first time, the presence, abundance, distribution and chemical identity of polymer microparticles in aqueous samples from these river basins. The results showed that, on average, filaments were the most dominant (71.4 %), followed by fragments (17.2 %) and film (6.74 %). Identification of the polymer types revealed that the most abundant type of MPs is polyethylene (40.8 %), followed by polypropylene (23.8 %), synthetic fibres (15.8 %), and other synthetic polymers. All samples showed the occurrence of microplastics, with a mean concentration of 35.34 MPs/m3, a maximum value of 172.70 MPs/m3 and a minimum value of 3.59 MPs/m3. The results reported in this study establish a baseline for the study area for the first time; in addition, the areas were established with a Pollution Indicator, and the Pollutant Load Index (PLI) was calculated, which reinforced the proposed identification, alerting the need to control clandestine urban and rural landfills, as well as the indiscriminate use of PE big bags in the agricultural catchment.
Collapse
Affiliation(s)
| | - Juan Reyes Larico
- Universidad Nacional de San Agustín de Arequipa - UNSA, Arequipa, Peru
| | | | - Andrés H Arias
- Department of Chemistry, Universidad Nacional del Sur, Bahía Blanca 8000, Argentina; Argentine Institute of Oceanography (IADO), CONICET, Argentina.
| |
Collapse
|
2
|
Kumar P, Kumar A, Kumar D, Prajapati KB, Mahajan AK, Pant D, Yadav A, Giri A, Manda S, Bhandari S, Panjla R. Microplastics influencing aquatic environment and human health: A review of source, determination, distribution, removal, degradation, management strategy and future perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124249. [PMID: 39869960 DOI: 10.1016/j.jenvman.2025.124249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 12/15/2024] [Accepted: 01/19/2025] [Indexed: 01/29/2025]
Abstract
Microplastics (MPs) are produced from various primary and secondary sources and pose multifaceted environmental problems. They are of non-biodegradable nature and may stay in aquatic environments for a long time period. The present review has covered novel aspects pertaining to MPs that were not covered in earlier studies. It has been observed that several methods are being employed for samples collection, extraction and identification of MPs and polymer types using various equipment, chemicals and instrumental techniques. Aquatic species mistakenly ingest MPs, considering them prey and through food-chain, and then suffer from various metabolic disorders. The consumption of seafood and fish may consequently cause health implications in humans. Certain plasticizers are added during manufacturing to provide colour, durability, flexibility, and strength to plastics, but they leach out during usage, storage, and transport, as well as after entering the bodies of aquatic species and human beings. The leached chemicals (bisphenol-A, triclosan, phthalates, etc.) act as endocrine disrupting chemicals (EDCs), which effect on homeostasis; thereby causing neurotoxicity, cytotoxicity, reproductive problems, adverse behaviour and autism. Negative influence of MPs on carbon sequestration potential of water bodies is also observed, however more studies are required to understand it with a detail mechanism under natural conditions. The wastewater treatment plants are found to remove a large amount of MPs, but in turn, also act as significant sources of their release in sludge and effluents. Further, it is covered that how advanced oxidation processes, thermal- and photo-oxidation, fungi, algae and microbes degrade the plastics and increase their numbers in the surrounding environment. The management strategy comprising recovery of energy and other valuable by-products from plastic wastes, recycling and regulatory framework; are also described in detail. The future perspectives can be of paramount importance to control MPs generation and their abundance in the aquatic and other types of environments. The studies in future need to focus on advanced filtration techniques, advanced oxidation processes, energy recovery from plastic wastes and influences of MPs on carbon sequestration in aquatic environment and human health.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Natural Resources Management, Maharana Pratap Horticultural University, Karnal, Haryana, 132001, India.
| | - Anil Kumar
- Forest Ecology and Climate Change Division, ICFRE-Himalayan Forest Research Institute, Panthaghati, Shimla, Himachal Pradesh, 171013, India
| | - Deepak Kumar
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Kalp Bhusan Prajapati
- Department of Environmental Studies, Central University of Haryana, Jant-Pali, Mahendergarh, 123031, India
| | - Ambrish Kumar Mahajan
- Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, 176215, India
| | - Deepak Pant
- Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, 176215, India
| | - Anoop Yadav
- Department of Environmental Studies, Central University of Haryana, Jant-Pali, Mahendergarh, 123031, India
| | - Anand Giri
- School of Civil and Environmental Engineering, Indian Institute of Technology Mandi, Himachal Pradesh, 171013, India
| | - Satish Manda
- Department of Natural Resources Management, Maharana Pratap Horticultural University, Karnal, Haryana, 132001, India
| | - Soniya Bhandari
- Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, 176215, India
| | - Richa Panjla
- Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, 176215, India
| |
Collapse
|
3
|
Naidu BC, Xavier KAM, Sahana MD, Landge AT, Jaiswar AK, Shukla SP, Ranjeet K, Nayak BB. Temporal variability of microplastics in shrimp (Litopenaeus vannamei), feed, water and sediments of coastal and inland culture ponds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178173. [PMID: 39709842 DOI: 10.1016/j.scitotenv.2024.178173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
Aquaculture, particularly shrimp farming, is crucial for global food security. However, the increasing presence of microplastics (MPs) in marine environments, shrimp feeds, and atmospheric particles has made MP contamination in shrimp tissues inevitable. This study systematically investigates the abundance, characteristics, and temporal trends (from 15th to the 120th day of culture) of MPs contamination in Litopenaeus vannamei, along with associated feed, water, and sediment across 12 shrimp ponds of two major shrimp-producing regions of India. MPs were detected in 93.7 % of shrimp samples and all environmental matrices, with the highest abundance recorded in coastal culture ponds. The overall average MPs abundance in shrimp was 4.07 items/individual (1.24 MPs items/g). MP sizes ranged from 8 μm to 4.22 mm, with MPs smaller than 100 μm being predominant in shrimp samples, though their prevalence decreased over the culture period. Fragments and fibers were the dominant morphotypes across all matrices, with a shift towards larger MPs and an increased proportion of fibers and films over time. Micro FTIR analyses revealed polyethylene (PE) and polypropylene (PP) were the most common polymers detected, indicating their widespread environmental distribution. Feed was identified as the primary source of MPs contamination in shrimp. The presence of MPs in shrimp raises significant concerns for consumer health, food safety, and trade, as shrimp are among the most widely consumed aquatic food products. This study underscores the dynamics of MP contamination in shrimp aquaculture and highlights the urgent need for targeted strategies to mitigate contamination, ensuring consumer safety and industry sustainability.
Collapse
Affiliation(s)
- Bejawada Chanikya Naidu
- ICAR - Central Institute of Fisheries Education, Versova, Mumbai 400061, Maharashtra, India; ICAR - Central Institute of Fisheries Technology, Kochi 682029, Kerala, India
| | - K A Martin Xavier
- ICAR - Central Institute of Fisheries Education, Versova, Mumbai 400061, Maharashtra, India; ICAR - Central Institute of Fisheries Technology, Kochi 682029, Kerala, India.
| | - M D Sahana
- ICAR - Central Institute of Fisheries Education, Versova, Mumbai 400061, Maharashtra, India
| | - Asha T Landge
- ICAR - Central Institute of Fisheries Education, Versova, Mumbai 400061, Maharashtra, India
| | - Ashok Kumar Jaiswar
- ICAR - Central Institute of Fisheries Education, Versova, Mumbai 400061, Maharashtra, India
| | - Satya Prakash Shukla
- ICAR - Central Institute of Fisheries Education, Versova, Mumbai 400061, Maharashtra, India
| | - K Ranjeet
- Kerala University of Fisheries and Ocean Studies, Kochi 682506, Kerala, India
| | - Binaya Bhusan Nayak
- ICAR - Central Institute of Fisheries Education, Versova, Mumbai 400061, Maharashtra, India
| |
Collapse
|
4
|
Rasta M, Khodadoust A, S Taleshi M, S Lashkaryan N, Shi X. Potential use of gammarus (Pontogammarus maeoticus) and shrimp (Palaemon elegans) as biomonitors of microplastics pollution in coastal environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124959. [PMID: 39278554 DOI: 10.1016/j.envpol.2024.124959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/21/2024] [Accepted: 09/13/2024] [Indexed: 09/18/2024]
Abstract
Microplastics (MPs) pose a significant threat to marine ecosystems, necessitating robust biomonitoring to assess aquatic risks and inform effective policymaking. In this study we investigated MPs pollution in gammarus (Pontogammarus maeoticus), shrimp (Palaemon elegans), sediment and water samples of southern coast of the Caspian Sea to assess the potential use of these two crustaceans as biomonitors of MPs pollution, bioconcentration of MPs in organisms' tissue and the pollution risks of MPs in environmental matrices. Samples were collected from 6 stations during June to August 2023. MPs were found in all compartments with an average of 100 ± 45.34 items/kg dry weight, 0.45 ± 0.06 items/L, 0.38 ± 0.21 items/individual or 0.58 ± 0.34 items/g wet weight (ww) and 0.26 ± 0.15 items/individual or 8.69 ± 7.88 items/g ww, for sediments, seawaters, P. elegans and P. maeoticus, respectively. MPs were prevailed by class 300-1000 μm in size, polyamide in polymer, fiber in shape and black in color. P. maeoticus and P. elegans did not meet the selection criteria as MPs biomonitors. However, bioconcentration factor (BCF) illustrated that both crustaceans can absorb and accumulate MPs from their surrounding water (BCF >1). Based on contamination factors (CF) values, sampling stations were polluted with MPs (1 ≤ CF < 6). The overall pollution load index (PLI) for sediment and seawater stations were 2.47 and 1.88, respectively, indicating minor contamination with MPs in the risk level I. Current research provides useful information on MPs pollution in crustaceans species and the risk level of MPs in environmental matrices that can be suitable for bioaccumulation hazard assessment and future monitoring programs.
