1
|
McDowell R, Kleinman PJA, Haygarth P, McGrath JM, Smith D, Heathwaite L, Iho A, Schoumans O, Nash D. A review of the development and implementation of the critical source area concept: A reflection of Andrew Sharpley's role in improving water quality. JOURNAL OF ENVIRONMENTAL QUALITY 2024. [PMID: 38418931 DOI: 10.1002/jeq2.20551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/21/2024] [Accepted: 01/31/2024] [Indexed: 03/02/2024]
Abstract
Critical source areas (CSAs) are small areas of a field, farm, or catchment that account for most contaminant loss by having both a high contaminant availability and transport potential. Most work on CSAs has focused on phosphorus (P), largely through the work in the 1990s initiated by Dr. Sharpley and colleagues who recognized the value in targeting mitigation efforts. The CSA concept has been readily grasped by scientists, farmers, and policymakers across the globe. However, experiences and success have been mixed, often caused by the variation in where and how CSAs are defined. For instance, analysis of studies from 1990 to 2023 shows that the proportion of the annual contaminant load coming from a CSA decreases from field to farm to catchment scale. This finding is consistent with increased buffering of CSAs and greater contribution of other sources with scale, or variation in the definition of CSAs. We therefore argue that the best application of CSAs to target mitigation actions should be at small areas that truly account for most contaminant loss. This article sheds light on the development and utilization of CSAs, paying tribute to Dr. Sharpley's remarkable contributions to the improvement of water quality, and reflecting upon where the CSA concept has succeeded or not in reducing contaminant (largely P) loss.
Collapse
Affiliation(s)
- Richard McDowell
- AgResearch, Lincoln Science Centre, Lincoln, New Zealand
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | | | | | | | - Douglas Smith
- USDA Agricultural Research Service, Temple, Texas, USA
| | | | - Antti Iho
- LUKE, Natural Resources Institute Finland, Helsinki, Finland
| | - Oscar Schoumans
- Wageningen University and Research, Wageningen, The Netherlands
| | - David Nash
- University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Bahadori M, Chen C, Lewis S, Wang J, Shen J, Hou E, Rashti MR, Huang Q, Bainbridge Z, Stevens T. The origin of suspended particulate matter in the Great Barrier Reef. Nat Commun 2023; 14:5629. [PMID: 37699913 PMCID: PMC10497579 DOI: 10.1038/s41467-023-41183-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 08/24/2023] [Indexed: 09/14/2023] Open
Abstract
River run-off has long been regarded as the largest source of organic-rich suspended particulate matter (SPM) in the Great Barrier Reef (GBR), contributing to high turbidity, pollutant exposure and increasing vulnerability of coral reef to climate change. However, the terrestrial versus marine origin of the SPM in the GBR is uncertain. Here we provide multiple lines of evidence (13C NMR, isotopic and genetic fingerprints) to unravel that a considerable proportion of the terrestrially-derived SPM is degraded in the riverine and estuarine mixing zones before it is transported further offshore. The fingerprints of SPM in the marine environment were completely different from those of terrestrial origin but more consistent with that formed by marine phytoplankton. This result indicates that the SPM in the GBR may not have terrestrial origin but produced locally in the marine environment, which has significant implications on developing better-targeted management practices for improving water quality in the GBR.
Collapse
Affiliation(s)
- Mohammad Bahadori
- Australian Rivers Institute, Griffith University, Nathan, QLD, 4111, Australia
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| | - Chengrong Chen
- Australian Rivers Institute, Griffith University, Nathan, QLD, 4111, Australia.
