1
|
Wang X, Xu L, Wu Z, Lou L, Xia C, Miao H, Dai J, Fei W, Wang J. Exosomes of stem cells: a potential frontier in the treatment of osteoarthritis. PRECISION CLINICAL MEDICINE 2025; 8:pbae032. [PMID: 39781279 PMCID: PMC11705996 DOI: 10.1093/pcmedi/pbae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 01/12/2025] Open
Abstract
The aging population has led to a global issue of osteoarthritis (OA), which not only impacts the quality of life for patients but also poses a significant economic burden on society. While biotherapy offers hope for OA treatment, currently available treatments are unable to delay or prevent the onset or progression of OA. Recent studies have shown that as nanoscale bioactive substances that mediate cell communication, exosomes from stem cell sources have led to some breakthroughs in the treatment of OA and have important clinical significance. This paper summarizes the mechanism and function of stem cell exosomes in delaying OA and looks forward to the development prospects and challenges of exosomes.
Collapse
Affiliation(s)
- Xiaofei Wang
- The Graduate School, Dalian Medical University, Dalian 116044, China
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China
| | - Lei Xu
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China
| | - Zhimin Wu
- The Graduate School, Dalian Medical University, Dalian 116044, China
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China
| | - Linbing Lou
- The Graduate School, Dalian Medical University, Dalian 116044, China
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China
| | - Cunyi Xia
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China
| | - Haixiang Miao
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China
| | - Jihang Dai
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China
| | - Wenyong Fei
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China
| | - Jingcheng Wang
- Department of Orthopedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China
| |
Collapse
|
2
|
Peng X, Wu F, Hu Y, Chen Y, Wei Y, Xu W. Current advances in animal model of meniscal injury: From meniscal injury to osteoarthritis. J Orthop Translat 2025; 50:388-402. [PMID: 40171109 PMCID: PMC11960540 DOI: 10.1016/j.jot.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/14/2024] [Accepted: 11/15/2024] [Indexed: 04/03/2025] Open
Abstract
Meniscal injury is a prevalent orthopedic practice that causes articular cartilage wear and degeneration due to tissue damage or loss, and may eventually result in the occurrence of knee osteoarthritis (KOA). Hence, investigating the structural regeneration and mechanical function restoration of the meniscus after injury is pivotal research topic for preventing KOA. Animal models are essential for investigating therapeutic strategies for meniscal injuries and their clinical translation, yet no current model can fully recapitulate the complexity of human meniscal injuries. This review aims to categorize the prevalent animal models of meniscal injury by their establishment methods, elucidate their principles and procedures, and discuss the suitability and limitations of each model. We delineate the pros and cons of different models in simulating the pathology and biomechanics of human meniscal injury. We also analyze different animal species regarding their meniscal structure, function, and repair potential, and their implications for model selection. We conclude that selecting an appropriate animal model requires a comprehensive consideration of various factors, such as research aims, anticipated outcomes, and feasibility. Furthermore, to translate novel therapeutic approaches to clinical applications more safely and effectively, future model development should emphasize aspects such as choosing animals of suitable age. The Translational Potential of this Article: This review aims to categorize and discuss current animal models of meniscal injury by establishment methods and provides a comprehensive overview of the routinely employed experimental animals in each model to facilitate the clinical translation of OA-related research.