Collapse
Affiliation(s)
- Majid Rasta
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, 443002, Hubei, China; Hubei International Science and Technology Cooperation Base of Fish Passage, Three Gorges University, Yichang, 443002, Hubei, China.
| | - Ali Khodadoust
- Department of Fisheries, Faculty of Natural Resources, University of Guilan, Sowmehsara, Iran.
| | - Mojtaba S Taleshi
- Department of Marine Chemistry, Faculty of Marine and Oceanic Sciences, University of Mazandaran, Babolsar, Iran.
| | - Niloofar S Lashkaryan
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, 443002, Hubei, China; Hubei International Science and Technology Cooperation Base of Fish Passage, Three Gorges University, Yichang, 443002, Hubei, China.
| | - Xiaotao Shi
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, 443002, Hubei, China; Hubei International Science and Technology Cooperation Base of Fish Passage, Three Gorges University, Yichang, 443002, Hubei, China.
| |
Collapse
|
5
|
Dang TT, Sogut E, Uysal-Unalan I, Corredig M. Quantification of polystyrene microplastics in water, milk, and coffee using thermogravimetry coupled with Fourier transform infrared spectroscopy (TGA-FTIR). CHEMOSPHERE 2024; 368:143777. [PMID: 39566689 DOI: 10.1016/j.chemosphere.2024.143777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/10/2024] [Accepted: 11/18/2024] [Indexed: 11/22/2024]
Abstract
Rapid quantification of plastic contaminants, particularly microplastics (MPs), in foods is a challenge. This study introduces a novel method using Fourier transform infrared spectroscopy coupled with thermogravimetric (TGA-FTIR) and chemometric analysis for the quantification of MPs in foods. A model study was performed using polystyrene (PS) MPs (1 μm) added to various foods, namely, water, milk, and coffee without any pretreatment. Foods were spiked with PS microbeads at different concentrations, heated in a TGA, and FTIR spectra of the gases evolved from the TGA were collected over time. The FTIR spectral data were used to construct a Gram-Schmidt profile and identify the characteristic PS peak. The spectrum corresponding to the peak maxima was extracted to represent the specific PS concentration. A dataset of selected spectra and their associated PS concentrations was preprocessed prior to calibration and cross-validation using PLS regression models, for each food matrix studied. The results showed that the PLS models reliably predicted the PS content in water, milk, and coffee with R2CV above 0.96, and RMSECV between 0.045 and 0.07 mg. Multivariate detection limit intervals (LODmin/LODmax) were 0.041/0.085 mg for water, 0.061/0.128 mg for milk and 0.06/0.101 mg for coffee. This method is simple to operate, relatively rapid, and most importantly, does not require sample pretreatment. This research also suggests that the analysis is applicable to a broad range of food samples, and it is suitable for quantifying MPs and nanoplastics regardless of size and shape. The chemometric approach also shows its potential for automation in daily detection and quantification of MPs in food safety control.
Collapse
Affiliation(s)
- Tem Thi Dang
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200, Aarhus N, Denmark.
| | - Ece Sogut
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200, Aarhus N, Denmark.
| | - Ilke Uysal-Unalan
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200, Aarhus N, Denmark.
| | - Milena Corredig
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200, Aarhus N, Denmark.
| |
Collapse
|
6
|
Zhao W, Zheng X, Liu J, Sui Y, Wang Y, Luo P, Zhu X, Wu W, Gu W, Liu X. Ceratophyllum demersum alleviates microplastics uptake and physiological stress responses in aquatic organisms, an overlooked ability. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134573. [PMID: 38824779 DOI: 10.1016/j.jhazmat.2024.134573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 06/04/2024]
Abstract
It has been demonstrated that microplastics (MPs) may be inadvertently ingested by aquatic animals, causing harm to their physiological functions and potentially entering the food chain, thereby posing risks to human food safety. To achieve an environmentally friendly and efficient reduction of MPs in freshwater environments, this experiment investigates the depuration effect of C. demersum on MPs using three common aquatic animals: Macrobrachium nipponense, Corbicula fluminea, and Bellamya aeruginosa as research subjects. The amounts of MPs, digestive enzyme activity, oxidative stress index, and energy metabolism enzyme activity in the digestive and non-digestive systems of three aquatic animals were measured on exposure days 1, 3, and 7 and on depuration days 1 and 3. The results indicated that the depuration effect of C. demersum and the species interaction were significant for the whole individual. Concerning digestive tissue, C. demersum was the most effective in purifying B. aeruginosa. When subjected to short-term exposure to MPs, C. demersum displayed a superior depuration effect. Among non-digestive tissues, C. demersum exhibited the earliest purifying effect on C. fluminea. Additionally, C. demersum alleviated physiological responses caused by MPs. In conclusion, this study underscores C. demersum as a promising new method for removing MPs from aquatic organisms.
Collapse
Affiliation(s)
- Weihong Zhao
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224000, China
| | - Xirui Zheng
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224000, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Jintao Liu
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224000, China
| | - Yanming Sui
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224000, China.
| | - Yuning Wang
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224000, China; Anhui Agricultural University, Hefei 230000, China
| | - Pan Luo
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224000, China; Dalian Ocean University, Dalian 116000, China
| | - Xi Zhu
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224000, China
| | - Wenjing Wu
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224000, China
| | - Wen Gu
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224000, China
| | - Xingyu Liu
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng 224000, China
| |
Collapse
|
7
|
Yarahmadi A, Heidari S, Sepahvand P, Afkhami H, Kheradjoo H. Microplastics and environmental effects: investigating the effects of microplastics on aquatic habitats and their impact on human health. Front Public Health 2024; 12:1411389. [PMID: 38912266 PMCID: PMC11191580 DOI: 10.3389/fpubh.2024.1411389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/13/2024] [Indexed: 06/25/2024] Open
Abstract
Microplastics (MPs) are particles with a diameter of <5 mm. The disposal of plastic waste into the environment poses a significant and pressing issue concern globally. Growing worry has been expressed in recent years over the impact of MPs on both human health and the entire natural ecosystem. MPs impact the feeding and digestive capabilities of marine organisms, as well as hinder the development of plant roots and leaves. Numerous studies have shown that the majority of individuals consume substantial quantities of MPs either through their dietary intake or by inhaling them. MPs have been identified in various human biological samples, such as lungs, stool, placenta, sputum, breast milk, liver, and blood. MPs can cause various illnesses in humans, depending on how they enter the body. Healthy and sustainable ecosystems depend on the proper functioning of microbiota, however, MPs disrupt the balance of microbiota. Also, due to their high surface area compared to their volume and chemical characteristics, MPs act as pollutant absorbers in different environments. Multiple policies and initiatives exist at both the domestic and global levels to mitigate pollution caused by MPs. Various techniques are currently employed to remove MPs, such as biodegradation, filtration systems, incineration, landfill disposal, and recycling, among others. In this review, we will discuss the sources and types of MPs, the presence of MPs in different environments and food, the impact of MPs on human health and microbiota, mechanisms of pollutant adsorption on MPs, and the methods of removing MPs with algae and microbes.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | | | - Parisa Sepahvand
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | | |
Collapse
|
8
|
Mohan AV, Raja S. Unveiling the Tiny Invaders: A deep dive into microplastics in shrimp - Occurrence, detection and unraveling the ripple effects. Saudi J Biol Sci 2024; 31:103981. [PMID: 38595960 PMCID: PMC11002877 DOI: 10.1016/j.sjbs.2024.103981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 04/11/2024] Open
Abstract
Aquaculture is a rapidly expanding food sector worldwide; it is the farming of fish, shellfish, and other marine organisms. Microplastics (MPs) are small pieces of plastic with a diameter of less than 5 mm that end up in the marine environment. MPs are fragments of large plastics that take years to degrade but can frustrate into small pieces, and some commercially available MPs are used in the production of toothpaste, cosmetics, and aircraft. MPs are emerging contaminants; they are ingested by marine species. These MPs have effects on marine species such as growth retardation and particle translocation to other parts of the body. Recently, MPs accumulation has been observed in shrimps, as well as in a wide range of other scientific reports. So, in this study, we review the presence, accumulation, and causes of MPs in shrimp. These plastics can trophic transfer to other organisms, changes in plastic count, effects on the marine environment, and impacts of MPs on human health were also discussed. It also improves our understanding of the importance of efficient plastic waste management in the ocean, as well as the impact of MPs on marine biota and human health.
