1
|
Ali A, Wang N, Wang Q, Xu G, Xu H. An approach to evaluating seasonal responses to acute toxicity of antibiotic nitrofurazone on periphytic ciliated protist communities in marine environments. Eur J Protistol 2024; 94:126081. [PMID: 38626537 DOI: 10.1016/j.ejop.2024.126081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/06/2024] [Accepted: 04/07/2024] [Indexed: 04/18/2024]
Abstract
Periphytic protists including ciliates are the primary components of microbial communities in which they play a vital role in the progression of food webs by moving resources from lower to higher trophic levels. However, the toxic effects of veterinary antibiotics on periphytic protists across four seasons are minimally understood. Therefore, in this study, a 1-year survey was conducted with the antibiotic nitrofurazone (NFZ) applied at concentrations of 0.0, 1.5, 3.0, 6.0, and 12.0 mg/L. Samples of protist communities were collected using microscope glass slides during four seasons in the coastal waters of the Yellow Sea, Qingdao, northern China. The abundance of protists dropped with an increase in NFZ concentrations, and almost all species were dead at a concentration of 12.0 mg/L. The 12 h-LC50 values of NFZ for the protist biota were similar among the four seasons, despite significant seasonal variability in the community structure. The present results suggest that the periphytic protist biota may be used as a biomarker for assessing the ecotoxicity of NFZ in marine environments regardless of the year season.
Collapse
Affiliation(s)
- Awais Ali
- Laboratory of Microbial Ecology, Ocean University of China, Qingdao 266003, China
| | - Ning Wang
- Laboratory of Microbial Ecology, Ocean University of China, Qingdao 266003, China
| | - Qiaoling Wang
- Laboratory of Microbial Ecology, Ocean University of China, Qingdao 266003, China
| | - Guangjian Xu
- College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Henglong Xu
- Laboratory of Microbial Ecology, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
2
|
Kazmi SSUH, Saqib HSA, Pastorino P, Grossart HP, Yaseen ZM, Abualreesh MH, Liu W, Wang Z. Influence of the antibiotic nitrofurazone on community dynamics of marine periphytic ciliates: Evidence from community-based bioassays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166687. [PMID: 37659544 DOI: 10.1016/j.scitotenv.2023.166687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
Marine periphytic ciliates play a pivotal role in shaping coastal ecosystems dynamics, thereby acting as robust biological indicators of aquatic ecosystem health and functionality. However, the understanding of the effects of veterinary antibiotics on composition and structure of periphytic ciliate communities remains limited. Therefore, this research investigates the influence of the veterinary antibiotic nitrofurazone on the community dynamics of marine periphytic ciliates through bioassay experiments conducted over a one-year cycle. Various concentrations of nitrofurazone were administered to the tested ciliate assemblages, and subsequent changes in community composition, abundance, and diversity were quantitatively analyzed. The research revealed significant alterations in periphytic ciliate communities following exposure to nitrofurazone. Concentration-dependent (0-8 mg L-1) decrease in ciliates abundance, accompanied by shifts in species composition, community structure, and community patterns were observed. Comprehensive assessment of diversity metrics indicated significant changes in species richness and evenness in the presence of nitrofurazone, potentially disrupting the stability of ciliate communities. Furthermore, nitrofurazone significantly influenced the community structure of ciliates in all seasons (winter: R2 = 0.489; spring: R2 = 0.666; summer: R2 = 0.700, autumn: R2 = 0.450), with high toxic potential in treatments 4 and 8 mg L-1. Differential abundances of ciliates varied across seasons and nitrofurazone treatments, some orders like Pleurostomatida were consistently affected, while others (i.e., Strombidida and Philasterida) showed irregular distributions or were evenly affected (e.g., Urostylida and Synhymeniida). Retrieved contrasting patterns between nitrofurazone and community responses underscore the broad response repertoire exhibited by ciliates to antibiotic exposure, suggesting potential cascading effects on associated ecological processes in the periphyton community. These findings significantly enhance the understanding of the ecological impacts of nitrofurazone on marine periphytic ciliate communities, emphasizing the imperative for vigilant monitoring and regulation of veterinary antibiotics to protect marine ecosystem health and biodiversity. Further research is required to explore the long-term effects of nitrofurazone exposure and evaluate potential strategies to reduce the ecological repercussions of antibiotics in aquatic environments, with a particular focus on nitrofurazone.
Collapse
Affiliation(s)
- Syed Shabi Ul Hassan Kazmi
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; Biochemistry and Biological Engineering Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah 64001, Iraq.
| | - Hafiz Sohaib Ahmed Saqib
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Paolo Pastorino
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, 10154 Torino, Italy
| | - Hans-Peter Grossart
- Plankton and Microbial Ecology, Leibniz Institute for Freshwater Ecology and Inland Fisheries, (IGB), Alte Fischerhuette 2, Neuglobsow 16775, Germany; Institute of Biochemistry and Biology, University of Potsdam, Maulbeerallee 2, Potsdam 14469, Germany
| | - Zaher Mundher Yaseen
- Civil and Environmental Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Muyassar H Abualreesh
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Zhen Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China.
| |
Collapse
|
3
|
Kazmi SSUH, Saqib HSA, Warren A, Wang Z, Pastorino P, Barcelò D, Goraya MU, Liu W, Xu H. Antibiotic nitrofurazone drives the functional dynamics of periphytic protozoan fauna in marine environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162405. [PMID: 36858212 DOI: 10.1016/j.scitotenv.2023.162405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/07/2023] [Accepted: 02/18/2023] [Indexed: 03/02/2023]
Abstract
The use of functional traits of a community as a method to measure its functional dynamics in response to environmental change has gained attention because trait-based approaches offer systematic opportunities to understand the interactions between species diversity and ecosystem function. However, the relationship between functional traits of periphytic protozoa and contamination of aquatic habitats with antibiotics is poorly understood. In this study, we investigated the influence of the antibiotic nitrofurazone on functional traits of marine periphytic protozoan fauna. For this purpose, the protozoan assemblages were collected from coastal waters of the Yellow Sea at Qingdao, northern China, during four seasons of a one-year cycle using glass microscope slides as artificial substrates. The test protozoan communities were then exposed to various treatments of nitrofurazone in laboratory bioassay experiments. Our results demonstrated that the modalities of the functional traits of protozoan communities were generally driven by nitrofurazone toxicity. Briefly, R-mode linked to Q-mode (RLQ) and fourth-corner analyses revealed strong positive correlations between functional traits and nitrofurazone treatments. Trait syndromes in terms of body length, width, weight, height, and size to volume ratios were significantly influenced by nitrofurazone exposure. In particular, small and medium body size species of different feeding types, i.e., algivores, bacterivores, raptors or non-selectives, were more sensitive than other protozoan species to higher concentrations of nitrofurazone. Our findings demonstrate that antibiotic toxicity is likely to affect periphytic protozoan community function, shape the functional processes, and induce toxic responses in the community. The findings of this study suggest that periphytic protozoan communities and their functional traits are suitable bioindicators for evaluating the ecotoxicity of nitrofurazone in marine environments.
Collapse
Affiliation(s)
- Syed Shabi Ul Hassan Kazmi
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Hafiz Sohaib Ahmed Saqib
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Alan Warren
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
| | - Zhen Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China.
| | - Paolo Pastorino
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, 10154 Torino, Italy
| | - Damià Barcelò
- Catalan Institute for Water Research (ICRA-CERCA), 17003 Girona, Spain; Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Mohsan Ullah Goraya
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Henglong Xu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|