Collapse
Affiliation(s)
- Xiaoyao Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fashuai Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuxiang Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yangyang Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yulong Wei
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weihua Xu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
3
|
Fackler NP, Yareli-Salinas E, Callan KT, Athanasiou KA, Wang D. In Vitro Effects of Triamcinolone and Methylprednisolone on the Viability and Mechanics of Native Articular Cartilage. Am J Sports Med 2023; 51:2465-2471. [PMID: 37183987 PMCID: PMC10353030 DOI: 10.1177/03635465231162644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/01/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND The chondrotoxic effects of methylprednisolone acetate (MP) and triamcinolone acetonide (TA) have been well described. However, the mechanical effects of these commonly used steroids on native cartilage are largely unknown. PURPOSE To investigate the in vitro effects of a single 1-hour MP or TA exposure on the viability, mechanics, and biochemical content of native articular cartilage explants. STUDY DESIGN Controlled laboratory study. METHODS Articular cartilage explants (n = 6 per group) were harvested from the femoral condyles of bovine stifles. Explants were exposed to chondrogenic medium containing a clinical dose of MP or TA for 1 hour, followed by fresh medium wash and exchange. Explants in the control group underwent the same treatment with chondrogenic medium alone. At 24 hours after treatment, samples were assessed for viability (live/dead), mechanical properties (creep indentation and Instron tensile testing), biochemical (collagen and glycosaminoglycan) content, and pyridinoline crosslinking via mass spectrometry. RESULTS Mean cell viability was significantly decreased in native explants exposed to MP (35.5%) compared with the control (49.8%; P < .001) and TA (45.7%; P = .01) specimens. Significant decreases were seen in the mechanical properties of steroid-treated native explants when compared with controls, with decreases in aggregate modulus (646.3 vs 312.8 kPa [MP] and 257.0 kPa [TA]; P < .001), shear modulus (370.1 vs 191.2 kPa [MP] and 157.4 kPa [TA]; P < .001), and ultimate tensile strength (9.650 vs 5.648 MPa [MP; P = .021] and 6.065 MPa [TA; P = .0403]). No significant differences in collagen and glycosaminoglycan content were found in the steroid-treated groups. Pyridinoline crosslinking was significantly decreased in explants exposed to TA compared with controls (P = .027). CONCLUSION Exposure of MP to articular cartilage explants was chondrotoxic, and exposure of articular cartilage explants to MP or TA resulted in significant decreases in mechanical properties of articular cartilage explants compared with controls. Clinicians should be judicious regarding use of intra-articular steroids, particularly in patients with intact healthy articular cartilage.
Collapse
Affiliation(s)
- Nathan P. Fackler
- Department of Orthopaedic Surgery, University of California, Irvine, Orange, California, USA
| | - Evelia Yareli-Salinas
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, USA
| | - Kylie T. Callan
- Department of Orthopaedic Surgery, University of California, Irvine, Orange, California, USA
| | - Kyriacos A. Athanasiou
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, USA
| | - Dean Wang
- Department of Orthopaedic Surgery, University of California, Irvine, Orange, California, USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
4
|
Szapary HJ, Flaman L, Frank E, Chubinskaya S, Dwivedi G, Grodzinsky AJ. Effects of dexamethasone and dynamic loading on cartilage of human osteochondral explants challenged with inflammatory cytokines. J Biomech 2023; 149:111480. [PMID: 36791513 DOI: 10.1016/j.jbiomech.2023.111480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Post-traumatic osteoarthritis (PTOA), characterized by articular cartilage degradation initiated in an inflammatory environment after traumatic joint injury, can lead to alterations in cartilage biomechanical properties. Low dose dexamethasone (Dex) shows chondroprotection in cartilage challenged with inflammatory cytokines, but little is known about the structural biomechanical response of human cartilage to Dex in such a diseased state. This study examined changes in the biomechanical properties and biochemical composition of the cartilage within human osteochondral explants in response to treatment with exogenous cytokines, Dex, and a regimen of cyclic loading at the start and end of culture. Osteochondral explants were harvested from five pairs of human ankle talocrural joints (Collins grade 0-1) and cultured for 10 days with/without exogenous cytokines (100 ng/mL TNFα, 50 ng/mL IL-6, 250 ng/mL sIL-6R) ± Dex (100 nM). Biomechanical testing on day-0 and day-10 enabled estimation of the unconfined compression equilibrium modulus (Ey), dynamic stiffness (Ed) and hydraulic permeability (kp) of cartilage excised from bone, accompanied by biochemical assessment of media and cartilage tissue. Dex preserved chondrocyte cell viability and decreased sulfated glycosaminoglycan (sGAG) loss and nitric oxide release, but did not alter Ey, Ed and kp (before or after loading) on day-10. In the cytokine/cytokine+Dex treated groups, sGAG content exhibited a weaker correlation with Ey and Ed than at baseline, suggesting an important role for structural rather than biochemical changes in producing biomechanical alterations in response to cytokines and Dex. These findings aid in forming a more complete profile of potential clinical effects of Dex for use in OA/PTOA treatment regimens.
