1
|
Consigna MJS, Tseng LC, Chou C, Huang CW, Shao YT, Hwang JS. Pathological and biochemical effects of polyethylene microplastic exposure in hydrothermal vent crab, Xenograpsus testudinatus. MARINE POLLUTION BULLETIN 2025; 212:117546. [PMID: 39824140 DOI: 10.1016/j.marpolbul.2025.117546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/20/2025]
Abstract
Microplastic pollution significantly threatens marine ecosystems, including those with unique adaptations. This study evaluates the implications of polyethylene microplastics (PE-MPs) on the hydrothermal vent crab, Xenograpsus testudinatus. Crabs were exposed to varying fluorescent green polyethylene microspheres (FGPE) concentrations for 7 days. Histological analysis revealed severe damage to the hepatopancreas and gills at higher FGPE concentrations. Antioxidant enzyme activities (SOD, CAT, GR, GST, GPx, LPO) and gene expression (sod, cat) were assessed to evaluate oxidative stress responses. Results indicated significant upregulation of SOD and CAT activities at lower FGPE concentrations, suggesting an initial antioxidant response. However, GR and GST activities were inhibited at higher concentrations, and oxidative stress markers increased. These findings proved that PE-MPs induce molecular oxidative damage and lead to possible oxidative responses. Despite their resilience to extreme environments, HV crabs are vulnerable to pollutant-induced stressors, which pose ecological risks to species interactions and population dynamics within vent ecosystems.
Collapse
Affiliation(s)
- Mark June S Consigna
- Institute of Marine Biology, National Taiwan Ocean University, Keelung 202301, Taiwan.
| | - Li-Chun Tseng
- Institute of Marine Biology, National Taiwan Ocean University, Keelung 202301, Taiwan; Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung 202301, Taiwan.
| | - Chi Chou
- Department of Pathology, Mackay Memorial Hospital, Danshuei District, New Taipei City 251020, Taiwan.
| | - Ching-Wen Huang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Yi-Ta Shao
- Institute of Marine Biology, National Taiwan Ocean University, Keelung 202301, Taiwan.
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung 202301, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan.
| |
Collapse
|
2
|
Maraschi AC, Rubio-Lopez C, Snitman SM, Souza IC, Pichardo-Casales B, Alcaraz G, Monferrán MV, Wunderlin DA, Caamal-Monsreal C, Rosas C, Fernandes MN, Capparelli MV. The impact of settleable atmospheric particulate on the energy metabolism, biochemical processes, and behavior of a sentinel mangrove crab. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135316. [PMID: 39098202 DOI: 10.1016/j.jhazmat.2024.135316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/05/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
We use the sentinel mangrove crab, Minuca rapax, as a model to investigate the effects of metallic settleable particulate matter (SePM) on wetland. Multiple levels of energetic responses, including (i) metabolic rate and energy budget, (ii) oxidative stress, and (iii) behavioral response by righting time, were assessed as well as the metal and metalloid content in crabs exposed to 0, 0.1 and 1 g.L-1 of SePM, under emerged and submerged conditions over five days, simulating the rigors of the intertidal habitat. Al, Fe, Mn, Cr, and Y exhibited a concentration-dependent increase. Metal concentrations were higher in submerged crabs due to the continuous ingestion of SePM and direct exposure through gills. Exposure concentration up to 1 g.L-1 decreased metabolic rate and enzymatic activities, reduced assimilation efficiency and energy for maintenance, and induces a slower response to righting time, probably by metal effects on nervous system and energy deficits. In conclusion, SePM exposure affects the redox status and physiology of M. rapax depending on he submersion regime and SePM concentration. The disruption to the energy budget and the lethargic behavior in M. rapax exposed to SePM implies potential ecological alterations in the mangrove ecosystem with unknown consequences for the local population.