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia.
| | - Stephen Lewis
- Catchment to Reef Research Group, Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Townsville, QLD, Australia
| | - Juntao Wang
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW, Australia
| | - Jupei Shen
- School of Geographical Sciences, Fujian Normal University, Fuzhou, PR China
| | - Enqing Hou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Mehran Rezaei Rashti
- Australian Rivers Institute, Griffith University, Nathan, QLD, 4111, Australia
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Zoe Bainbridge
- Catchment to Reef Research Group, Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Townsville, QLD, Australia
| | - Tom Stevens
- Catchment to Reef Research Group, Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
3
|
O'Sullivan CM, Ghahramani A, Deo RC, Pembleton KG. Pattern recognition describing spatio-temporal drivers of catchment classification for water quality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160240. [PMID: 36403827 DOI: 10.1016/j.scitotenv.2022.160240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/12/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Classification using spatial data is foundational for hydrological modelling, particularly for ungauged areas. However, models developed from classified land use drivers deliver inconsistent water quality results for the same land uses and hinder decision-making guided by those models. This paper explores whether the temporal variation of water quality drivers, such as season and flow, influence inconsistency in the classification, and whether variability is captured in spatial datasets that include original vegetation to represent the variability of biotic responses in areas mapped with the same land use. An Artificial Neural Network Pattern Recognition (ANN-PR) method is used to match catchments by Dissolved Inorganic Nitrogen (DIN) patterns in water quality datasets partitioned into Wet vs Dry Seasons and Increasing vs Retreating flows. Explainable artificial intelligence approaches are then used to classify catchments via spatial feature datasets for each catchment. Catchments matched for sharing patterns in both spatial data and DIN datasets were corroborated and the benefit of partitioning the observed DIN dataset evaluated using Kruskal Wallis method. The highest corroboration rates for spatial data classification with DIN classification were achieved with seasonal partitioning of water quality datasets and significant independence (p < 0.001 to 0.026) from non-partitioned datasets was achieved. This study demonstrated that DIN patterns fall into three categories suited to classification under differing temporal scales with corresponding vegetation types as the indicators. Categories 1 and 3 included dominance of woodlands in their datasets and catchments suited to classify together change depending on temporal scale of the data. Category 2 catchments were dominated by vineforest and classified catchments did not change under different temporal scales. This demonstrates that including original vegetation as a proxy for differences in DIN patterns will help guide future classification where only spatially mapped data is available for ungauged catchments and will better inform data needs for water modelling.
Collapse
Affiliation(s)
- Cherie M O'Sullivan
- Centre for Sustainable Agricultural Systems, Institute for Life Sciences and the Environment University of Southern Queensland, Toowoomba, QLD 4350, Australia. Cherie.O'
| | - Afshin Ghahramani
- Centre for Sustainable Agricultural Systems, Institute for Life Sciences and the Environment University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - Ravinesh C Deo
- School of Mathematics, Physics and Computing, University of Southern Queensland, Springfield, QLD 4300, Australia
| | - Keith G Pembleton
- Centre for Sustainable Agricultural Systems, Institute for Life Sciences and the Environment University of Southern Queensland, Toowoomba, QLD 4350, Australia; School of Agriculture and Environmental Science, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| |
Collapse
|
4
|
Houk P, Castro F, McInnis A, Rucinski M, Starsinic C, Concepcion T, Manglona S, Salas E. Nutrient thresholds to protect water quality, coral reefs, and nearshore fisheries. MARINE POLLUTION BULLETIN 2022; 184:114144. [PMID: 36179386 DOI: 10.1016/j.marpolbul.2022.114144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
A ridge-to-reef framework was developed for 26 watersheds around Guam. Dissolved inorganic nitrogen (DIN) data were collected for one year at the base of streams while coral and fish surveys were conducted on adjacent reefs. Two independent analyses revealed a similar 0.10 mg/l DIN threshold beyond which negative impacts to water quality and coral reefs existed. The influence of DIN was next partitioned with respect to a second primary stressor, fishing pressure. While coral diversity was negatively influenced by DIN, the cover of some stress-tolerant corals increased, such as Porites rus, making coral cover alone a poor indicator of watershed pollution. Less intuitive, DIN predicted increased food-fish biomass that was accounted for by generalist herbivores/detritivores, representing homogenized assemblages, while fishing pressure reduced biomass. Our DIN thresholds resonated with a similar study in American Samoa suggesting broader guidance for water quality legislation may be emerging.