Collapse
Affiliation(s)
- Hannah J Szapary
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA.
| | - Lisa Flaman
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eliot Frank
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Susan Chubinskaya
- Departments of Pediatrics, Orthopedic Surgery and Medicine (Section of Rheumatology), Rush University Medical Center, Chicago, IL 60612, USA.
| | - Garima Dwivedi
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alan J Grodzinsky
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
5
|
Weizel A, Distler T, Detsch R, Boccaccini AR, Seitz H, Budday S. Time-dependent hyper-viscoelastic parameter identification of human articular cartilage and substitute materials. J Mech Behav Biomed Mater 2023; 138:105618. [PMID: 36566662 DOI: 10.1016/j.jmbbm.2022.105618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022]
Abstract
Numerical simulations are a valuable tool to understand which processes during mechanical stimulations of hydrogels for cartilage replacement influence the behavior of chondrocytes and contribute to the success or failure of these materials as implants. Such simulations critically rely on the correct prediction of the material response through appropriate material models and corresponding parameters. In this study, we identify hyper-viscoelastic material parameters for numerical simulations in COMSOL Multiphysics® v. 5.6 for human articular cartilage and two replacement materials, the commercially available ChondroFillerliquid and oxidized alginate gelatin (ADA-GEL) hydrogels. We incorporate the realistic experimental boundary conditions into an inverse parameter identification scheme based on data from multiple loading modes simultaneously, including cyclic compression-tension and stress relaxation experiments. We provide individual parameter sets for the unconditioned and conditioned responses and discuss how viscoelastic effects are related to the materials' microstructure. ADA-GEL and ChondroFillerliquid exhibit faster stress relaxation than cartilage with lower relaxation time constants, while cartilage has the largest viscoelastic stress contribution. The elastic response predominates in ADA-GEL and ChondroFillerliquid, while the viscoelastic response predominates in cartilage. These results will help to simulate mechanical stimulations, support the development of suitable materials with distinct mechanical properties in the future and provide parameters and insight into the time-dependent material behavior of human articular cartilage.
Collapse
Affiliation(s)
- A Weizel
- Chair of Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Rostock, Germany.
| | - T Distler
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - R Detsch
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - A R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - H Seitz
- Chair of Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Rostock, Germany
| | - S Budday
- Institute of Applied Mechanics, Department of Mechanical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
6
|
Blom RP, Mol D, van Ruijven LJ, Kerkhoffs GMMJ, Smit TH. A Single Axial Impact Load Causes Articular Damage That Is Not Visible with Micro-Computed Tomography: An Ex Vivo Study on Caprine Tibiotalar Joints. Cartilage 2021; 13:1490S-1500S. [PMID: 31540553 PMCID: PMC8804841 DOI: 10.1177/1947603519876353] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Excessive articular loading, for example, an ankle sprain, may result in focal osteochondral damage, initiating a vicious degenerative process resulting in posttraumatic osteoarthritis (PTOA). Better understanding of this degenerative process would allow improving posttraumatic care with the aim to prevent PTOA. The primary objective of this study was to establish a drop-weight impact testing model with controllable, reproducible and quantitative axial impact loads to induce osteochondral damage in caprine tibiotalar joints. We aimed to induce osteochondral damage on microscale level of the tibiotalar joint without gross intra-articular fractures of the tibial plafond. DESIGN Fresh-frozen tibiotalar joints of mature goats were used as ex vivo articulating joint models. Specimens were axially impacted by a mass of 10.5 kg dropped from a height of 0.3 m, resulting in a speed of 2.4 m/s, an impact energy of 31.1 J and an impact impulse of 25.6 N·s. Potential osteochondral damage of the caprine tibiotalar joints was assessed using contrast-enhanced high-resolution micro-computed tomography (micro-CT). Subsequently, we performed quasi-static loading experiments to determine postimpact mechanical behavior of the tibiotalar joints. RESULTS Single axial impact loads with a mass of 15.5 kg dropped from 0.3 m, resulted in intra-articular fractures of the tibial plafond, where a mass of 10.55 kg dropped from 0.3 m did not result in any macroscopic damage. In addition, contrast-enhanced high-resolution micro-CT imaging neither reveal any acute microdamage (i.e., microcracks) of the subchondral bone nor any (micro)structural changes in articular cartilage. The Hexabrix content or voxel density (i.e., proteoglycan content of the articular cartilage) on micro-CT did not show any differences between intact and impacted specimens. However, quasi-static whole-tibiotalar-joint loading showed an altered biomechanical behavior after application of a single axial impact (i.e., increased hysteresis when compared with the intact or nonimpacted specimens). CONCLUSIONS Single axial impact loads did not induce osteochondral damage visible with high-resolution contrast-enhanced micro-CT. However, despite the lack of damage on macro- and even microscale, the single axial impact loads resulted in "invisible injuries" because of the observed changes in the whole-joint biomechanics of the caprine tibiotalar joints. Future research must focus on diagnostic tools for the detection of early changes in articular cartilage after a traumatic impact (i.e., ankle sprains or ankle fractures), as it is well known that this could result in PTOA.