Collapse
Affiliation(s)
- Amrutha Vellore Mohan
- Aquaculture Biotechnology Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Sudhakaran Raja
- Aquaculture Biotechnology Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| |
Collapse
|
9
|
Doshi M, Rabari V, Patel A, Yadav VK, Sahoo DK, Trivedi J. A systematic review on microplastic contamination in marine Crustacea and Mollusca of Asia: Current scenario, concentration, characterization, polymeric risk assessment, and future Prospectives. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11029. [PMID: 38708452 DOI: 10.1002/wer.11029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/07/2024] [Accepted: 03/30/2024] [Indexed: 05/07/2024]
Abstract
Microplastics (MPs) pollution has wreaked havoc on biodiversity and food safety globally. The false ingestion of MPs causes harmful effects on organisms, resulting in a decline in biodiversity. The present review comprehended the current knowledge of MP contamination in Crustacea and Mollusca from 75 peer-reviewed articles published in Asia between 2015 and 2023. A total of 79 species (27 Crustacea and 52 Mollusca) have been recorded to be contaminated with MPs. Out of the total 27 species of Crustacea, Metopograpsus quadridentatus (327.56 MPs/individual) and Balanus albicostatus (0.42 MPs/individual) showed the highest and lowest contamination, respectively. Out of the total 52 species of Mollusca, Dolabella auricularia (2325 MPs/individual) and Crassostrea gigas and Mytilus edulis (0.2 MPs/individual) showed the highest and lowest contamination, respectively. In terms of country-wise MP contamination, China has the highest number of contaminated species in both phylums among Asia. Findings of pollution indices revealed a very high risk of MP contamination in all the countries. Fiber was reported predominantly in both groups. Blue and black-colored MPs having <500 μm and <500 μm-1 mm size were found dominantly in Crustacea and Mollusca, respectively. Polypropylene was recorded as the dominant plastic polymer in both Crustacea and Mollusca. In essence, this review has provided a comprehensive insight into MP concentration in Crustacea and Mollusca of Asia, highlighting variations among species and geographic locations. This understanding is crucial for tackling urgent environmental challenges, safeguarding human health, and promoting global sustainability initiatives amid the escalating issue of plastic pollution. PRACTITIONER POINTS: Microplastic pollution has created havoc on biodiversity and food safety. A total of 27 and 52 species of crustaceans and Mollusca have been recorded to be contaminated with MPs. Metopograpsus quadridentate and Dolabella auricularia have shown higher MPs contamination. Polypropylene was recorded as the dominant plastic polymer in both crustacean and Mollusca. Findings of pollution indices revealed a very high risk of MP contamination in all the countries.
Collapse
Affiliation(s)
- Mahima Doshi
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| | - Vasantkumar Rabari
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Jigneshkumar Trivedi
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| |
Collapse
|
10
|
Duncan TV, Khan SA, Patri AK, Wiggins S. Regulatory Science Perspective on the Analysis of Microplastics and Nanoplastics in Human Food. Anal Chem 2024; 96:4343-4358. [PMID: 38452774 DOI: 10.1021/acs.analchem.3c05408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Microplastics are increasingly reported, not only in the environment but also in a wide range of food commodities. While studies on microplastics in food abound, the current state of science is limited in its application to regulatory risk assessment by a continued lack of standardized definitions, reference materials, sample collection and preparation procedures, fit-for purpose analytical methods for real-world and environmentally relevant plastic mixtures, and appropriate quality controls. This is particularly the case for nanoplastics. These methodological challenges hinder robust, quantitative exposure assessments of microplastic and nanoplastic mixtures from food consumption. Furthermore, limited toxicological studies on whether microplastics and nanoplastics adversely impact human health are also impeded by methodology challenges. Food safety regulatory agencies must consider both the exposure and the risk of contaminants of emerging concern to ascertain potential harm. Foundational to this effort is access to and application of analytical methods with the capability to quantify and characterize micro- and nanoscale sized polymers in complex food matrices. However, the early stages of method development and application of early stage methods to study the distribution and potential health effects of microplastics and nanoplastics in food have largely been done without consideration of the stringent requirements of methods to inform regulatory activities. We provide regulatory science perspectives on the state of knowledge regarding the occurrence of microplastics and nanoplastics in food and present our general approach for developing, validating, and implementing analytical methods for regulatory purposes.
Collapse
Affiliation(s)
- Timothy V Duncan
- Division of Food Processing Science and Technology, Office of Food Safety, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Bedford Park, Illinois 60501, United States
| | - Sadia Afrin Khan
- Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, Maryland 20740, United States
| | - Anil K Patri
- Nanotechnology Core Facility, Office of Scientific Coordination, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, Arkansas 72029, United States
| | - Stacey Wiggins
- Division of Seafood Safety, Office of Food Safety, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, Maryland 20740, United States
| |
Collapse
|
11
|
Canga EM, Gowen A, Xu JL. Assessing the inconsistency of microplastic measurements in foods and beverages. Compr Rev Food Sci Food Saf 2024; 23:e13315. [PMID: 38462817 DOI: 10.1111/1541-4337.13315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/12/2024]
Abstract
The widespread occurrence of microplastics (MPs) in the food chain has gained substantial recognition as a pressing concern, highlighting the inevitability of human exposure through ingestion of foodborne MPs, coupled with the release of MPs from plastic packaging. However, there are notable disparities in the reported numbers of MPs in foods and beverages, warranting a thorough investigation into the factors contributing to these discrepancies. Table salt is one of the major sources of MPs, and there was an approximately hundred-fold difference between the reviewed studies that reported the highest and lowest number of MPs. In addition, more noticeable discrepancies were discovered between studies on MPs released from teabags. One study reported that approximately 15 billion MPs were released into a cup of tea from a single teabag, whereas another research paper found only approximately 106.3 ± 14.6 MP/teabag after brewing. This comprehensive review focuses on the inconsistencies observed across studies examining MPs, shedding light on the plausible factors underlying these variations. Furthermore, the review outlines areas in analytical procedures that require enhancement and offers recommendations to promote accuracy and standardization in future research efforts, such as employing analytical methods capable of confirming the presence of MPs, using appropriate filter sizes, considering representative sample sizes when extrapolation is involved, and so on. By pinpointing the detection processes leading to the inconsistent results observed in MP studies, this comparative analysis will contribute to the development of reliable analytic methods for understanding the extent of microplastic contamination in the human food chain.
Collapse
Affiliation(s)
- Emine Merve Canga
- UCD School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| | - Aoife Gowen
- UCD School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| | - Jun-Li Xu
- UCD School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| |
Collapse
|
12
|
Rabari V, Rakib MRJ, Patel H, Idris AM, Malafaia G, Trivedi J. Microplastic prevalence in epipelagic layer: Evidence from epipelagic inhabiting prawns of north-west Arabian Sea. MARINE POLLUTION BULLETIN 2024; 200:116137. [PMID: 38377866 DOI: 10.1016/j.marpolbul.2024.116137] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024]
Abstract
The escalating global microplastic (MP) pollution severely threatens marine life due to insufficient waste management and widespread single-use plastic. This study focuses on assessing MP contamination in commercial prawns from Gujarat State, India. Ten prawn species collected at five main fishing harbors revealed 590 MP particles in their gastrointestinal tracts, averaging 6.08 ± 5.96 MPs/g and 1.15 ± 0.78 MPs/individual. Significant variations in contamination levels were observed between species and study sites. Pollution indices indicated very high contamination throughout the study sites. Threads were the predominant shape, with blue and black as prevalent colors. Size-wise, 1-2 mm MPs dominated. Polymer analysis identified polyethylene terephthalate, polyurethane, polystyrene, polypropylene, polyvinyl chloride, and acrylonitrile butadiene styrene. The findings provided crucial preliminary information for ecotoxicology and seafood safety investigations regarding MP contamination in commercially important prawns.
Collapse
Affiliation(s)
- Vasantkumar Rabari
- Animal Taxonomy and Ecology Laboratory, Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Taluka, India
| | - Md Refat Jahan Rakib
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh.
| | - Heris Patel
- Animal Taxonomy and Ecology Laboratory, Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Taluka, India
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, 62529 Abha, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 62529, Saudi Arabia
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, Brazil; Brazilian Academy of Young Scientists (ABJC), São Paulo, Brazil
| | - Jigneshkumar Trivedi
- Animal Taxonomy and Ecology Laboratory, Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Taluka, India.
| |
Collapse
|
13
|
Milne MH, De Frond H, Rochman CM, Mallos NJ, Leonard GH, Baechler BR. Exposure of U.S. adults to microplastics from commonly-consumed proteins. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123233. [PMID: 38159628 DOI: 10.1016/j.envpol.2023.123233] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
We investigated microplastic (MP) contamination in 16 commonly-consumed protein products (seafoods, terrestrial meats, and plant-based proteins) purchased in the United States (U.S.) with different levels of processing (unprocessed, minimally-processed, and highly-processed), brands (1 - 4 per product type, depending on availability) and store types (conventional supermarket and grocer featuring mostly natural/organic products). Mean (±stdev) MP contamination per serving among the products was 74 ± 220 particles (ranging from 2 ± 2 particles in chicken breast to 370 ± 580 in breaded shrimp). Concentrations (MPs/g tissue) differed between processing levels, with highly-processed products containing significantly more MPs than minimally-processed products (p = 0.0049). There were no significant differences among the same product from different brands or store types. Integrating these results with protein consumption data from the American public, we estimate that the mean annual exposure of adults to MPs in these proteins is 11,000 ± 29,000 particles, with a maximum estimated exposure of 3.8 million MPs/year. These findings further inform estimations of human exposure to MPs, particularly from proteins which are important dietary staples in the U.S. Subsequent research should investigate additional drivers of MPs in the human diet, including other understudied food groups sourced from both within and outside the U.S.
