1
|
Shao H, Wang Q, Wang L, Dai S, Ye X, Mao XZ. Typical migration patterns and fates of microplastics with varying properties in bays and their impacts on coastal ecologically sensitive areas. WATER RESEARCH 2025; 282:123635. [PMID: 40245805 DOI: 10.1016/j.watres.2025.123635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/19/2025]
Abstract
Rapid urbanization has intensified microplastic pollution in many global bays, yet the mechanisms driving microplastic behavior in these environments remain unclear. This study utilized field surveys, statistical analysis, and modeling methods to address this issue. The findings revealed three typical migration patterns of microplastics in bays. Microplastics less dense than seawater were easily transported by currents, drifting extensively throughout the bay, with about 37.2 % temporarily hovering in tidal channels and low-lying areas, ultimately leaving with ebb tides. Spherical microplastics denser than seawater were predominantly concentrated near the shore, primarily lingering in the subsurface layers. In contrast, fibrous microplastics, which are denser than seawater and the most prevalent type in human-impacted bays, displayed a unique behavior. The combined effects of their density and shape resulted in over 80 % being trapped in intertidal ecologically sensitive areas (ESAs). As a result, local ESAs, such as mangroves, bird habitats, and aquaculture, faced significant threats from fibrous microplastics and their sorption complexes associated with Cu, Pb, Cd, and Hg. Additionally, bay sediments acted as a source-sink community for microplastics. In Shenzhen Bay, China, approximately 27.1 × 1011 microplastic items were buried annually in sediments under normal hydrological conditions. However, if annual rainfall exceeded a threshold, these microplastics could be washed into ocean, serving as a source. Coastal raft aquaculture emerged as a significant contributor to marine microplastics, releasing about 3 %-8 % of terrestrial sources in Shenzhen Bay. This study enhances our understanding of microplastic behaviors and risks in bays.
Collapse
Affiliation(s)
- Huaihao Shao
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Qiankun Wang
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Linlin Wang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China.
| | - Shuangliang Dai
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Xin Ye
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Xian-Zhong Mao
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Shenzhen Key Laboratory of Marine IntelliSense and Computation, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| |
Collapse
|
2
|
Mubin AN, Islam ARMT, Hasan M, Islam MS, Ali MM, Siddique MAB, Alam MS, Rakib MRJ, Islam MS, Momtaz N, Senapathi V, Idris AM, Malafaia G. The path of microplastics through the rare biodiversity estuary region of the northern Bay of Bengal. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 260:104271. [PMID: 38056088 DOI: 10.1016/j.jconhyd.2023.104271] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/01/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023]
Abstract
Due to its harmful effects on ecosystems and human health, microplastic (MP) pollution has become a significant environmental problem on a global scale. Although MPs' pollution path and toxic effects on marine habitats have been examined worldwide, the studies are limited to the rare biodiversity estuary region of Hatiya Island from the northern Bay of Bengal. This study aimed to investigate the MP pollution path and its influencing factors in estuarine sediments and water in rare biodiversity Hatiya Island in the northern Bay of Bengal. Sixty water and sediment samples were collected from 10 sampling sites on the Island and analyzed for MPs. The abundance of MPs in sediment ranged from 67 to 143 pieces/kg, while the abundance in water ranged from 24.34 to 59 pieces/m3. The average concentrations of MPs in sediment and water were 110.90 ± 20.62 pieces/kg and 38.77 ± 10.09 pieces/m3, respectively. Most identified MPs from sediment samples were transparent (51%), while about 54.1% of the identified MPs from water samples were colored. The fragment was the most common form of MP in both compartments, with a value of 64.6% in sediment samples and 60.6% in water samples. In sediment and water samples, almost 74% and 80% of MP were <0.5 mm, respectively. Polypropylene (PP) was the most abundant polymer type, accounting for 51% of all identified polymers. The contamination factor, pollution load index, polymer risk score, and pollution risk score values indicated that the study area was moderately polluted with MPs. The spatial distribution patterns and hotspots of MPs echoed profound human pathways. Based on the results, sustainable management strategies and intervention measures were proposed to reduce the pollution level in the ecologically diverse area. This study provides important insights into evaluating estuary ecosystem susceptibility and mitigation policies against persistent MP issues.