Collapse
Affiliation(s)
- Robin P. Blom
- Department of Orthopaedic Surgery,
Amsterdam University Medical Center, Amsterdam Movement Sciences, Amsterdam, the
Netherlands
| | - Douwe Mol
- Department of Orthopaedic Surgery,
Amsterdam University Medical Center, Amsterdam Movement Sciences, Amsterdam, the
Netherlands
| | - Leo J. van Ruijven
- Department of Oral Cell Biology and
Functional Anatomy, ACTA–University of Amsterdam and VU University, Amsterdam
Movement Sciences, Amsterdam, the Netherlands
| | - Gino M. M. J. Kerkhoffs
- Department of Orthopaedic Surgery,
Amsterdam University Medical Center, Amsterdam Movement Sciences, Amsterdam, the
Netherlands,Academic Center for Evidence-Based
Sports medicine (ACES), Amsterdam Collaboration for Health and Safety in Sports
(ACHSS), IOC Research Center, Amsterdam, the Netherlands
| | - Theo H. Smit
- Department of Orthopaedic Surgery,
Amsterdam University Medical Center, Amsterdam Movement Sciences, Amsterdam, the
Netherlands,Department of Medical Biology, Amsterdam
University Medical Center, Amsterdam Movement Sciences, Amsterdam, the
Netherlands,Theo H. Smit, Department of Medical Biology,
Amsterdam University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, the
Netherlands.
| |
Collapse
|
7
|
Fischenich KM, Button KD, DeCamp C, Haut RC, Donahue TLH. Comparison of two models of post-traumatic osteoarthritis; temporal degradation of articular cartilage and menisci. J Orthop Res 2017; 35:486-495. [PMID: 27129040 DOI: 10.1002/jor.23275] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/22/2016] [Indexed: 02/04/2023]
Abstract
The objective of this study was to compare longitudinal results from two models of combined anterior cruciate ligament (ACL) and meniscal injury. A modified ACL transection (mACLT) model and a traumatic impact (ACLF) model were used to create an ACL rupture and acute meniscal damage in a Flemish Giant animal model. The animals were euthanized at time points of 4, 8, or 12 weeks. The menisci were assessed for equilibrium and instantaneous compressive modulus, as well as glycosaminoglycan (GAG) coverage. The articular cartilage was mechanically assessed for thickness, matrix modulus, fiber modulus, and permeability. Articular cartilage GAG coverage, fissuring, tidemark integrity, and subchondral bone thickness were measured. Both models resulted in damage indicative of osteoarthritis, including decreased meniscal mechanics and GAG coverage, increased permeability and fissuring of articular cartilage, and decreased GAG coverage. The mACLT model had an early and lasting effect on the menisci mechanics and GAG coverage, while cartilage damage was not significantly affected until 12 weeks. The ACLF model resulted in an earlier change of articular cartilage GAG coverage and fissuring in both the 8 and 12 week groups. The menisci were only significantly affected at the 12 week time point in the ACLF model. We concluded the progression of post traumatic osteoarthritis was dependent on injury modality: a point to be considered in future investigations. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:486-495, 2017.