Collapse
Affiliation(s)
- Anieli C Maraschi
- Department of Physiological Sciences, Federal University of São Carlos, Rod Washington Luis km 235, 13565-905 São Carlos, SP, Brazil
| | - Cesar Rubio-Lopez
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Av. Ciudad Universitaria 3000, C.P. 04510 Coyoacán, Ciudad de México, Mexico
| | - Solana M Snitman
- IIMyC: Instituto de Investigaciones Marinas y Costeras, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, 7600 Mar del Plata, Argentina
| | - Iara C Souza
- Department of Physiological Sciences, Federal University of São Carlos, Rod Washington Luis km 235, 13565-905 São Carlos, SP, Brazil
| | - Brian Pichardo-Casales
- Estación El Carmen, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Carretera Carmen-Puerto Real km 9.5, 24157 Ciudad del Carmen, Mexico
| | - Guillermina Alcaraz
- Laboratorio de Ecofisiología Animal, Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Ciudad Universitaria 3000, C.P. 04510 Coyoacán, Ciudad de México, Mexico
| | - Magdalena V Monferrán
- ICYTAC: Instituto de Ciencia y Tecnología de Alimentos Córdoba, CONICET, Departamento de Química Orgánica, Universidad Nacional de Córdoba, Bv. Medina Allende s/n, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Daniel A Wunderlin
- ICYTAC: Instituto de Ciencia y Tecnología de Alimentos Córdoba, CONICET, Departamento de Química Orgánica, Universidad Nacional de Córdoba, Bv. Medina Allende s/n, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Claudia Caamal-Monsreal
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sisal, Yucatán, Mexico
| | - Carlos Rosas
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sisal, Yucatán, Mexico
| | - Marisa N Fernandes
- Department of Physiological Sciences, Federal University of São Carlos, Rod Washington Luis km 235, 13565-905 São Carlos, SP, Brazil
| | - Mariana V Capparelli
- Estación El Carmen, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Carretera Carmen-Puerto Real km 9.5, 24157 Ciudad del Carmen, Mexico.
| |
Collapse
|
3
|
Emon FJ, Hasan J, Shahriar SIM, Islam N, Islam MS, Shahjahan M. Increased ingestion and toxicity of polyamide microplastics in Nile tilapia with increase of salinity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116730. [PMID: 39024944 DOI: 10.1016/j.ecoenv.2024.116730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/27/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Microplastics pollution and salinity intrusion in freshwater ecosystem is one of the worldwide climate change consequences those have negative impacts on the physiology of aquatic organisms. Hence, a 15-day experiment was carried out where Nile tilapia (Oreochromis niloticus) was exposed to different salinity gradients i.e. 0 ‰, 3 ‰, 6 ‰, 9 ‰, and 12 ‰ alone and along with 10 mg/L polyamide microplastics (PA-MP) in order to measure its effects on the hematology, gill, and intestinal morphology. The results exhibited that all the fish treated with PA-MP ingested microplastics and the quantity of accumulation was significantly greater in higher salinity gradients (9 ‰ and 12 ‰). In addition, the PA-MP treated fish showed increased glucose level and at the same time reduced hemoglobin concentration with the increase of salinity. The percentages of abnormalities in erythrocytes both cellular (twin, teardrop and spindle shaped) and nuclear (notched nuclei, nuclear bridge and karyopyknosis) significantly enhanced with PA-MP exposure again in higher salinity treatments (9 ‰ and 12 ‰). The principal component analysis (PCA) exhibited that the addition of 10 mg/L PA-MP negatively affected the hematology of Nile tilapia than that of salinity treatments alone. Besides, the exposure of PA-MP in 9 ‰ and 12 ‰ salinity gradients escalated the severity of histological damages in gills and intestine. Overall, this experiment affirms that the increase of salinity enhanced the microplastics ingestion and toxicity in Nile tilapia, therefore, PA-MP possibly is addressed as additional physiological stressors along with increased salinity gradients in environment.
Collapse
Affiliation(s)
- Farhan Jamil Emon
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Jabed Hasan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Sheik Istiak Md Shahriar
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Naimul Islam
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Sadiqul Islam
- Department of Marine Fisheries Sciences, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Shahjahan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.
| |
Collapse
|
4
|
Ramírez-Olivares AI, Vargas-Abúndez JA, Capparelli MV. Microplastics impair the reproductive behavior and life history traits of the amphipod Parhyale hawaiensis. MARINE POLLUTION BULLETIN 2024; 205:116630. [PMID: 38925027 DOI: 10.1016/j.marpolbul.2024.116630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/15/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024]
Abstract
We investigated the distribution and effects of waterborne microplastic (MP) (polyethylene microspheres, 53-63 um) on the emergent model for ecotoxicology, the amphipod Parhyale hawaiensis, during 30 days of exposure. The following life-history traits were measured: (1) survival, (2) specific growth rate (SGR), (3) reproductive performance (precopulatory pairing behavior, fecundity, and time to release neonates), (4) molting frequency, (5) F1 newborn offspring survival and (6) MP bioaccumulation. No significant mortality or molt was seen in any of the treatments. MP caused a reduction in SGR, being more pronounced in females. The time for precopulatory pairing was 3-fold longer in amphipods exposed to MP. Fecundity decreased by 50 %, and the time to release juveniles was 6.7 days longer for amphipods exposed to MP. Finally, neonate survival decreased by 80 % after ten days of release. MP disrupts the reproductive mechanisms and triggers adverse effects on life history traits in P. hawaiensis.