Collapse
Affiliation(s)
- Al-Nure Mubin
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh; Department of Development Studies, Daffodil International University, Dhaka 1216, Bangladesh.
| | - Mehedi Hasan
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Mir Mohammad Ali
- Department of Aquaculture, Sher - e - Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Md Abu Bakar Siddique
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | - Md Sha Alam
- Institute of Mining, Mineralogy & Metallurgy (IMMM), Bangladesh Council of Scientific & Industrial Research (BCSIR), Joypurhat 5900, Bangladesh
| | - Md Refat Jahan Rakib
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Muhammad Saiful Islam
- Fiber and Polymer Research Division, BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | - Nasima Momtaz
- Biological Research Division, BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | | | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Goiânia, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
3
|
Pleskytė S, Uogintė I, Burbulytė A, Byčenkienė S. Characteristics and removal efficiency of microplastics at secondary wastewater treatment plant in Lithuania. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10958. [PMID: 38149312 DOI: 10.1002/wer.10958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/31/2023] [Accepted: 11/16/2023] [Indexed: 12/28/2023]
Abstract
Wastewater treatment plants (WWTPs) are the most significant barrier between anthropogenic microplastics and environmental ecosystems. The distribution and characteristics of microplastics in WWTPs remain uncertain and incompletely understood, particularly in northeastern Europe (Baltic States), where there is a lack of data on microplastic pollution and distribution. This study presents the removal efficiency and variation in characteristics of microplastics in different stages of the secondary WWTP during a 3-month sampling campaign in Lithuania. The abundance, size, shape, color, and chemical composition of microplastics in the wastewater at different treatment stages were thoroughly examined, in a size range from 20 to 1000 μm. On average, 2962 ± 25 particles/L of microplastic enter the studied WWTP. The obtained microplastic removal efficiency was 55.4% ± 3.9%, highlighting the necessity to enhance wastewater treatment strategies focusing on microplastic removal. Fragment-type microplastics smaller than 100 μm were removed from wastewater samples with the highest removal efficiency. Furthermore, our study includes recommendations to improve microplastic removal efficiency and contribute to mitigating microplastic pollution. PRACTITIONER POINTS: A large number of MPs in the size range of 20-1000 μm enter Lithuanian WWTP. Small-sized MPs within a range of 20-50 μm and 50-100 μm were removed with the highest efficiency of 54.07 ± 1.68% and 56.4 ± 2.43%, respectively. The shape and size of MPs have a major impact on the efficiency of their removal. Future research should prioritize the development of economical and energy-efficient systems, specifically designed for the removal of MPs in WWTPs.
Collapse
Affiliation(s)
- Sonata Pleskytė
- Center for Physical Sciences and Technology (FTMC), Vilnius, Lithuania
| | - Ieva Uogintė
- Center for Physical Sciences and Technology (FTMC), Vilnius, Lithuania
| | - Austėja Burbulytė
- Center for Physical Sciences and Technology (FTMC), Vilnius, Lithuania
| | | |
Collapse
|
4
|
Bayo J, López-Castellanos J, Olmos S, Rojo D. A holistic approach on the impact of microplastic discharge from WWTPs to the neighboring environment in Southeast Spain. WATER RESEARCH 2023; 244:120516. [PMID: 37651865 DOI: 10.1016/j.watres.2023.120516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023]
Abstract
The present study investigated the release of microplastics (MPs) from wastewater treatment plants (WWTPs) to the neighboring environment, including marine and coastal sediments, and fish. Here, we comprehensively investigated MP abundance in 34 samples of marine sediment, corresponding to 5,530.5 g of sediment (d.w.) collected at -8.0 m, -12.5 m, and -24.0 m, 69 samples of coastal sediment, accounting for 13,617.4 g (d.w.) from 17 different beaches from Mar Menor, and stomach and intestine of 17 fish samples of Sparus aurata, in the vicinity of Cartagena, a port city in Southeast Spain. The results showed that MPs were detected in all marine sediment samples, with an average abundance of 19.4 ± 2.4 items/kg (d.w.), in coastal sediments, with an average abundance of 52.5 ± 5.3 items/kg (d.w.), and fish samples, with an average of 8.2 ± 1.4 items per individual. The contribution of MPs from WWTPs to marine sediments is expected to be slow, as effluents were mostly dominated by fiber and film shapes, and by polymers less dense than seawater. There were no significant variations in the MP abundance of marine sediments after the atmospheric phenomenon named DANA, although a significant smaller MP size was reported, indicating a high mobility for tiny sizes. The same results were revealed for coastal sediment, although variations after DANA were statistically significant. Coastal sediment samples closer to WWTPs and agricultural fields with plastic mulching displayed higher MP concentrations, and an increase in the removal rate of MPs from WWTP effluents was negatively correlated with a decrease in MPs from fish collected. This study highlights the importance of sewage treatment plants in transporting MPs to the aquatic and terrestrial surrounding environment, which warrants further research on human health risks associated to MP pollution.