Collapse
Affiliation(s)
- Kristine M Fischenich
- Department of Mechanical Engineering, Colorado State University, 1374 Campus Delivery, Fort Collins, 80523, Colorado.,School of Biomedical Engineering, Colorado State University, 1374 Campus Delivery, Fort Collins, 80523, Colorado
| | - Keith D Button
- Orthopaedic Biomechanics Laboratories, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan
| | - Charlie DeCamp
- Small Animal Clinical Sciences, College of Veterinary, Michigan State University, East Lansing, Michigan
| | - Roger C Haut
- Orthopaedic Biomechanics Laboratories, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan
| | - Tammy L Haut Donahue
- Department of Mechanical Engineering, Colorado State University, 1374 Campus Delivery, Fort Collins, 80523, Colorado.,School of Biomedical Engineering, Colorado State University, 1374 Campus Delivery, Fort Collins, 80523, Colorado
| |
Collapse
|
8
|
Shah RG, Pierce MC, Silver FH. Morphomechanics of dermis-A method for non-destructive testing of collagenous tissues. Skin Res Technol 2016; 23:399-406. [DOI: 10.1111/srt.12349] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2016] [Indexed: 11/29/2022]
Affiliation(s)
- R. G. Shah
- Department of Biomedical Engineering; Rutgers; The State University of New Jersey; Piscataway NJ USA
| | - M. C. Pierce
- Department of Biomedical Engineering; Rutgers; The State University of New Jersey; Piscataway NJ USA
| | - F. H. Silver
- Department of Pathology and Laboratory Medicine; Robert Wood Johnson Medical School; Rutgers; The State University of New Jersey; Piscataway NJ USA
| |
Collapse
|
9
|
Schultz M, Molligan J, Schon L, Zhang Z. Pathology of the calcified zone of articular cartilage in post-traumatic osteoarthritis in rat knees. PLoS One 2015; 10:e0120949. [PMID: 25807537 PMCID: PMC4373850 DOI: 10.1371/journal.pone.0120949] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/27/2015] [Indexed: 11/29/2022] Open
Abstract
Objectives This study aimed to investigate the pathology occurring at the calcified zone of articular cartilage (CZC) in the joints afflicted with post-traumatic osteoarthritis (PTOA). Methods Rats underwent bilateral anterior cruciate ligament (ACL) transection and medial meniscectomy to induce PTOA. Sham surgery was performed on another five rats to serve as controls. The rats were euthanized after four weeks of surgery and tibial plateaus were dissected for histology. The pathology of PTOA, CZC area and the tidemark roughness at six pre-defined locations on the tibial plateaus were quantified by histomorphometry. Results PTOA developed in the knees, generally more severe at the medial plateau than the lateral plateau, of rats in the experimental group. The CZC area was unchanged in the PTOA joints, but the topographic variations of CZC areas that presented in the control knees were reduced in the PTOA joints. The tidemark roughness decreased in areas of the medial plateau of PTOA joints and that was inversely correlated with the Mankin’s score of PTOA pathology. Conclusion Reduced tidemark roughness and unchanged CZC area differentiate PTOA from primary osteoarthritis, which is generally believed to have the opposite pathology at CZC, and may contribute to the distinct disease progression of the two entities of arthropathy.
Collapse
Affiliation(s)
- Melissa Schultz
- Center of Anatomical Science, Saint Louis University, St. Louis, Missouri, United States of America
| | - Jeremy Molligan
- Orthobiologic Laboratory, Medstar Union Memorial Hospital, Baltimore, Maryland, United States of America
| | - Lew Schon
- Orthobiologic Laboratory, Medstar Union Memorial Hospital, Baltimore, Maryland, United States of America
| | - Zijun Zhang
- Orthobiologic Laboratory, Medstar Union Memorial Hospital, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
10
|
The role of changes in extracellular matrix of cartilage in the presence of inflammation on the pathology of osteoarthritis. BIOMED RESEARCH INTERNATIONAL 2013; 2013:284873. [PMID: 24069595 PMCID: PMC3771246 DOI: 10.1155/2013/284873] [Citation(s) in RCA: 354] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/27/2013] [Accepted: 07/29/2013] [Indexed: 01/13/2023]
Abstract
Osteoarthritis (OA) is a degenerative disease that affects various tissues surrounding joints such as articular cartilage, subchondral bone, synovial membrane, and ligaments. No therapy is currently available to completely prevent the initiation or progression of the disease partly due to poor understanding of the mechanisms of the disease pathology. Cartilage is the main tissue afflicted by OA, and chondrocytes, the sole cellular component in the tissue, actively participate in the degeneration process. Multiple factors affect the development and progression of OA including inflammation that is sustained during the progression of the disease and alteration in biomechanical conditions due to wear and tear or trauma in cartilage. During the progression of OA, extracellular matrix (ECM) of cartilage is actively remodeled by chondrocytes under inflammatory conditions. This alteration of ECM, in turn, changes the biomechanical environment of chondrocytes, which further drives the progression of the disease in the presence of inflammation. The changes in ECM composition and structure also prevent participation of mesenchymal stem cells in the repair process by inhibiting their chondrogenic differentiation. This review focuses on how inflammation-induced ECM remodeling disturbs cellular activities to prevent self-regeneration of cartilage in the pathology of OA.