Collapse
Affiliation(s)
- Peter Houk
- University of Guam Marine Laboratory, UOG Station, Mangilao 96923, Guam.
| | - Fran Castro
- University of Guam Sea Grant, UOG Station, Mangilao 96923, Guam
| | - Andrew McInnis
- University of Guam Marine Laboratory, UOG Station, Mangilao 96923, Guam
| | | | - Christy Starsinic
- University of Guam Marine Laboratory, UOG Station, Mangilao 96923, Guam
| | | | - Storm Manglona
- University of Guam Marine Laboratory, UOG Station, Mangilao 96923, Guam
| | - Edwin Salas
- Guam Environmental Protection Agency, Barrigada 96913, Guam
| |
Collapse
|
5
|
Canning AD. Rediscovering wild food to diversify production across Australia's agricultural landscapes. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.865580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Conventional agriculture currently relies on the intensive and expansive growth of a small number of monocultures, this is both risky for food security and is causing substantial environmental degradation. Crops are typically grown far from their native origins, enduring climates, pests, and diseases that they have little evolutionary adaptation to. As a result, farming practices involve modifying the environment to suit the crop, often via practices including vegetation clearing, drainage, irrigation, tilling, and the application of fertilizers, pesticides, and herbicides. One avenue for improvement, however, is the diversification of monoculture agricultural systems with traditional foods native to the area. Native foods benefit from evolutionary history, enabling adaptation to local environmental conditions, reducing the need for environmental modifications and external inputs. Traditional use of native foods in Australia has a rich history, yet the commercial production of native foods remains small compared with conventional crops, such as wheat, barley and sugarcane. Identifying what native crops can grow where would be a first step in scoping potential native food industries and supporting farmers seeking to diversify their cropping. In this study, I modeled the potentially suitable distributions of 177 native food and forage species across Australia, given their climate and soil preferences. The coastal areas of Queensland's wet tropics, south-east Queensland, New South Wales, and Victoria were predicted to support the greatest diversity of native food and forage species (as high 80–120 species). These areas also correspond to the nation's most agriculturally intensive areas, including much of the Murray-Darling Basin, suggesting high potential for the diversification of existing intensive monocultures. Native crops with the most expansive potential distribution include Acacia trees, Maloga bean, bush plum, Emu apple, native millet, and bush tomatoes, with these crops largely being tolerant of vast areas of semi-arid conditions. In addition to greater food security, if diverse native cropping results in greater ecosystem service provisioning, through carbon storage, reduced water usage, reduced nutrient runoff, or greater habitat provision, then payment for ecosystem service schemes could also provide supplemental farm income.
Collapse
|
6
|
Robson BJ, Lewis S, Kroon F, Fabricius K, Warne M, Wolanski E. Jon Brodie Memorial: The sources, fates and consequences of pollutants in tropical shelf systems. MARINE POLLUTION BULLETIN 2022; 179:113669. [PMID: 35468473 DOI: 10.1016/j.marpolbul.2022.113669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Barbara J Robson
- Australian Institute of Marine Science, Australia; AIMS@JCU, Australia.
| | - Stephen Lewis
- Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Australia
| | | | | | | | - Eric Wolanski
- Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Australia
| |
Collapse
|
7
|
Thornton CM, Elledge AE. Leichhardt, land clearing and livestock: the legacy of European agriculture in the Brigalow Belt bioregion of central Queensland, Australia. ANIMAL PRODUCTION SCIENCE 2022. [DOI: 10.1071/an21468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Bainbridge Z, Lewis S, Stevens T, Petus C, Lazarus E, Gorman J, Smithers S. Measuring sediment grain size across the catchment to reef continuum: Improved methods and environmental insights. MARINE POLLUTION BULLETIN 2021; 168:112339. [PMID: 33962086 DOI: 10.1016/j.marpolbul.2021.112339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/17/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
Sediments collected within freshwater, estuarine and marine habitats were used to trial various chemical and physical pre-treatments to develop a systematic protocol for grain-size analysis using laser diffraction. Application of this protocol mitigates the influence of bio-physical processes that may transform grain-size distributions, enabling the characterisation and quantification of 'primary' mineral sediments across the complex freshwater-marine continuum to be more reliably assessed. Application of the protocol to two Great Barrier Reef (Australia) river catchments and their estuaries reveals the ecologically relevant <20 μm fraction comprises a larger component of exported sediment than existing methods indicate. These findings are highly relevant when comparing measured data to grain-size-specific modelled sediment loads and water-quality targets. Finally, adoption of the protocol also improves the environmental interpretation of the influence of 'terrigenous sediment' in marine settings, including quantification of newly-delivered flood plume sediment.