Collapse
Affiliation(s)
- Madeleine H Milne
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON, M5S 3B2, Canada
| | - Hannah De Frond
- Ocean Conservancy, 1300 19th St NW 8th floor, Washington, DC, 20036, USA; University of Toronto Trash Team, Toronto, Canada
| | - Chelsea M Rochman
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON, M5S 3B2, Canada; University of Toronto Trash Team, Toronto, Canada
| | - Nicholas J Mallos
- Ocean Conservancy, 1300 19th St NW 8th floor, Washington, DC, 20036, USA
| | - George H Leonard
- Ocean Conservancy, 1300 19th St NW 8th floor, Washington, DC, 20036, USA
| | - Britta R Baechler
- Ocean Conservancy, 1300 19th St NW 8th floor, Washington, DC, 20036, USA.
| |
Collapse
|
14
|
Khanjani MH, Sharifinia M, Mohammadi AR. The impact of microplastics on bivalve mollusks: A bibliometric and scientific review. MARINE POLLUTION BULLETIN 2023; 194:115271. [PMID: 37429180 DOI: 10.1016/j.marpolbul.2023.115271] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
Bivalves are important members of the ecosystem and their populations are declining globally, making them a concern for their role in ecosystem services and the fishing industry. Bivalves are excellent bioindicators of MPs pollution due to their widespread distribution, filtering capabilities, and close association with human health. Microplastics (MPs) have direct and indirect impacts on bivalves, affecting their physiology, habitat structure, food sources, and persistence of organic pollutants. This review provides an extensive overview of the impact of MPs on bivalves, covering various aspects such as their economic significance, ecological roles, and importance in biomonitoring environmental quality. The article presents the current state of knowledge on the sources and pathways of MPs in aquatic environments and their effects on bivalves. The mechanisms underlying the effects of MPs on bivalves, including ingestion, filtration activity, feeding inhibition, accumulation, bioaccumulation, and reproduction, are also discussed. Additionally, a bibliometric analysis of research on MPs in bivalves is presented, highlighting the number of papers, geographical distribution, and keyword clusters relating to MPs. Finally, the review emphasizes the importance of ongoing research and the development of mitigation strategies to reduce the negative effects of MPs pollution on bivalves and their habitats in oceans and coastal waters.
Collapse
Affiliation(s)
- Mohammad Hossein Khanjani
- Department of Fisheries Sciences and Engineering, Faculty of Natural Resources, University of Jiroft, Jiroft, Kerman, Iran
| | - Moslem Sharifinia
- Shrimp Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Bushehr 75169-89177, Iran.
| | - Ali Reza Mohammadi
- Department of Environmental Science and Engineering, Faculty of Natural Resources, University of Jiroft, Jiroft, Iran.
| |
Collapse
|
15
|
Belzagui F, Gutiérrez-Bouzán C, Carrillo-Navarrete F, López-Grimau V. Sustainable Filtering Systems to Reduce Microfiber Emissions from Textiles during Household Laundering. Polymers (Basel) 2023; 15:3023. [PMID: 37514412 PMCID: PMC10383179 DOI: 10.3390/polym15143023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
During laundering, synthetic textiles (polyester, polyamide, etc.) can release small fiber debris with a length of <5 mm. These are a type of microplastics (MPs), usually referred to as microfibers (MFs), which are considered high-concern pollutants due to their continuous and cumulative entrance into the environment. Currently, as far as we know, there are no feasible alternatives to remove them. In this work, four new and sustainable filtering systems are proposed to retain the MFs emitted from domestic washing machines. The filters contain a replaceable cartridge partially filled with recycled low-density polyethylene pellets. The four designed filtering systems of different sizes were tested in a household washing machine determining the retention efficiency of the MFs after several washing cycles. It was found that all four assessed filter arrangements have a good performance for retaining MFs from the washers' effluents. Filter F1 (diameter of 4 cm and a height of 30 cm) started retaining more than 50% of the MFs, at the 10th washing cycle, the retention climbed to 66%, while in the 20th washing cycle, its retention was greater than 80%. MFs retention was higher for filter F2 (diameter of 6.3 cm and a height of 41 cm), achieving a performance greater than 90% in the 20th washing cycle. Filter F3 was arranged by turning the F1 model flow upside down and the retention efficiency is higher compared with filter F1 values, reaching a retention efficiency of almost 100% in the 15th washing cycle. Finally, filter F4 arrangement was developed using the existing washing machine filter, obtaining better performance than the F1 and F2 filters, reaching efficiencies higher than 90% at the 20th washing cycle. In summary, depending on the arrangement, the microfiber retention efficiency was estimated between 52% and 86% in the 1st washing cycle and up to 83% to 99% in the 20th. Additionally, all arrangements demonstrated that the cartridges may last for more than 30 washing cycles before needing to be replaced.
Collapse
Affiliation(s)
- Francisco Belzagui
- Institute of Textile Research and Industrial Cooperation of Terrassa (INTEXTER), Universitat Politècnica de Catalunya-Barcelona Tech, Colom 15, 08222 Terrassa, Spain
| | - Carmen Gutiérrez-Bouzán
- Institute of Textile Research and Industrial Cooperation of Terrassa (INTEXTER), Universitat Politècnica de Catalunya-Barcelona Tech, Colom 15, 08222 Terrassa, Spain
| | - Fernando Carrillo-Navarrete
- Institute of Textile Research and Industrial Cooperation of Terrassa (INTEXTER), Universitat Politècnica de Catalunya-Barcelona Tech, Colom 15, 08222 Terrassa, Spain
| | - Víctor López-Grimau
- Institute of Textile Research and Industrial Cooperation of Terrassa (INTEXTER), Universitat Politècnica de Catalunya-Barcelona Tech, Colom 15, 08222 Terrassa, Spain
| |
Collapse
|
16
|
Madadi R, Mejjad N, De-la-Torre GE. Geochemical speciation, ecological risk, and source identification of heavy metal(loid)s in sediments and waters from Musa Estuary, Persian Gulf. MARINE POLLUTION BULLETIN 2023; 190:114836. [PMID: 36989600 DOI: 10.1016/j.marpolbul.2023.114836] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/28/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Surface sediment and water samples from 12 stations were collected from Musa Estuary. Metals concentrations (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sb, and Zn) were analyzed by ICP-MS. The highest contribution to ecological risk belonged to Cd (49 %) based on the PERI index. The Tessier procedure showed that with increasing contamination, exchangeable and carbonate fractions of Cd, Pb, Ni, Zn, and Cu increased by 25 %, 18 %, 17 %, 10 %, and 9 %, respectively. Cadmium and Pb have a high risk of release according to mobility factor (30 < MF < 50) and individual contamination factor (3 < ICF < 6) indices. Cluster analysis revealed that Al-Fe-Co-V-Mn-Cu-Pb derived from lithogenic resources, while As-Cd-Ni-Zn-Cr originated from anthropogenic sources. The adsorption of Co, Ni, V, and Zn to sediments was strongly influenced by Eh/pH, DOC/temperature, and salinity (r > 0.79, r < -0.78, and r < -0.69; p < 0.01).
Collapse
Affiliation(s)
- Reyhane Madadi
- Environmental research laboratory, School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran.
| | - Nezha Mejjad
- Department of Geology, Faculty of Sciences Ben M'Sik, Hassan II University, Casablanca, Morocco
| | | |
Collapse
|
17
|
Malli A, Shehayeb A, Yehya A. Occurrence and risks of microplastics in the ecosystems of the Middle East and North Africa (MENA). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:64800-64826. [PMID: 37086319 PMCID: PMC10122206 DOI: 10.1007/s11356-023-27029-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
The ubiquitous nature of microplastics (MPs) in nature and the risks they pose on the environment and human health have led to an increased research interest in the topic. Despite being an area of high plastic production and consumption, studies on MPs in the Middle East and North Africa (MENA) region have been limited. However, the region witnessed a research surge in 2021 attributed to the COVID-19 pandemic. In this review, a total of 97 studies were analyzed based on their environmental compartments (marine, freshwater, air, and terrestrial) and matrices (sediments, water columns, biota, soil, etc.). Then, the MP concentrations and polymer types were utilized to conduct a risk assessment to provide a critical analysis of the data. The highest MP concentrations recorded in the marine water column and sediments were in the Mediterranean Sea in Tunisia with 400 items/m3 and 7960 items/kg of sediments, respectively. The number of MPs in biota ranged between 0 and 7525 per individual across all the aquatic compartments. For the air compartment, a school classroom had 56,000 items/g of dust in Iran due to the confined space. Very high risks in the sediment samples (Eri > 1500) were recorded in the Caspian Sea and Arab/Persian Gulf due to their closed or semi-closed nature that promotes sedimentation. The risk factors obtained are sensitive to the reference concentration which calls for the development of more reliable risk assessment approaches. Finally, more studies are needed in understudied MENA environmental compartments such as groundwater, deserts, and estuaries.
Collapse
Affiliation(s)
- Ali Malli
- Baha and Walid Bassatne Department of Chemical Engineering and Advanced Energy, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon.