Collapse
|
11
|
Franciozi CES, Tarini VAF, Reginato RD, Gonçalves PRS, Medeiros VP, Ferretti M, Dreyfuss JL, Nader HB, Faloppa F. Gradual strenuous running regimen predisposes to osteoarthritis due to cartilage cell death and altered levels of glycosaminoglycans. Osteoarthritis Cartilage 2013; 21:965-72. [PMID: 23602983 DOI: 10.1016/j.joca.2013.04.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/18/2013] [Accepted: 04/06/2013] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To investigate the hypothesis that strenuous running is a predisposing factor for osteoarthritis. DESIGN Wistar rats were divided into two groups: a control group (CG) and a trained group (TG). The TG underwent a strenuous treadmill running training regimen of controlled intensity, exhibiting progressively improvement of fitness over 12 weeks, running at least 55 km during this period and finally performing an ultra-endurance running exercise to exhaustion. After this period, rats from both groups were euthanized and their knees removed. The articular cartilage was dissected and submitted to histomorphometrical, histomorphological, and immunohistochemical analyses evaluating cell death pathway (caspase-3 and terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL)) and inflammatory cytokines [interleukin-1α (IL-1α) and tumor necrosis factor-α (TNF-α)]. In addition, the tissues were analyzed regarding the types and the content of glycosaminoglycans. RESULTS The TG knee joints exhibited increase in the number of chondrocytes and chondrocyte clusters, as well as significantly increased levels of caspase-3, a protein involved in apoptosis, and of inflammatory cytokines IL-1α and TNF-α. In addition, histologically higher grades of osteoarthritis (Osteoarthritis Research Society International - OARSI grading), and significantly decreased levels of chondroitin sulfate and hyaluronic acid. Knee cartilage thickness and TUNEL did not significantly differ between the two groups. CONCLUSIONS The articular cartilage of rats subjected to a strenuous running regimen of controlled intensity exhibited molecular and histological characteristics that are present in osteoarthritis.
Collapse
Affiliation(s)
- C E S Franciozi
- Department of Orthopaedics and Traumatology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Li J, Zhao Q, Wang E, Zhang C, Wang G, Yuan Q. Dynamic compression of rabbit adipose-derived stem cells transfected with insulin-like growth factor 1 in chitosan/gelatin scaffolds induces chondrogenesis and matrix biosynthesis. J Cell Physiol 2012; 227:2003-12. [PMID: 21751209 DOI: 10.1002/jcp.22927] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Articular cartilage is routinely subjected to mechanical forces and growth factors. Adipose-derived stem cells (ASCs) are multi-potent adult stem cells and capable of chondrogenesis. In the present study, we investigated the comparative and interactive effects of dynamic compression and insulin-like growth factor-I (IGF-I) on the chondrogenesis of rabbit ASCs in chitosan/gelatin scaffolds. Rabbit ASCs with or without a plasmid overexpressing of human IGF-1 were cultured in chitosan/gelatin scaffolds for 2 days, then subjected to cyclic compression with 5% strain and 1 Hz for 4 h per day for seven consecutive days. Dynamic compression induced chondrogenesis of rabbit ASCs by activating calcium signaling pathways and up-regulating the expression of Sox-9. Dynamic compression plus IGF-1 overexpression up-regulated expression of chondrocyte-specific extracellular matrix genes including type II collagen, Sox-9, and aggrecan with no effect on type X collagen expression. Furthermore, dynamic compression and IGF-1 expression promoted cellular proliferation and the deposition of proteoglycan and collagen. Intracellular calcium ion concentration and peak currents of Ca(2+) ion channels were consistent with chondrocytes. The tissue-engineered cartilage from this process had excellent mechanical properties. When applied together, the effects achieved by the two stimuli (dynamic compression and IGF-1) were greater than those achieved by either stimulus alone. Our results suggest that dynamic compression combined with IGF-1 overexpression might benefit articular cartilage tissue engineering in cartilage regeneration.