Collapse
Affiliation(s)
| | - Jorge Arturo Vargas-Abúndez
- Facultad de Ciencias, Unidad Multidisciplinaria de Docencia e Investigación, Universidad Nacional Autónoma de México, Puerto de Abrigo s/n, Sisal, Yucatán, Mexico
| | - Mariana V Capparelli
- Estación El Carmen, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Carretera Carmen-Puerto Real km 9.5, 24157 Ciudad del Carmen, Mexico.
| |
Collapse
|
5
|
Pichardo-Casales B, Vargas-Abúndez JA, Moulatlet GM, Capparelli MV. Feces and molting as microplastic sinks in a mangrove crab. MARINE POLLUTION BULLETIN 2024; 204:116410. [PMID: 38688757 DOI: 10.1016/j.marpolbul.2024.116410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/13/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
We exposed adult individuals of the sentinel mangrove crab Minuca rapax to waterborne microplastics (MP; 53-63 μm polyethylene spheres) in a long-term experiment (56 days). Weassessed 1) MP effects on growth, survival, and food intake. and 2) the MP tissue acumulation and its reduction of body burden through feces and molting. MP exposure did not affect growth and survival. The hepatopancreas accumulated more MP than the gills and muscle. Most of the ingested MP particles were released in the feces and molts, indicating a rapid passage through the digestive tract. MP impaired food intake of M. rapax, with unknown consequences to the local populations. These results provide insights on MP translocation mechanisms, its elimination and toxicity associated with MP.
Collapse
Affiliation(s)
- Brian Pichardo-Casales
- Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, 58190 Morelia, Michoacán, Mexico
| | | | - Gabriel M Moulatlet
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, USA
| | - Mariana V Capparelli
- Estación El Carmen, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Carretera Carmen-Puerto Real km 9.5, 24157 Ciudad del Carmen, Mexico
| |
Collapse
|
6
|
Boukadida K, Mlouka R, Abelouah MR, Chelly S, Romdhani I, Conti GO, Ferrante M, Cammarata M, Parisi MG, AitAlla A, Banni M. Unraveling the interplay between environmental microplastics and salinity stress on Mytilus galloprovincialis larval development: A holistic exploration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172177. [PMID: 38575005 DOI: 10.1016/j.scitotenv.2024.172177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/15/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
The rise of plastic production has triggered a surge in plastic waste, overwhelming marine ecosystems with microplastics. The effects of climate change, notably changing salinity, have shaped the dynamics of coastal lagoons. Thus, understanding the combined impact of these phenomena on marine organisms becomes increasingly crucial. To address these knowledge gaps, we investigated for the first time the interactive effects of environmental microplastics (EMPs) and increased salinity on the early development of Mytilus galloprovincialis larvae. Morphological assessments using the larval embryotoxicity test revealed larval anomalies and developmental arrests induced by EMPs and increased salinity. Transcriptomic analyses targeting 12 genes involved in oxidative stress, apoptosis, DNA repair, shell formation, and stress proteins were conducted on D-larvae uncovered the potential effects of EMPs on shell biomineralization, highlighting the role of Histidine Rich Glycoproteine (HRG) and tubulin as crucial adaptive mechanisms in Mytilus sp. in response to environmental shifts. Furthermore, we explored oxidative stress and neurotoxicity using biochemical assays. Our findings revealed a potential interaction between EMPs and increased salinity, impacting multiple physiological processes in mussel larvae. Our data contribute to understanding the cumulative effects of emerging anthropogenic pollutants and environmental stressors, emphasizing the need for a holistic approach to assessing their impact on marine ecosystems.
Collapse
Affiliation(s)
- Khouloud Boukadida
- Laboratory of Agrobiodiversity and Ecotoxicology, ISA, Chott-Mariem, 4042 Sousse, Tunisia; Higher Institute of Biotechnology, University of Monastir, Tunisia
| | - Rania Mlouka
- Laboratory of Agrobiodiversity and Ecotoxicology, ISA, Chott-Mariem, 4042 Sousse, Tunisia; Higher Institute of Biotechnology, University of Monastir, Tunisia
| | - Mohamed Rida Abelouah
- Laboratory of Agrobiodiversity and Ecotoxicology, ISA, Chott-Mariem, 4042 Sousse, Tunisia; Laboratory of Aquatic Systems: Marine and Continental Environments, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Souha Chelly
- Laboratory of Agrobiodiversity and Ecotoxicology, ISA, Chott-Mariem, 4042 Sousse, Tunisia
| | - Ilef Romdhani
- Laboratory of Agrobiodiversity and Ecotoxicology, ISA, Chott-Mariem, 4042 Sousse, Tunisia
| | - Gea Oliveri Conti
- Marine Immunobiology Laboratory, Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Viale delleScienze, Ed. 16, 90128 Palermo, Italy
| | - Margherita Ferrante
- Marine Immunobiology Laboratory, Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Viale delleScienze, Ed. 16, 90128 Palermo, Italy
| | - Matteo Cammarata
- Environmental and Food Hygiene Laboratory (LIAA), Department of Medical, Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Catania University, ViaSanta Sofia 87, 95123 Catania, Italy
| | - Maria Giovanna Parisi
- Environmental and Food Hygiene Laboratory (LIAA), Department of Medical, Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Catania University, ViaSanta Sofia 87, 95123 Catania, Italy
| | - Aicha AitAlla
- Laboratory of Aquatic Systems: Marine and Continental Environments, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Mohamed Banni
- Laboratory of Agrobiodiversity and Ecotoxicology, ISA, Chott-Mariem, 4042 Sousse, Tunisia; Higher Institute of Biotechnology, University of Monastir, Tunisia.