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA.
| | - Ameed Shehayeb
- Baha and Walid Bassatne Department of Chemical Engineering and Advanced Energy, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon
- CIRAIG, Department of Chemical Engineering, Polytechnique Montréal, Montréal, Canada
| | - Alissar Yehya
- Department of Civil and Environmental Engineering, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, MA, Cambridge, USA
| |
Collapse
|
18
|
Zhu W, Liu W, Chen Y, Liao K, Yu W, Jin H. Microplastics in Antarctic krill (Euphausia superba) from Antarctic region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161880. [PMID: 36731553 DOI: 10.1016/j.scitotenv.2023.161880] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Pollution of microplastics (MPs) has become a potential threat to Antarctic marine ecosystems. However, the occurrence of MPs in Antarctic krill (Euphausia superba), a keystone species in Antarctic ecosystems, remains unclear. In this study, the abundance and characteristics of MPs were examined in Antarctic krill samples (n = 437) collected from two Antarctic regions. MPs were extracted using an alkali digestion method and analyzed using Fourier-transform infrared spectroscopy. The mean abundance of MPs in Antarctic krill samples from the South Shetland Islands (n = 355) and the South Orkney Islands (n = 82) were 0.29 ± 0.14 and 0.20 ± 0.083 items/individual, respectively. >90 % of MPs found in Antarctic krill were < 150 μm in size. Fibers represented 77 % and 87 % of the MPs in Antarctic krill samples from the South Shetland Islands and the South Orkney Islands, respectively. Black, blue, and red were the predominant colors of MPs in Antarctic krill, accounting for 32 %, 22 %, and 21 % of the total MPs, respectively. Seven polymer compositions were identified for the MPs in Antarctic krill, with the predominance of polyethylene (37 % of total MPs), followed by polypropylene (22 %) and polyester (21 %). To our knowledge, this is the first study to investigate the occurrence of MPs in Antarctic krill samples. The results of this study are important for evaluating the risks of MP exposure in Antarctic krill.
Collapse
Affiliation(s)
- Wenbin Zhu
- Zhejiang Marine Fisheries Research Institute, Scientific Observing and Experimental Station of Fishery Resources for Key Fishing Grounds, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resources of Zhejiang Province, Zhoushan, Zhejiang 316021, PR China
| | - Wenbo Liu
- Zhejiang Marine Fisheries Research Institute, Scientific Observing and Experimental Station of Fishery Resources for Key Fishing Grounds, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resources of Zhejiang Province, Zhoushan, Zhejiang 316021, PR China
| | - Yuanchen Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Kaizhen Liao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Wenfei Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China.
| |
Collapse
|
19
|
Kor K, Jannat B, Ershadifar H, Ghazilou A. Microplastic occurrence in finfish and shellfish from the mangroves of the northern Gulf of Oman. MARINE POLLUTION BULLETIN 2023; 189:114788. [PMID: 36871342 DOI: 10.1016/j.marpolbul.2023.114788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
This study was conducted to assess microplastic (MP) pollution in some aquatic animals inhabiting planted and natural mangrove swamps in the northern Gulf of Oman. The KOH-NaI solution was used to retrieve MPs from the gastrointestinal tracts of animals. The highest MP prevalence was recorded in crabs (41.65 %) followed by fish (33.89 %) and oysters (20.8 %). The abundance of MPs in examined animals varied from zero in Sphyraena putnamae to 11 particles in a Rhinoptera javanica specimen. When polluted-only animals were considered, the mean abundance of MPs significantly varied among species and between locations. The mean density of ingested MPs was higher in the planted mangrove animals (1.79 ± 2.89 vs. 1.21 ± 2.25 n/individual; mean ± SD). Among the examined fish species, R. javanica ingested the highest number of MPs (3.83 ± 3.93 n/individual; mean ± SD). The polyethylene/ polypropylene fragments or fibers of average 1900 μm size were recorded as predominant (>50 % occurrence) MP particles.
Collapse
Affiliation(s)
- Kamalodin Kor
- Iranian National Institute for Oceanography and Atmospheric Science (INIOAS), Tehran, Iran
| | - Behrooz Jannat
- Halal Research Center of IRI, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Hamid Ershadifar
- Iranian National Institute for Oceanography and Atmospheric Science (INIOAS), Tehran, Iran
| | - Amir Ghazilou
- Iranian National Institute for Oceanography and Atmospheric Science (INIOAS), Tehran, Iran.
| |
Collapse
|
20
|
Rodríguez-Pérez C, Sáenz de Rodrigáñez M, Pula HJ. Occurrence of nano/microplastics from wild and farmed edible species. Potential effects of exposure on human health. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 103:273-311. [PMID: 36863837 DOI: 10.1016/bs.afnr.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
The occurrence of nano/microplastics (N/MPs) has become a global concern due to their risk on the aquatic environment, food webs and ecosystems, thus, potentially affecting human health. This chapter focuses on the most recent evidence about the occurrence of N/MPs in the most consumed wild and farmed edible species, the occurrence of N/MPs in humans, the potential impact of N/MPs on human health as well as future research recommendations for assessing N/MPs in wild and farmed edible species. Additionally, the N/MP particles in human biological samples, which include the standardization of methods for collection, characterization, and analysis of N/MPs that might allow evaluating the potential risk of the intake of N/MPs in human health, are discussed. Thus, the chapter consequently includes relevant information about the content of N/MPs of more than 60 edible species such as algae, sea cucumber, mussels, squids, crayfish, crabs, clams, and fishes.
Collapse
Affiliation(s)
- Celia Rodríguez-Pérez
- Department of Nutrition and Food Science, Faculty of Health Sciences, University of Granada (Melilla Campus), Melilla, Spain; Biomedical Research Centre, Institute of Nutrition and Food Technology (INYTA) 'José Mataix', University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.
| | - Miguel Sáenz de Rodrigáñez
- Department of Physiology, Faculty of Health Sciences, University of Granada (Melilla Campus), Melilla, Spain
| | - Héctor J Pula
- Fish Nutrition and Feeding Research Group, Faculty of Science, University of Granada, Granada, Spain; Aula del Mar Cei-Mar of the University of Granada, Faculty of Sciences, Granada, Spain
| |
Collapse
|
21
|
Dos Anjos Guimarães G, de Moraes BR, Ando RA, Sant'Anna BS, Perotti GF, Hattori GY. Microplastic contamination in the freshwater shrimp Macrobrachium amazonicum in Itacoatiara, Amazonas, Brazil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:434. [PMID: 36856928 DOI: 10.1007/s10661-023-11019-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
The present study analyzed the presence of microplastics (MPs) in the shrimp Macrobrachium amazonicum, which is an economically important food that is consumed in several regions of the Brazilian Amazon. A total of 600 specimens of M. amazonicum were captured at two sampling sites (urban and rural area). A total of 2597 MP particles were recorded in the shrimps, with a significant difference between the two sites. The presence of MPs in the body parts also differed significantly. No significant difference was found between MPs abundance and sex of the shrimps. The size of the MPs did not differ significantly between the collection sites and between the body parts. Dark blue fiber-type MPs were the most abundant. A positive correlation was observed between the abundance of MPs and the total weight of shrimps. Raman spectroscopy identified the dark blue fibers as polypropylene and the FTIR technique identified the light blue fragments as nylon. The results indicate that the presence of MPs in the M. amazonicum shrimp is associated with the capture sites near the urban area and is present in the diet of the Amazonian population that regularly consumes this crustacean in traditional dishes.
Collapse
Affiliation(s)
- Gabriel Dos Anjos Guimarães
- Institute of Exact Sciences and Technology, Federal University of Amazonas, Rua Nossa Senhora do Rosário, 3863, Tiradentes, Itacoatiara, Amazonas, 69103-128, Brazil
| | - Beatriz Rocha de Moraes
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Professor Lineu Prestes, 748 - B4T, São Paulo, Butantã, 05508-000, Brazil
| | - Rômulo Augusto Ando
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Professor Lineu Prestes, 748 - B4T, São Paulo, Butantã, 05508-000, Brazil
| | - Bruno Sampaio Sant'Anna
- Institute of Exact Sciences and Technology, Federal University of Amazonas, Rua Nossa Senhora do Rosário, 3863, Tiradentes, Itacoatiara, Amazonas, 69103-128, Brazil
| | - Gustavo Frigi Perotti
- Institute of Exact Sciences and Technology, Federal University of Amazonas, Rua Nossa Senhora do Rosário, 3863, Tiradentes, Itacoatiara, Amazonas, 69103-128, Brazil
| | - Gustavo Yomar Hattori
- Institute of Exact Sciences and Technology, Federal University of Amazonas, Rua Nossa Senhora do Rosário, 3863, Tiradentes, Itacoatiara, Amazonas, 69103-128, Brazil.
| |
Collapse
|
22
|
The effects of replacing fishmeal by mealworm ( Tenebrio molitor) on digestive enzymes activity and hepatopancreatic biochemical indices of Litopenaeus vannamei. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2022-0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Abstract
Reducing the use of fishmeal (FM) in aquafeed means a significant saving in the amount of FM at the global level and reducing environmental impacts. One of the potential protein sources to replace FM in shrimp diet is the use of insects’ meal. Therefore, the present study aimed to examine the effects of replacing FM with mealworm (MW; Tenebrio molitor) on the growth, digestive enzymes activity and hepatopancreatic biochemical indices of Pacific white shrimp (Litopenaeus vannamei). Shrimp were fed for 60 days with a control diet (T0) and 4 practical diets (T15, T30, T60 and T100) where 15, 30, 60 and 100% of the FM was substituted by MW, respectively. Results showed that there were significant differences in weight gain (WG) and hepatopancreatic index (HPI) among treatments and the lowest and highest values for were observed in T0 and T30, respectively. Our findings indicated a significant increase (P<0.05) in activity of glutathione peroxidase (GPX), catalase (CAT), superoxide dismutase (SOD), total nitric oxide (TNO) and total antioxidant capacity (TAC) and a meaningful decrease (P<0.05) of malondialdehyde (MDA) in hepatopancreas of L. vannamei juveniles fed diets containing MW. The alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in the T0 did not show a significant difference (P>0.05) with other experimental treatments. Protease and lipase indicated an increasing trend with increasing the amount of MW up to 60%. The protease activity showed a significant difference (P<0.05) between the treatments containing MW and the control treatment. These findings indicated that MW could be a feasible candidate for replacing FM in diets of the Pacific white shrimp without any detrimental effects.
