1
|
Wang L, Liang Z, Chai Z, Cong W, Zhu L, Guo Z, Song M, Ma J, Guo T, Zhang W, Zheng W, Jiang Z. Construction and evolution of artificial reef ecosystems: Response and regulation of marine microorganisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125610. [PMID: 39743195 DOI: 10.1016/j.envpol.2024.125610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/19/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Artificial reefs (ARs) are an important means of improving marine ecological environments and promoting the sustainable use of marine biological resources. After AR deployment, biological communities undergo dynamic changes as species succession and shifts in community structure. As the most sensitive frontier affected by the environment, the complex and dynamic changes of microbial communities play a crucial role in the health and stability of the ecosystem. This article reviews how AR construction affects the composition and function of marine microorganisms, their contributions to ecosystem stability, and the interaction mechanisms between microbial and macroecological systems. We focus on the responses and regulatory roles of microorganisms in AR ecosystems, including changes in microbial abundance, diversity, and distribution in the environment and on reef surfaces. Additionally, we examine their roles in nutrient cycling, the carbon sequestration, and their interactions with higher trophic organisms. We identify critical knowledge gaps and research deficiencies regarding microbial community risks that need to be addressed, which provide a framework for studying the complex relationships among marine environments, microbial communities and macrobiotic communities in the process of marine ranching construction.
Collapse
Affiliation(s)
- Lu Wang
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhenlin Liang
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zitong Chai
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Wei Cong
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Lixin Zhu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhansheng Guo
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Minpeng Song
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Junyang Ma
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Tingting Guo
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Wenyu Zhang
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Wenmeng Zheng
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhaoyang Jiang
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
2
|
Zhu M, Tang Y. Response of sediment microbial communities to the flow effect of the triangular artificial reef: A simulation-based experimental study. MARINE ENVIRONMENTAL RESEARCH 2024; 198:106546. [PMID: 38795576 DOI: 10.1016/j.marenvres.2024.106546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 05/28/2024]
Abstract
Artificial reefs (ARs), as an important tool for habitat restoration, play significant impacts on benthic microbial ecosystems. This study utilized 16S rRNA gene sequencing technology and computational fluid dynamics (CFD) flow simulation to investigate the effects of flow field distribution around ARs on microbial community structure. The results revealed distinct regional distribution patterns of microbial communities affected by different hydrodynamic conditions. Flow velocity and flow regime of water in sediment-water interface shaped the microbial community structure. The diversity and richness in R-HF were significantly decreased compared to other five regions (p < 0.05). At the phyla and OUT levels, most abundant taxa (1>%) showed an enrichment trend in R-HB. However, more than half of differentially abundant taxa were enriched in R-HB, which was significantly correlated with organic matter (OM). Bugbase phenotypic predictions indicated a low abundance of the anaerobic phenotype in R-HF and a high abundance of the biofilm-forming phenotype in R-HB.
Collapse
Affiliation(s)
- Meiling Zhu
- College of Fisheries, Ocean University of China, Qingdao, 266003, PR China
| | - Yanli Tang
- College of Fisheries, Ocean University of China, Qingdao, 266003, PR China.
| |
Collapse
|
3
|
Guo Z, Lu W, Minpeng S, Liyuan S, Zhenlin L, Wenjing C, Xiaoyong L, Bo Z, Jeong Ha K, Zhaoyang J. Seasonal dynamics response mechanism of benthic microbial community to artificial reef habitats. ENVIRONMENTAL RESEARCH 2024; 243:117867. [PMID: 38070848 DOI: 10.1016/j.envres.2023.117867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 02/06/2024]
Abstract
Artificial reefs (ARs) have been globally deployed to enhance and restore coastal resource and ecosystems. Microorganisms play an essential role in marine ecosystems, while the knowledge regarding the impact of ARs on microecology is still limited, particularly data concerning the response of benthic microbial community to AR habitats. In this study, the seasonal dynamics of benthic microbial community in AR and adjacent non-artificial reef (NAR) areas surrounding Xiaoshi Island were investigated with high-throughput sequencing technology. The results revealed that the diversity and structure of microbial community between AR and NAR both displayed pronounced seasonal dynamics. There was a greater influence of season factors on microbial communities than that of habitat type. The microbial communities in AR and NAR habitats were characterized by a limited number of abundant taxa (ranging from 5 to 12 ASVs) with high relative abundance (8.35-25.53%) and numerous rare taxa (from 5994 to 12412 ASVs) with low relative abundance (11.91%-24.91%). Proteobacteria, Bacteroidota and Desulfobacterota were the common predominant phyla, with the relative abundances ranging from 50.94% to 76.76%. A total of 52 biomarkers were discovered, with 15, 4, 6, and 27 biomarkers identified in spring, summer, autumn and winter, respectively. Co-occurrence network analysis indicated that AR displayed a more complex interaction pattern and higher susceptibility to external disturbances. Furthermore, the neutral model and βNTI analyses revealed that the assembly of microbial communities in both AR and NAR is significantly influenced by stochastic processes. This study could provide valuable insights into the impact of ARs construction on the benthic ecosystems and would greatly facilitate the development and implementation of the future AR projects.
Collapse
Affiliation(s)
- Zhansheng Guo
- Marine College, Shandong University, Weihai, Shandong, 264209, China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, China
| | - Wang Lu
- Marine College, Shandong University, Weihai, Shandong, 264209, China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, China
| | - Song Minpeng
- Marine College, Shandong University, Weihai, Shandong, 264209, China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, China
| | - Sun Liyuan
- Shandong Fisheries Development and Resources Conservation Center, Yantai, 264003, China
| | - Liang Zhenlin
- Marine College, Shandong University, Weihai, Shandong, 264209, China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, China
| | - Chen Wenjing
- Marine College, Shandong University, Weihai, Shandong, 264209, China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, China
| | - Liu Xiaoyong
- Shandong Haizhibao Ocean Science and Technology Co., Ltd, Weihai, 264300, China
| | - Zhang Bo
- Shandong Haizhibao Ocean Science and Technology Co., Ltd, Weihai, 264300, China
| | - Kim Jeong Ha
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea.
| | - Jiang Zhaoyang
- Marine College, Shandong University, Weihai, Shandong, 264209, China; Key Laboratory of Modern Marine Ranching Technology of Weihai, Weihai, 264209, China.
| |
Collapse
|