Collapse
Affiliation(s)
- Javier Bayo
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, Paseo Alfonso XIII 44 E-30203, Cartagena, Spain.
| | - Joaquín López-Castellanos
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, Paseo Alfonso XIII 44 E-30203, Cartagena, Spain
| | - Sonia Olmos
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, Paseo Alfonso XIII 44 E-30203, Cartagena, Spain
| | - Dolores Rojo
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, Paseo Alfonso XIII 44 E-30203, Cartagena, Spain
| |
Collapse
|
5
|
Bayo J, López-Castellanos J, Olmos S, Rojo D. Characterization and removal efficiencies of microplastics discharged from sewage treatment plants in Southeast Spain. WATER RESEARCH 2023; 244:120479. [PMID: 37634462 DOI: 10.1016/j.watres.2023.120479] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/29/2023]
Abstract
Microplastics (MPs) are ubiquitous pollutants that can effectively harm different ecosystems. The information on the relative contribution of wastewater treatment plants (WWTPs) to the surrounding environment is important, in order to understand ecological health risks and implement measures to reduce their presence. This focus article presents a quantitative assessment on the relative concentration and types of MPs delivered from four WWTPs located at the Southeast of Spain. Samples from WWTPs were collected throughout a four-year period, comprising more than 1,200 L of analyzed wastewater and 3,215 microparticles isolated. Density extraction with 1.08 g/mL NaCl salt solution was systematically used as the main separation method, in a simple and reliable manner, and repeat extraction cycles did not play any significant impact on the study outcomes. The four WWTPs had removal efficiencies between 64.3% and 89.2% after primary, secondary, and tertiary treatment phases, without diurnal or daily variations. Advanced treatment methods displayed a lower removal rate for fibers than for particulate MPs. The abundance of MPs was always higher and with a lower mean size in wastewater samples collected in Autumn than for the rest of seasons. MPs dumped from WWTPs in large quantities into the environment are meant to be regarded as an important point source for aquatic and terrestrial environments.
Collapse
Affiliation(s)
- Javier Bayo
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, Paseo Alfonso XIII 44 E-30203 Cartagena, Spain.
| | - Joaquín López-Castellanos
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, Paseo Alfonso XIII 44 E-30203 Cartagena, Spain
| | - Sonia Olmos
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, Paseo Alfonso XIII 44 E-30203 Cartagena, Spain
| | - Dolores Rojo
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, Paseo Alfonso XIII 44 E-30203 Cartagena, Spain
| |
Collapse
|
6
|
Kim H, Kim HG, Lee J, Lim S, Lee K, Kwon BO, Khim JS. Spatiotemporal variability on local-regional scale in subtidal meiofaunal assemblages along the southern coast of Korea. MARINE POLLUTION BULLETIN 2023; 193:115186. [PMID: 37399734 DOI: 10.1016/j.marpolbul.2023.115186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023]
Abstract
This study was conducted to investigate the spatiotemporal variability in subtidal meiofaunal assemblages off the southern coast of Korea at local and regional scales. Abiotic and biotic samples were collected by site (three sites at least 10 km apart) within region (three coastal regions at least 50 km apart) over 7 years (2015-2021). The density and taxon richness of meiofaunal assemblages differed significantly among sites, but not among regions or years. The meiofaunal assemblage composition differed significantly among sites, regions, and years. A distance-based multivariate multiple regression analysis revealed that the mean sediment grain size and total nitrogen, lead, nickel, chromium, and aluminum concentrations were key environmental variables determining the variation of the meiofaunal assemblages. This study can provide basic ecological data for understanding the spatiotemporal distribution of meiofauna assemblages and aid in the development of management strategies to mitigate marine pollution on the southern coast of Korea.
Collapse
Affiliation(s)
- Hyein Kim
- Department of Marine Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyeong-Gi Kim
- Department of Marine Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Junghyun Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Seohee Lim
- Department of Marine Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kanghyun Lee
- Marine Act co., 77, Seongsuil-ro, Seongdong-gu, Seoul 04790, Republic of Korea
| | - Bong-Oh Kwon
- Department of Marine Biotechnology, Kunsan National University, Kunsan 54150, Republic of Korea
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|