Collapse
|
23
|
Bahrehmand MR, Tabatabaie T, Hashemi SE, Amiri F, Pazira AR. Occurrence and spatial distribution of microplastics in sediment and fish along the Persian Gulf-a case study: Bushehr Province, Iran. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023:10.1007/s10653-022-01427-1. [PMID: 36811701 DOI: 10.1007/s10653-022-01427-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/28/2022] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs) contamination in the marine environment is a global threat. The present study is the first to comprehensively investigate the MPs contamination in the marine environment in Bushehr province along the Persian Gulf. For this purpose, 16 stations were selected along the coast and 10 fish samples were collected. The results obtained from MPs in sediment samples indicate the mean abundance of MPs in different sediment samples was 57.19 Particles/Kg. The dominant MPs color in sediment samples was black, accounting for 47.54%, followed by white (36.07%). As for MPs in fish, the highest MPs digested in different fish samples were 9. In addition, over 83.3% of MPs observed in fishes were black followed by red and blue (6.67%). Overall, the presence of MPs in fish and sediment can be attributed to improper disposal of industrial effluents; an efficient measurement is required in order to improve the quality of the marine environment.
Collapse
Affiliation(s)
| | - Tayebeh Tabatabaie
- Department of Environment, Bushehr Branch, Islamic Azad University, Bushehr, Iran.
| | - Seyed Enayat Hashemi
- Department of Environment, Bushehr Branch, Islamic Azad University, Bushehr, Iran
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Fazel Amiri
- Department of Environment, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Abdul Rahim Pazira
- Department of Environment, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| |
Collapse
|
24
|
Colombo CV, Fernández-Severini MD, Forero-López AD, Ardusso MG, Rimondino GN, Malanca FE, Buzzi NS. Microplastics in commercial seafood: Pleoticus muelleri as a case study in an estuarine environment highly affected by human pressure (Southwestern Atlantic). ENVIRONMENTAL RESEARCH 2023; 216:114738. [PMID: 36400216 DOI: 10.1016/j.envres.2022.114738] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 10/20/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Plastic pollution in seafood has become a worldwide safety concern due to its possible harm to humans. This is the first study which has investigated the length-weight relationship, growth patterns and condition factor, together with the concentrations of microplastics (MPs) and mesoplastics (MesoPs) in Pleoticus muelleri from the Bahia Blanca Estuary (BBE), Argentina. Forty-nine individuals were collected from three sampling stations in the BBE, and each abdominal muscle with the gastrointestinal tract was analyzed. P. muelleri showed an isometric growth pattern (b = 3.0054) with values of K similar among the individuals collected (ranged between 0.80 and 0.91), considering them in good condition compared to other crustacean species around the world. 96% of shrimp presented transparent or black synthetic fibers as prevalent types, with an abundance average of (3.0 ± 2.90) MPs/g w. w. And (0.053 ± 0.16) MesoPs/g w. w. as well as a dominant size range of 0.5-1.5 mm, in accordance with recent studies in the same area. The linear regression analysis showed that K was independent of the concentration of MPs ingested by P. muelleri, with R2 ranging between 0.024 and 0.194 indicating that MPs contamination does not affect the nutritional condition of shrimp. SEM/EDX detected the presence of elements like C, O, K, and Mg, tissue residues and fractures on the surface of the analyzed fibers. FTIR confirmed different types of polymers in shrimp related to textile fabrics probably from untreated sewage discharges from nearby cities. The results of this research provide useful information for a better understanding of MPs contamination in seafood, suggesting P. muelleri as a suitable species for monitoring MPs in estuarine ecosystems. Likewise, more research is required to know the effects of MPs on food safety in humans.
Collapse
Affiliation(s)
- Carolina Victoria Colombo
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-BB Camino La Carrindanga, Km 7.5, Edificio E1, B8000FWB, Bahía Blanca, Buenos Aires, Argentina
| | - Melisa Daiana Fernández-Severini
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-BB Camino La Carrindanga, Km 7.5, Edificio E1, B8000FWB, Bahía Blanca, Buenos Aires, Argentina.
| | - Ana Deisy Forero-López
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-BB Camino La Carrindanga, Km 7.5, Edificio E1, B8000FWB, Bahía Blanca, Buenos Aires, Argentina
| | - Maialen Gisel Ardusso
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-BB Camino La Carrindanga, Km 7.5, Edificio E1, B8000FWB, Bahía Blanca, Buenos Aires, Argentina
| | - Guido Noé Rimondino
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas. Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Fabio Ernesto Malanca
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas. Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Natalia Sol Buzzi
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-BB Camino La Carrindanga, Km 7.5, Edificio E1, B8000FWB, Bahía Blanca, Buenos Aires, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS), San Juan 670, B8000ICN, Bahía Blanca, Buenos Aires, Argentina
| |
Collapse
|
25
|
Yücel N. Detection of microplastic fibers tangle in deep-water rose shrimp (Parapenaeus longirostris, Lucas, 1846) in the northeastern Mediterranean Sea. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:10914-10924. [PMID: 36088443 DOI: 10.1007/s11356-022-22898-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Microplastic (MP) pollution in marine environments has been a major global concern in recent years. Microplastic particles pose a threat in aquatic animals by accumulating in their digestive system, acting like a pollution vector, and they can also transfer to upper trophic levels. For that reason, commercially important deep-water rose shrimp Parapenaeus longirostris were employed in this study to examine the MP pollution status of two different regions (Samandağ and Mersin offshore waters) of the northeastern Mediterranean Sea. MPs were detected in all examined specimens (average of 18.8 MPs ind-1), and fiber tangle-shaped like balls were observed by 22% and 9% at Samandağ and Mersin, respectively. P. longirostris individuals from Samandağ showed higher occurrence (100%) and higher accumulation (29.7 ± 24.4 MPs ind-1). MP abundance extracted from the shrimp individuals from Samandağ region was higher than that of previously reported shrimp species. The majority of extracted microplastics were fiber (100%), black (46%) in color and 1-2.5 mm in size. Polyethylene was identified as the most common polymer type by Fourier transform infrared spectroscopy (FTIR). This study is the first report to evaluate microplastic occurrence and fiber tangles in P. longirostris from northeastern Mediterranean Sea. Results obtained in this study will enhance the understanding of MP pollution among different trophic levels.
Collapse
Affiliation(s)
- Nebil Yücel
- Faculty of Marine Science and Technology, Department of Water Resources Management and Organization, Iskenderun Technical University, Hatay, Turkey.
| |
Collapse
|
26
|
Microplastics and nanoplastics in food, water, and beverages, part II. Methods. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
Valencia-Castañeda G, Ibáñez-Aguirre K, Rebolledo UA, Capparelli MV, Páez-Osuna F. Microplastic contamination in wild shrimp Litopenaeus vannamei from the Huizache-Caimanero Coastal lagoon, SE Gulf of California. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:425-430. [PMID: 35786731 DOI: 10.1007/s00128-022-03568-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
We identified and characterized microplastics (MPs) in the gastrointestinal tract (GT), gills (GI), and exoskeleton (EX) of Litopenaeus vannamei in a coastal lagoon from the SE Gulf of California. The most common MPs were fibers and fragments with an average size of 403 ± 296 μm, in which the transparent and blue colors predominated. The abundance (items/g as wet weight (ww)) in the GT, GI, and EX was 114.7 ± 33.2, 13.7 ± 5.3 and 3.0 ± 0.5, respectively. The abundance of MPs per shrimp was 13.3 ± 1.1, while the abundance per individual (ww) was 0.9 ± 0.2 MPs/g. Considering the consumption of shrimp in Mexico, MP abundance, and shrimp consumption (discarding GI and EX), we estimated MP ingestion as 280 items/person/year. The results from this study can be used as background information for future MP biomonitoring in shrimp species of ecological and commercial importance.
Collapse
Affiliation(s)
- Gladys Valencia-Castañeda
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de Mexico, Unidad Académica Mazatlán, Mexico City, Mexico
| | - Karla Ibáñez-Aguirre
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de Mexico, Unidad Académica Mazatlán, Mexico City, Mexico
| | - Uriel Arreguin Rebolledo
- Centro de Ciencias Básicas, Departamento de Química, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Mariana V Capparelli
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de Mexico, Estación El Carmen, Ciudad del Carmen, Campeche, Mexico
| | - Federico Páez-Osuna
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de Mexico, Unidad Académica Mazatlán, Mexico City, Mexico.