Collapse
Affiliation(s)
- Jianjun Li
- Department of Orthopaedics, Shengjing Hospital of China Medical University, Shenyang, P R China
| | | | | | | | | | | |
Collapse
|
13
|
Ganguly K, McRury ID, Goodwin PM, Morgan RE, Augé WK. Targeted In Situ Biosynthetic Transcriptional Activation in Native Surface-Level Human Articular Chondrocytes during Lesion Stabilization. Cartilage 2012; 3:141-55. [PMID: 26069627 PMCID: PMC4297128 DOI: 10.1177/1947603511426881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Safe articular cartilage lesion stabilization is an important early surgical intervention advance toward mitigating articular cartilage disease burden. While short-term chondrocyte viability and chondrosupportive matrix modification have been demonstrated within tissue contiguous to targeted removal of damaged articular cartilage, longer term tissue responses require evaluation to further clarify treatment efficacy. The purpose of this study was to examine surface chondrocyte responses within contiguous tissue after lesion stabilization. METHODS Nonablation radiofrequency lesion stabilization of human cartilage explants obtained during knee replacement was performed for surface fibrillation. Time-dependent chondrocyte viability, nuclear morphology and cell distribution, and temporal response kinetics of matrix and chaperone gene transcription indicative of differentiated chondrocyte function were evaluated in samples at intervals to 96 hours after treatment. RESULTS Subadjacent surface articular cartilage chondrocytes demonstrated continued viability for 96 hours after treatment, a lack of increased nuclear fragmentation or condensation, persistent nucleic acid production during incubation reflecting cellular assembly behavior, and transcriptional up-regulation of matrix and chaperone genes indicative of retained biosynthetic differentiated cell function. CONCLUSIONS The results of this study provide further evidence of treatment efficacy and suggest the possibility to manipulate or induce cellular function, thereby recruiting local chondrocytes to aid lesion recovery. Early surgical intervention may be viewed as a tissue rescue, allowing articular cartilage to continue displaying biological responses appropriate to its function rather than converting to a tissue ultimately governed by the degenerative material property responses of matrix failure. Early intervention may positively impact the late changes and reduce disease burden of damaged articular cartilage.
Collapse
Affiliation(s)
| | | | | | | | - Wayne K. Augé
- NuOrtho Surgical Inc., Fall River, MA, USA,Center for Orthopaedic and Sports Performance Research Inc., Santa Fe, NM, USA
| |
Collapse
|
14
|
Landinez-Parra NS, Garzón-Alvarado DA, Vanegas-Acosta JC. A phenomenological mathematical model of the articular cartilage damage. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2011; 104:e58-e74. [PMID: 21402430 DOI: 10.1016/j.cmpb.2011.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 12/11/2010] [Accepted: 02/01/2011] [Indexed: 05/30/2023]
Abstract
Articular cartilage (AC) is a biological tissue that allows the distribution of mechanical loads and movement of joints. The presence of these mechanical loads influences the behavior and physiological condition of AC. The loads may cause damaged by fatigue through injuries due to repeated accumulated stresses. The aim of this work is to introduce a phenomenological mathematical model of damage caused by mechanical action. It is considered that tissue failure is a consequence of chondrocyte death and matrix loss, taking into account factors modifying fatigue resistance such as age, body mass index (BMI) and metabolic activity. The model was numerically implemented using the finite elements method and the results obtained allowed us to predict tissue failure at different loading frequencies, different damage sites and variations in damage magnitude. Qualitative concordance between numerical results and experimental data led us to conclude that the model may be useful for physicians and therapists as a prediction tool for prescribing physical exercise and prognosis of joint failure.
