1
|
Bosch-Belmar M, Milanese M, Sarà A, Mobilia V, Sarà G. Effect of Acute Thermal Stress Exposure on Ecophysiological Traits of the Mediterranean Sponge Chondrilla nucula: Implications for Climate Change. BIOLOGY 2023; 13:9. [PMID: 38248440 PMCID: PMC10813260 DOI: 10.3390/biology13010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/03/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024]
Abstract
As a result of climate change, the Mediterranean Sea has been exposed to an increase in the frequency and intensity of marine heat waves in the last decades, some of which caused mass mortality events of benthic invertebrates, including sponges. Sponges are an important component of benthic ecosystems and can be the dominant group in some rocky shallow-water areas in the Mediterranean Sea. In this study, we exposed the common shallow-water Mediterranean sponge Chondrilla nucula (Demospongiae: Chondrillidae) to six different temperatures for 24 h, ranging from temperatures experienced in the field during the year (15, 19, 22, 26, and 28 °C) to above normal temperatures (32 °C) and metabolic traits (respiration and clearance rate) were measured. Both respiration and clearance rates were affected by temperature. Respiration rates increased at higher temperatures but were similar between the 26 and 32 °C treatments. Clearance rates decreased at temperatures >26 °C, indicating a drop in food intake that was not reflected by respiration rates. This decline in feeding, while maintaining high respiration rates, may indicate a negative energy balance that could affect this species under chronic or repeated thermal stress exposure. C. nucula will probably be a vulnerable species under climate change conditions, affecting its metabolic performance, ecological functioning and the ecosystem services it provides.
Collapse
Affiliation(s)
- Mar Bosch-Belmar
- Laboratory of Ecology, Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Viale delle Scienze 16, 90128 Palermo, Italy; (V.M.); (G.S.)
| | - Martina Milanese
- Studio Associato Gaia, Piazza della Vittoria 15/23, 16121 Genoa, Italy; (M.M.); (A.S.)
| | - Antonio Sarà
- Studio Associato Gaia, Piazza della Vittoria 15/23, 16121 Genoa, Italy; (M.M.); (A.S.)
| | - Valeria Mobilia
- Laboratory of Ecology, Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Viale delle Scienze 16, 90128 Palermo, Italy; (V.M.); (G.S.)
| | - Gianluca Sarà
- Laboratory of Ecology, Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Viale delle Scienze 16, 90128 Palermo, Italy; (V.M.); (G.S.)
| |
Collapse
|
2
|
Mancuso FP, Giommi C, Mangano MC, Airoldi L, Helmuth B, Sarà G. Evenness, biodiversity, and ecosystem function of intertidal communities along the Italian coasts: Experimental short-term response to ambient and extreme air temperatures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160037. [PMID: 36356730 DOI: 10.1016/j.scitotenv.2022.160037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Biodiversity can promote ecosystem functioning in both terrestrial and marine environments, emphasizing the necessity of biodiversity conservation in order to preserve critical ecosystem functions and associated services. However, the role of biodiversity in buffering ecosystem functioning under extreme events caused by climate change remains a major scientific issue, especially for intertidal systems experiencing stressors from both terrestrial and marine drivers. We performed a regional-scale field experiment along the Italian coast to investigate the response of unmanipulated intertidal communities (by using a natural biodiversity gradient) to low tide aerial exposure to both ambient and short-term extreme temperatures. We specifically investigated the relationship between Biodiversity and Ecosystem Functioning (BEF) using different biodiversity indexes (species richness, functional diversity and evenness) and the response of the intertidal communities' ecosystem functioning (community respiration rates). Furthermore, we investigated which other environmental variables could influence the BEF relationship. We show that evenness explained a greater variation in intertidal community ecosystem functioning under both temperature conditions. Species richness (the most often used diversity metric in BEF research) was unrelated to ecosystem functioning, while functional diversity was significantly related to respiration under ambient but not extreme temperatures. We highlight the importance of the short-term thermal history of the communities (measured as body temperature) in the BEF relationship as it was consistently identified as the best predictor or response under both temperature conditions. However, Chlorophyll a in seawater and variation in sea surface temperature also contributed to the BEF relationship under ambient but not under extreme conditions, showing that short-duration climate-driven events can overcome local physiological adaptations. Our findings support the importance of the BEF relationship in intertidal communities, implying that systems with more diverse and homogeneous communities may be able to mitigate the effects of extreme temperatures.
Collapse
Affiliation(s)
- Francesco Paolo Mancuso
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, viale delle Scienze Ed. 16, 90128 Palermo, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy.
| | - Chiara Giommi
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, viale delle Scienze Ed. 16, 90128 Palermo, Italy; Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, CRIMAC, Calabria Marine Centre, Amendolara, Italy
| | - Maria Cristina Mangano
- NBFC, National Biodiversity Future Center, Palermo 90133, Italy; Stazione Zoologica Anton Dohrn, Dipartimento Ecologia Marina Integrata, Sede Interdipartimentale della Sicilia, Lungomare Cristoforo Colombo (complesso Roosevelt), 90142 Palermo, Italy
| | - Laura Airoldi
- Department of Biology, Chioggia Hydrobiological Station Umberto D'Ancona, University of Padova, 30015 Chioggia, Italy; University of Bologna, Dipartimento di Beni Culturali & Centro Interdipartimentale di Ricerca per le Scienze Ambientali (CIRSA), UO CoNISMa, Via S. Alberto, 163, 48123 Ravenna, Italy
| | - Brian Helmuth
- Marine Science Center, Northeastern University, Nahant, MA 01908, USA
| | - Gianluca Sarà
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, viale delle Scienze Ed. 16, 90128 Palermo, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| |
Collapse
|
3
|
Bosch-Belmar M, Giacoletti A, Giommi C, Girons A, Milisenda G, Sarà G. Short-term exposure to concurrent biotic and abiotic stressors may impair farmed molluscs performance. MARINE POLLUTION BULLETIN 2022; 179:113724. [PMID: 35537306 DOI: 10.1016/j.marpolbul.2022.113724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/19/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
Global warming, through increasing temperatures, may facilitate the spread and proliferation of outbreak-forming species which may find favourable substrate conditions on artificial aquaculture structures. The presence of stinging organisms (cnidarian hydroids) in the facilities fouling community are a source of pollution that can cause critical problems when in-situ underwater cleaning processes are performed. Multiple stressor experiments were carried out to investigate the cumulative effect on farmed mussels' functional traits when exposed to realistic stressful conditions, including presence of harmful cnidarian cells and environmental conditions of increasing temperature and short-term hypoxia. Exposure to combined stressors significantly altered mussels' performance, causing metabolic depression and low filtering activity, potentially delaying, or inhibiting their recovery ability and ultimately jeopardizing organisms' fitness. Further research on the stressors properties and occurrence is needed to obtain more realistic responses from organisms to minimize climate change impacts and increase ecosystem and marine economic activities resilience to multiple stressors.
Collapse
Affiliation(s)
- Mar Bosch-Belmar
- Department of Earth and Marine Sciences (DISTEM), University of Palermo, Palermo, Italy.
| | - Antonio Giacoletti
- Department of Earth and Marine Sciences (DISTEM), University of Palermo, Palermo, Italy
| | - Chiara Giommi
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, CRIMAC, Calabria Marine Center, Amendolara, Italy
| | | | - Giacomo Milisenda
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, Sicily Marine Center, Palermo, Italy.
| | - Gianluca Sarà
- Department of Earth and Marine Sciences (DISTEM), University of Palermo, Palermo, Italy
| |
Collapse
|