- Miembro de El Colegio de Sinaloa, Sinaloa, Mexico.
| |
Collapse
|
28
|
Wu J, Yin X, Liu Y, Chen X, Xie C, Liang Y, Li J, Jiang Z. Seasonal variation and ecological risk assessment of microplastics ingested by economic fishes in Lake Chaohu, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155181. [PMID: 35421469 DOI: 10.1016/j.scitotenv.2022.155181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Microplastic (MP) contaminations in freshwater organisms have attracted substantial attention worldwide. However, seasonal field studies of MPs concentrations in aquatic life are scarce. In this study, we analyzed the seasonal variation and ecological risk of MPs concentrations in economic fish species from Lake Chaohu in China between wet and dry seasons. Within both seasons, MPs in fish were systematically analyzed using methods of KOH digestion, NaCl density floatation and raman spectroscopy. MPs abundance in economic fishes were significantly higher in dry season than that in wet season, which can be ascribed to the MPs' amplification effects in lacustrine ecosystems during dry season. Whereas, our results recorded similar and homogenized characteristic composition of MPs in economic fishes between wet and dry seasons. In both seasons, fiber was the main morphological type, black and blue were the most common MPs color, and MPs ranging from <0.5 mm accounting for the most abundant size. In addition, polypropylene (PP) and polyethylene terephthalate (PET) accounted for the most abundant polymer type detected by economic fishes in both seasons. In terms of feeding groups and habitat preferences, planktivorous and pelagic fish species exhibited sensitive variations of MPs concentrations between wet and dry seasons, thus being highlighted as good bioindicators of MPs contaminants in freshwater ecosystems. Our results revealed higher ecological risks of MPs in wet season than that in dry season when indicating from polymer risk index (H). By providing detailed and direct toxicity information, our study highlights the usage of polymer risk index for ecological risk assessment in aquatic organisms.
Collapse
Affiliation(s)
- Jiajun Wu
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, PR China
| | - Xiaowei Yin
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, PR China
| | - Yunzhao Liu
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, PR China
| | - Xin Chen
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, PR China
| | - Chang Xie
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, PR China
| | - Yangyang Liang
- Key Laboratory of Freshwater Aquaculture and Enhancement of Anhui Province, Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, PR China
| | - Jing Li
- Key Laboratory of Freshwater Aquaculture and Enhancement of Anhui Province, Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, PR China
| | - Zhongguan Jiang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, PR China; Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration (Anhui University), Hefei 230601, PR China; German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Puschstrasse 4, Leipzig 04103, Germany.
| |
Collapse
|
29
|
D'Costa AH. Microplastics in decapod crustaceans: Accumulation, toxicity and impacts, a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:154963. [PMID: 35367539 DOI: 10.1016/j.scitotenv.2022.154963] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
The presence of microplastics in the aquatic environment poses a serious threat not only to aquatic organisms but also to human beings that consume them. The uptake and effects of microplastics have been studied in almost all groups of aquatic organisms. This review details the different aspects of microplastics exposure in an ecologically and economically important group of crustaceans, the Decapods. A majority of Decapod crustaceans such as prawns, shrimp, crabs, lobsters and crayfish are consumed as seafood and play important roles in food chains and food webs. Numerous studies are available on the accumulation of microplastics in tissues such as the gills, hepatopancreas and gastrointestinal tract in these organisms. Experimental studies have also highlighted the toxic effects of microplastics such as oxidative stress, immunotoxicity and reproductive and developmental toxicity in them. This review also summarizes the ecological impacts and implications in human beings as well as lacunae with regard to microplastic uptake in Decapods.
Collapse
|
30
|
Sharifi R, Keshavarzifard M, Sharifinia M, Zakaria MP, Mehr MR, Abbasi S, Yap CK, Yousefi MR, Masood N, Magam SM, Alkhadher SAA, Daliri M. Source apportionment and health risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the coastal ecosystem of the Brunei Bay, Brunei. MARINE POLLUTION BULLETIN 2022; 181:113913. [PMID: 35810648 DOI: 10.1016/j.marpolbul.2022.113913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Pollution characteristics and associated ecological risks of PAHs in sediments from Brunei Bay, Brunei were investigated. The concentrations of ∑16 PAHs ranged from 826.7 to 2955.3 μg kg-1, indicating moderate to high level of pollution. Source apportionment of PAHs by molecular isomeric ratios and positive matrix factorization model indicated impact of potential anthropogenic PAH sources including combustion of biomass and fossil fuels. The data indicated relatively no significant ecotoxicological risk for most of PAH compounds. To estimate the individual c-PAH toxicity, the toxic equivalent quantity (c-TEQ) was calculated. Results of the TEQ analysis showed that BaP followed by DBA and BaA are the most carcinogenic of PAHs examined in the study area. The evaluation of human health risk of PAHs revealed that the cancer risk of PAHs for adults and children was higher than the USEPA threshold (<1E-06) and lower than 1E-3, implying low to moderate risk.
Collapse
Affiliation(s)
- Reza Sharifi
- University of Applied Science and Technology, Shiraz, Fars, Iran
| | - Mehrzad Keshavarzifard
- Shrimp Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Bushehr 75169-89177, Iran.
| | - Moslem Sharifinia
- Shrimp Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Bushehr 75169-89177, Iran
| | - Mohamad Pauzi Zakaria
- Environmental Forensics Research Center, Faculty of Environmental Studies, Universiti Putra, Malaysia
| | - Meisam Rastegari Mehr
- Department of Applied Geology, Faculty of Earth Science, Kharazmi University, Tehran 15614, Iran
| | - Sajjad Abbasi
- Department of Earth Sciences, College of Science, Shiraz University, Shiraz 71454, Iran; Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin 20-031, Poland
| | - Chee Kong Yap
- Department of Biology, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | - Mohamad Reza Yousefi
- School of Chemical Engineering University of Zanjan, University Blvd, Zanjan, Iran
| | - Najat Masood
- Department of Chemistry, College of Science, University of Ha'il, Ha'il 55471, Saudi Arabia
| | - Sami Muhsen Magam
- Basic Science Department, Preparatory Year, University of Ha'il, 1560 Hail, Saudi Arabia
| | | | - Moslem Daliri
- Fisheries Department, Faculty of Marine Sciences and Technology, University of Hormozgan, Bandar Abbas, Iran
| |
Collapse
|
31
|
Belzagui F, Gutiérrez-Bouzán C, Carrillo-Navarrete F. Novel Treatment to Immobilize and Use Textiles Microfibers Retained in Polymeric Filters through Their Incorporation in Composite Materials. Polymers (Basel) 2022; 14:polym14152971. [PMID: 35893935 PMCID: PMC9330112 DOI: 10.3390/polym14152971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 02/05/2023] Open
Abstract
Microplastics (MPs, size < 5 mm) are among the most environmentally challenging pollutants. Their continuous and cumulative inflow or generation in the environment is what makes them drastically problematic. These pollutants can come from a wide variety of sources; hence, they are potential vectors that pose extensive risks to environmental and human health. Microfibers (MFs) are one type of MPs. Among the most well-known types of MFs are those detached from textile articles from household laundering or industrial processes. Currently, there are many ways to retain the MFs detached from textile articles. However, as far we know, there are no methods of valorizing the retained MFs. As such, we propose a novel and sustainable treatment method to immobilize MFs in a polymeric matrix, turning them into a composite. To determine the mechanical properties of the expected composites, different proportions of polyester MFs were mixed with low-density polyethylene, which is the material proposed for the immobilization of MFs. The results show that the optimum manufacturing composition was 10% (v/v) polyester MFs in the polymeric matrix. This composition improved some of the tensile mechanical properties of the polymeric matrix. Once the composites are obtained, these can be used for different purposes.
Collapse
Affiliation(s)
- Francisco Belzagui
- Institut d’Investigació Tèxtil i Cooperació Industrial de Terrassa (INTEXTER), Universitat Politècnica de Catalunya, Colom 15, 08222 Terrassa, Spain; (F.B.); (F.C.-N.)
| | - Carmen Gutiérrez-Bouzán
- Institut d’Investigació Tèxtil i Cooperació Industrial de Terrassa (INTEXTER), Universitat Politècnica de Catalunya, Colom 15, 08222 Terrassa, Spain; (F.B.); (F.C.-N.)
- Correspondence: ; Tel.: +34-937398096
| | - Fernando Carrillo-Navarrete
- Institut d’Investigació Tèxtil i Cooperació Industrial de Terrassa (INTEXTER), Universitat Politècnica de Catalunya, Colom 15, 08222 Terrassa, Spain; (F.B.); (F.C.-N.)
- Department of Chemical Engineering, Escola Superior d’Enginyeries Industrial, Aeroespacial i Audiovisual de Terrassa (ESEIAAT), Universitat Politècnica de Catalunya, Colom 1, 08221 Terrassa, Spain
| |
Collapse
|
32
|
Ogunola SO, Reis-Santos P, Wootton N, Gillanders BM. Microplastics in decapod crustaceans sourced from Australian seafood markets. MARINE POLLUTION BULLETIN 2022; 179:113706. [PMID: 35567960 DOI: 10.1016/j.marpolbul.2022.113706] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 06/15/2023]
Abstract
Microplastic abundance and characteristics were assessed in five decapod crustaceans purchased from seafood markets and collected in coastal waters around Australia (South Australia, New South Wales, Queensland, Northern Territory, and Western Australia). Three species of prawns (king, banana and tiger prawns) and two species of crabs (blue-swimmer and mud crabs) were analysed. Muscle tissues and gastro-intestinal tracts in prawns, and gastro-intestinal tracts in crabs, were chemically digested, with microplastic identification verified using Fourier Transform Infrared spectroscopy. Forty-eight percent of crustaceans contained microplastics. Prawns and crabs had 0.8 ± 0.1 and 1.6 ± 0.1 pieces per individual, respectively, with spatial patterns evident. Microplastics were predominantly fibres (98%) of blue (58%) and black (24%) colours with polyolefin including polyester the most prevalent polymers. Overall, compared to a systematic review we performed of microplastics in decapod crustaceans worldwide, microplastic loads in crustaceans from Australia were in the lower range of plastic contamination.
