1
|
Morelli G, Ciani F, Cocozza C, Costagliola P, Fagotti C, Friani R, Lattanzi P, Manca R, Monnanni A, Nannoni A, Rimondi V. Riparian trees in mercury contaminated riverbanks: An important resource for sustainable remediation management. ENVIRONMENTAL RESEARCH 2024; 257:119373. [PMID: 38852831 DOI: 10.1016/j.envres.2024.119373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/17/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
Mining operations generate sediment erosion rates above those of natural landscapes, causing persistent contamination of floodplains. Riparian vegetation in mine-impacted river catchments plays a key role in the storage/remobilization of metal contaminants. Mercury (Hg) pollution from mining is a global environmental challenge. This study provides an integrative assessment of Hg storage in riparian trees and soils along the Paglia River (Italy) which drains the abandoned Monte Amiata Hg mining district, the 3rd former Hg producer worldwide, to characterize their role as potential secondary Hg source to the atmosphere in case of wildfire or upon anthropic utilization as biomass. In riparian trees and nearby soils Hg ranged between 0.7 and 59.9 μg/kg and 2.2 and 52.8 mg/kg respectively. In trees Hg concentrations were below 100 μg/kg, a recommended Hg limit for the quality of solid biofuels. Commercially, Hg contents in trees have little impact on the value of the locally harvested biomass and pose no risk to human health, although higher values (195-738 μg/kg) were occasionally found. In case of wildfire, up to 1.4*10-3 kg Hg/ha could be released from trees and 27 kg Hg/ha from soil in the area, resulting in an environmentally significant Hg pollution source. Data constrained the contribution of riparian trees to the biogeochemical cycling of Hg highlighting their role in management and restoration plans of river catchments affected by not-remediable Hg contamination. In polluted river catchments worldwide riparian trees represent potential sustainable resources for the mitigation of dispersion of Hg in the ecosystem, considering i) their Hg storage capacity, ii) their potential to be used for local energy production (e.g. wood-chips) through the cultivation and harvesting of biomasses and, iii) their role in limiting soil erosion from riparian polluted riverbanks, probably representing the best pragmatic choice to minimize the transport of toxic elements to the sea.
Collapse
Affiliation(s)
- Guia Morelli
- CNR - Institute of Geosciences and Earth Resources, Via G. La Pira 4, Florence, 50121, Italy
| | - Francesco Ciani
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, Florence, 50121, Italy.
| | - Claudia Cocozza
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali (DAGRI), Italy
| | - Pilario Costagliola
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, Florence, 50121, Italy
| | - Cesare Fagotti
- ARPA Toscana-Area Vasta Sud, Loc. Ruffolo, 53100, Siena, Italy
| | - Rossella Friani
- ARPA Toscana-Area Vasta Sud, Loc. Ruffolo, 53100, Siena, Italy
| | - Pierfranco Lattanzi
- CNR - Institute of Geosciences and Earth Resources, Via G. La Pira 4, Florence, 50121, Italy
| | - Rosarosa Manca
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, Florence, 50121, Italy
| | - Alessio Monnanni
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, Florence, 50121, Italy
| | - Alessia Nannoni
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, Florence, 50121, Italy
| | - Valentina Rimondi
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, Florence, 50121, Italy
| |
Collapse
|
2
|
Pereira-Garcia C, Sanz-Sáez I, Sánchez P, Coutinho FH, Bravo AG, Sánchez O, Acinas SG. Genomic and transcriptomic characterization of methylmercury detoxification in a deep ocean Alteromonas mediterranea ISS312. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123725. [PMID: 38467369 DOI: 10.1016/j.envpol.2024.123725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/12/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
Methylmercury (MeHg) is one of the most worrisome pollutants in marine systems. MeHg detoxification is mediated by merB and merA genes, responsible for the demethylation of MeHg and the reduction of inorganic mercury, respectively. Little is known about the biological capacity to detoxify this compound in marine environments, and even less the bacterial transcriptional changes during MeHg detoxification. This study provides the genomic and transcriptomic characterization of the deep ocean bacteria Alteromonas mediterranea ISS312 with capacity for MeHg degradation. Its genome sequence revealed four mer operons containing three merA gene and two merB gene copies, that could be horizontally transferred among distant related genomes by mobile genetic elements. The transcriptomic profiling in the presence of 5 μM MeHg showed that merA and merB genes are within the most expressed genes, although not all mer genes were equally transcribed. Besides, we aimed to identify functional orthologous genes that displayed expression profiles highly similar or identical to those genes within the mer operons, which could indicate they are under the same regulatory controls. We found contrasting expression profiles for each mer operon that were positively correlated with a wide array of functions mostly related to amino acid metabolism, but also to flagellar assembly or two component systems. Also, this study highlights that all merAB genes of the four operons were globally distributed across oceans layers with higher transcriptional activity in the mesopelagic deeper waters. Our study provides new insights about the transcriptional patterns related to the capacity of marine bacteria to detoxify MeHg, with important implications for the understanding of this process in marine ecosystems.
Collapse
Affiliation(s)
- Carla Pereira-Garcia
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, CSIC, Pg. Marítim de la Barceloneta 37-49, E08003 Barcelona, Catalunya, Spain; Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Catalunya, Spain.
| | - Isabel Sanz-Sáez
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, CSIC, Pg. Marítim de la Barceloneta 37-49, E08003 Barcelona, Catalunya, Spain; Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalunya, Spain
| | - Pablo Sánchez
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, CSIC, Pg. Marítim de la Barceloneta 37-49, E08003 Barcelona, Catalunya, Spain
| | - Felipe H Coutinho
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, CSIC, Pg. Marítim de la Barceloneta 37-49, E08003 Barcelona, Catalunya, Spain
| | - Andrea G Bravo
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, CSIC, Pg. Marítim de la Barceloneta 37-49, E08003 Barcelona, Catalunya, Spain
| | - Olga Sánchez
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Catalunya, Spain
| | - Silvia G Acinas
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, CSIC, Pg. Marítim de la Barceloneta 37-49, E08003 Barcelona, Catalunya, Spain.
| |
Collapse
|