| |
Collapse
|
7
|
Capparelli MV, Dzul-Caamal R, Rodríguez-Cab EM, Borges-Ramírez MM, Osten JRV, Beltran K, Pichardo-Casales B, Ramírez-Olivares AI, Vargas-Abúndez JA, Thurman CL, Moulatlet GM, Rosas C. Synergistic effects of microplastic and lead trigger physiological and biochemical impairment in a mangrove crab. Comp Biochem Physiol C Toxicol Pharmacol 2024; 276:109809. [PMID: 38056684 DOI: 10.1016/j.cbpc.2023.109809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/16/2023] [Accepted: 12/03/2023] [Indexed: 12/08/2023]
Abstract
Microplastics (MP) are vectors for other environmental contaminants, such as metals, being a considerable problem, especially in the aquatic ecosystem. To investigate the combined effects of MP (high density polyethylene) with lead (Pb), we exposed the mangrove fiddler crab Minuca vocator to Pb (50 mg L-1), and MP (25 mg L-1) alone and in mixture, for 5 days. We aimed to determine Pb and MP bioaccumulation, as well as physiological (oxygen consumption and hemolymph osmolality) and biochemical (superoxide dismutase, catalase, glutathione peroxidase, and lipid peroxidation) traits effects. Co-exposure of MP and Pb significantly increased the bioaccumulation of Pb, but reduced MP tissue accumulation. Regarding the physiological traits, increasing osmolality and oxygen consumption rates compared to the control were observed, particularly in the combined Pb and MP exposure. As to biochemical traits, the combination of Pb and MP induced the most significant responses in the enzymatic profile antioxidant enzyme activity. The catalase (CAT), glutathione peroxidase (GPx), and dismutase superoxide (SOD) decreased compared to individual exposure effects; the combination of MP and Pb had a synergistic effect on promoting lipid peroxidation (LPO). The co-exposure of MP and Pb acted synergistically when compared to the effects of the isolated compounds. Due to the increasing MP contamination in mangroves, more severe physiological and biochemical effects can be expected on mangrove crabs exposed to metal contamination.
Collapse
Affiliation(s)
- Mariana V Capparelli
- Estación El Carmen, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Carretera Carmen-Puerto Real km 9.5, 24157 Ciudad del Carmen, Mexico.
| | - Ricardo Dzul-Caamal
- Instituto de Ecología, Pesquería y Oceanografía del Golfo de México (EPOMEX), Campus VI, Av. Héroe de Nacozari 480, Universidad Autónoma de Campeche, 24070 Campeche, Mexico
| | - Erick M Rodríguez-Cab
- Instituto de Ecología, Pesquería y Oceanografía del Golfo de México (EPOMEX), Campus VI, Av. Héroe de Nacozari 480, Universidad Autónoma de Campeche, 24070 Campeche, Mexico
| | - Merle M Borges-Ramírez
- Instituto de Ecología, Pesquería y Oceanografía del Golfo de México (EPOMEX), Campus VI, Av. Héroe de Nacozari 480, Universidad Autónoma de Campeche, 24070 Campeche, Mexico
| | - Jaime Rendón-von Osten
- Instituto de Ecología, Pesquería y Oceanografía del Golfo de México (EPOMEX), Campus VI, Av. Héroe de Nacozari 480, Universidad Autónoma de Campeche, 24070 Campeche, Mexico
| | - Karen Beltran
- Estación El Carmen, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Carretera Carmen-Puerto Real km 9.5, 24157 Ciudad del Carmen, Mexico
| | - Brian Pichardo-Casales
- Escuela Nacional de Estudios Superiores Unidad Morelia (ENES Morelia), Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, C.P. 58190 Morelia, Michoacán, Mexico
| | | | | | - Carl L Thurman
- Department of Biology, University of Northern Iowa, 1227 W. 27 th St., Cedar Falls, IO, USA
| | - Gabriel M Moulatlet
- Arizona Institute for Resilience, University of Arizona, Tucson, AZ, USA; Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| | - Carlos Rosas
- Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Mexico
| |
Collapse
|