Collapse
Affiliation(s)
- Solomon O Ogunola
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, SA 5005, Australia.
| | - Patrick Reis-Santos
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, SA 5005, Australia
| | - Nina Wootton
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, SA 5005, Australia
| | - Bronwyn M Gillanders
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, SA 5005, Australia
| |
Collapse
|
33
|
Sharifinia M, Keshavarzifard M, Hosseinkhezri P, Khanjani MH, Yap CK, Smith WO, Daliri M, Haghshenas A. The impact assessment of desalination plant discharges on heavy metal pollution in the coastal sediments of the Persian Gulf. MARINE POLLUTION BULLETIN 2022; 178:113599. [PMID: 35366549 DOI: 10.1016/j.marpolbul.2022.113599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/15/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
In recent decades the development of desalination plants (DPs) for desalination of seawater has increased dramatically, while little attention has been paid to the effects of this activity on the accumulation of heavy metals (HMs) in the sediments of affected ecosystems. The present study was implemented to evaluate (1) heavy metal accumulation in sediments impacted by DPs discharges, (2) spatial and temporal changes of HMs and the contamination degree by different types of pollution indexes (single and integrated indices), and (3) ecological risk assessment of cadmium (Cd), lead (Pb), zinc (Zn) and copper (Cu) in sediments affected by DPs discharges. A total of 288 sediment samples were collected seasonally at 24 stations from November 2019 to October 2020. Analysis of HMs concentrations in sediments near the desalination plant discharge provided evidence of local contamination. Maximum concentration of Cu and Pb elements were found in sediments near the desalination plant discharge point. Hierarchical cluster analysis revealed clear segregation of stations impacted by desalination plant discharges and away from discharges. The values of PLI index in sediments of all sampling stations were < 1, indicating that there was no metal pollution by this index. The potential ecological risk index (PERI) ranged from 5.33 ± 0.51 to 11.81 ± 4.98 in sampling sediments and were classified as "low potential ecological risk". These results demonstrate that the DPs discharge increased HMs concentrations in the sediments in close proximity to outlets. The necessary and practical regulations and policies regarding the rejection of the DPs discharge and disposal of chemical compounds must be implemented and enforced.
Collapse
Affiliation(s)
- Moslem Sharifinia
- Shrimp Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Bushehr 75169-89177, Iran.
| | - Mehrzad Keshavarzifard
- Shrimp Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Bushehr 75169-89177, Iran.
| | - Parisa Hosseinkhezri
- Shrimp Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Bushehr 75169-89177, Iran
| | - Mohammad Hossein Khanjani
- Department of Fisheries Sciences and Engineering, Faculty of Natural Resources, University of Jiroft, Jiroft, Kerman, Iran
| | - Chee Kong Yap
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Walker O Smith
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200300, China
| | - Moslem Daliri
- Fisheries Department, Faculty of Marine Sciences and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Arash Haghshenas
- Shrimp Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Bushehr 75169-89177, Iran
| |
Collapse
|
34
|
Vitali C, Peters R, Janssen HG, W.F.Nielen M. Microplastics and nanoplastics in food, water, and beverages; part I. Occurrence. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
35
|
Ghasemi M, Keshavarzifard M. Are the tourist beaches safe for swimming? A case study of health risks of polycyclic aromatic hydrocarbons (PAHs) in tourist beaches of Bushehr City. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:398. [PMID: 35488981 DOI: 10.1007/s10661-022-09943-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
The aims of the present research were to evaluate the health risk of long-term exposure to polycyclic aromatic hydrocarbons (PAHs) concerning the human, ecotoxicological risk for marine biota, and identify their possible sources. Surface sediment bioassay samples were collected from 15 stations of tourist beaches surrounding Bushehr City and analyzed using high performance liquid chromatography (HPLC). The results indicated the concentrations of ∑PAH ranged from 193.5 to 725.5 ng g-1 with mean value of 351.1 ± 155.2 ng g-1, which could be considered as moderate level of pollution. Measured levels of PAH in sediments were compared with sediment quality guidelines (SQGs), indicating low to medium ecotoxicological risk on marine organisms. Moreover, mean ERM quotient (M-ERM-Q) and mean PEL quotient (M-PEL-Q) were implemented, demonstrating potentially biological adverse effects. A preliminary evaluation of human health risk using incremental lifetime cancer risk (ILCR) and toxic equivalent quotient (TEQcarc) indicated that PAH-contaminated sediment in some stations of touristic beaches of Bushehr City would induce potential carcinogenic effects especially for children. Composition and diagnostic analysis indicated that PAHs originated from both pyrogenic and petrogenic, with higher portion of incomplete combustion PAHs.
Collapse
Affiliation(s)
- Moslem Ghasemi
- Department of Geography and Tourism Planning, Kharazmi University, Tehran, Iran
| | - Mehrzad Keshavarzifard
- Shrimp Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), 75169-89177, Bushehr, Iran.
| |
Collapse
|
36
|
Yin J, Li JY, Craig NJ, Su L. Microplastic pollution in wild populations of decapod crustaceans: A review. CHEMOSPHERE 2022; 291:132985. [PMID: 34801569 DOI: 10.1016/j.chemosphere.2021.132985] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/01/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Along with the increasing amount of plastic production and waste disposal, the presence of microplastics has been confirmed in all compartments of ecosystems. The microplastics in biota is of particular concern due to the potential eco-risks associated with long term exposure and the potential for transportation along food webs. Decapoda represents a diverse taxonomic group within the subphylum Crustacea, and some of which are highly valued in fishery and biological production. The interaction between microplastic pollution and wild populations of decapod crustaceans have been documented less than fish or bivalves but are critical to understand the fates of microplastics in marine eco-systems and enrich the baselines for consumption analyses. Our review systematically summarizes the occurrence, abundance and characteristics of microplastics detected in edible and non-edible sections of decapod crustaceans from field observations. Sub-groups between crabs and shrimps were also included for comparison. The occurrence of microplastics in the edible sections were less than those in non-edible sections, and there are differences between crabs and shrimps. Fibrous microplastics and items with a size category less than 1 mm were dominant pollutants across all available literature. The methodology selection, biological features and uptake pathways play roles in the microplastic body burden in Decapoda. Our work enriches the understanding of microplastic pollution in wild populations of decapod crustaceans but their contribution to the human exposure to microplastics needs to be addressed with more accurate measurements.
Collapse
Affiliation(s)
- Jie Yin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Juan-Ying Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Nicholas J Craig
- School of Biosciences, The University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Lei Su
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200142, China.
| |
Collapse
|
37
|
Ebrahimi P, Abbasi S, Pashaei R, Bogusz A, Oleszczuk P. Investigating impact of physicochemical properties of microplastics on human health: A short bibliometric analysis and review. CHEMOSPHERE 2022; 289:133146. [PMID: 34871607 DOI: 10.1016/j.chemosphere.2021.133146] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) are contaminants of emerging concern that attracted the attention of researchers over the last decade. They can occur in saliva and stool, and on scalp hair together with skin. Further, MPs can end up in the human diet through seafood, honey, salt, and mineral water. They can be taken up into the plants' roots and lead to the occurrence of MPs in fruits and vegetables. Concentration of the airborne MPs was also reported in the environment. These pieces of evidence clarify that introduction of MPs to the human body through ingestion and inhalation routes should not be overlooked. Following oral exposure to MPs, hazardous chemicals can be released in the gastrointestinal tract leading to toxicity. Inhalation route deserves more attention due to the oxidative potential of the inhaled plastic particles. Although the major characteristics of MPs are being investigated, there are currently few regulations to control concentration of MPs in the environment and their human health impacts remained unclear indicating the need for further investigation. For instance, it is not clear if the present air quality limits for PM2.5 and PM10 can be used for the areas with high suspended plastic particles. Without comprehensive knowledge about the retention and egestion rates of field populations, it is difficult to deduce the ecological and human health consequences. In general, more information about MP contamination in various species and the consequences of MP uptake and retention is required to gain a better idea of MPs in the food web and their environmental fate. The finer details on the MP translocation between tissues and the fate of the small plastic particles might be obtained when considering the existing information about the application of MPs in the pharmaceutical industry. In this review article, we presented a short bibliometric analysis and investigated the link between physicochemical properties of MPs and human health.
Collapse
Affiliation(s)
- Pooria Ebrahimi
- Department of Earth, Environmental and Resources Sciences, University of Naples Federico II, 80126, Naples, Italy
| | - Sajjad Abbasi
- Department of Earth Sciences, College of Science, Shiraz University, Shiraz, 71454, Iran; Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, 20-031, Poland.
| | - Reza Pashaei
- Marine Research Institute of Klaipeda University, Klaipeda, Lithuania
| | - Aleksandra Bogusz
- Department of Ecotoxicology, Institute of Environmental Protection - National Research Institute, ul. Krucza 5/11D, 00-548, Warszawa, Poland
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, 20-031, Poland
| |
Collapse
|