Collapse
Affiliation(s)
- Zoe Bainbridge
- Catchment to Reef Research Group, Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Townsville 4811, Australia.
| | - Stephen Lewis
- Catchment to Reef Research Group, Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Townsville 4811, Australia
| | - Thomas Stevens
- Catchment to Reef Research Group, Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Townsville 4811, Australia
| | - Caroline Petus
- Catchment to Reef Research Group, Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Townsville 4811, Australia
| | - Emily Lazarus
- Catchment to Reef Research Group, Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Townsville 4811, Australia
| | - Jessica Gorman
- Catchment to Reef Research Group, Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Townsville 4811, Australia
| | - Scott Smithers
- Catchment to Reef Research Group, Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Townsville 4811, Australia; Earth and Environmental Sciences, College of Science and Engineering, James Cook University, Townsville 4811, Australia
| |
Collapse
|
9
|
Lewis SE, Bartley R, Wilkinson SN, Bainbridge ZT, Henderson AE, James CS, Irvine SA, Brodie JE. Land use change in the river basins of the Great Barrier Reef, 1860 to 2019: A foundation for understanding environmental history across the catchment to reef continuum. MARINE POLLUTION BULLETIN 2021; 166:112193. [PMID: 33706212 DOI: 10.1016/j.marpolbul.2021.112193] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/22/2020] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Land use in the catchments draining to the Great Barrier Reef lagoon has changed considerably since the introduction of livestock grazing, various crops, mining and urban development. Together these changes have resulted in increased pollutant loads and impaired coastal water quality. This study compiled records to produce annual time-series since 1860 of human population, livestock numbers and agricultural areas at the scale of surface drainage river basins, natural resource management regions and the whole Great Barrier Reef catchment area. Cattle and several crops have experienced progressive expansion interspersed by declines associated with droughts and diseases. Land uses which have experienced all time maxima since the year 2000 include cattle numbers and the areas of sugar cane, bananas and cotton. A Burdekin Basin case study shows that sediment loads initially increased with the introduction of livestock and mining, remained elevated with agricultural development, and declined slightly with the Burdekin Falls Dam construction.
Collapse
Affiliation(s)
- Stephen E Lewis
- Catchment to Reef Research Group, TropWATER, James Cook University, Townsville, Queensland 4811, Australia.
| | - Rebecca Bartley
- CSIRO Land and Water, PO Box 2583, Brisbane, Queensland 4068, Australia
| | - Scott N Wilkinson
- CSIRO Land and Water, GPO Box 1700, Canberra, Australian Capital Territory 2601, Australia
| | - Zoe T Bainbridge
- Catchment to Reef Research Group, TropWATER, James Cook University, Townsville, Queensland 4811, Australia
| | | | - Cassandra S James
- Catchment to Reef Research Group, TropWATER, James Cook University, Townsville, Queensland 4811, Australia
| | - Scott A Irvine
- Grazing Land Systems, Land Surface Sciences, Science and Technology Division, Queensland Department of Environment and Science, Ecosciences Precinct, GPO Box 2454, Brisbane, Australia
| | - Jon E Brodie
- Deceased, Formally James Cook University, Townsville, Queensland, Australia
| |
Collapse
|