Collapse
Affiliation(s)
- N S Landinez-Parra
- Mathematical Modeling and Numerical Methods Group GNUM-UN, Mechanical and Mechatronics Engineering Department, Universidad Nacional de Colombia, Colombia.
| | | | | |
Collapse
|
15
|
Ganguly K, McRury ID, Goodwin PM, Morgan RE, Augé WK. Native Chondrocyte Viability during Cartilage Lesion Progression: Normal to Surface Fibrillation. Cartilage 2010; 1:306-11. [PMID: 26069561 PMCID: PMC4297056 DOI: 10.1177/1947603510373918] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Early surgical intervention for articular cartilage disease is desirable before full-thickness lesions develop. As early intervention treatments are designed, native chondrocyte viability at the treatment site before intervention becomes an important parameter to consider. The purpose of this study is to evaluate native chondrocyte viability in a series of specimens demonstrating the progression of articular cartilage lesions to determine if the chondrocyte viability profile changes during the evolution of articular cartilage disease to the level of surface fibrillation. DESIGN Osteochondral specimens demonstrating various degrees of articular cartilage damage were obtained from patients undergoing knee total joint replacement. Three groups were created within a patient harvest based on visual and tactile cues commonly encountered during surgical intervention: group 1, visually and tactilely intact surfaces; group 2, visually intact, tactilely soft surfaces; and group 3, surface fibrillation. Confocal laser microscopy was performed following live/dead cell viability staining. RESULTS Groups 1 to 3 demonstrated viable chondrocytes in all specimens, even within the fibrillated portions of articular cartilage, with little to no evidence of dead chondrocytes. Chondrocyte viability profile in articular cartilage does not appear to change as disease lesion progresses from normal to surface fibrillation. CONCLUSIONS Fibrillated partial-thickness articular cartilage lesions are a good therapeutic target for early intervention. These lesions retain a high profile of viable chondrocytes and are readily diagnosed by visual and tactile cues during surgery. Early intervention should be based on matrix failure rather than on more aggressive procedures that further corrupt the matrix and contribute to chondrocyte necrosis of contiguous untargeted cartilage.
Collapse
Affiliation(s)
- Kumkum Ganguly
- B-Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | | | - Peter M. Goodwin
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, USA
| | | | - Wayne K. Augé
- NuOrtho Surgical, Inc., Fall River, MA, USA,Center for Orthopaedic and Sports Performance Research, Inc., Santa Fe, NM, USA,Wayne K. Augé II, MD, Center for Orthopaedic and Sports Performance Research, Inc., 936 Vista Jemez Court, Santa Fe, NM 87505, USA ;
| |
Collapse
|
16
|
Wang GW, Wang MQ, Wang XJ, Yu SB, Liu XD, Jiao K. Changes in the expression of MMP-3, MMP-9, TIMP-1 and aggrecan in the condylar cartilage of rats induced by experimentally created disordered occlusion. Arch Oral Biol 2010; 55:887-95. [PMID: 20728870 DOI: 10.1016/j.archoralbio.2010.07.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Revised: 06/30/2010] [Accepted: 07/28/2010] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To investigate the effects of experimentally created disordered occlusion on the mandibular condylar cartilage in terms of histological morphology and expression of MMP-3, MMP-9, TIMP-1 and aggrecan. MATERIALS AND METHODS Eighty 8-week-old Sprague-Dawley rats were randomly divided into two experimental (Exp) and two control (Con) groups, with equal sex and number distribution as subgroups. In the Exp group, the disordered occlusion was created by orthodontically moving the first and third molars 0.8mm away. Hematoxylin-eosin and immunohistochemical staining were performed on the mandibular condyles at the end of the 8th or 12th week. Gene expression was analysed by real-time PCR. RESULTS Osteoarthritis-like lesions, typically seen as a cell-free area, were detected in the Exp group, predominantly in females. In the cell-free area, the immunopositive expression of MMP-3, MMP-9, TIMP-1 and aggrecan were absent. Hyper-proliferation changes, typically seen as conjunctive invaginations of chondrocytes, were also observed where immunopositive expression of the tested materials was strong. There were sex and time point related differences in gene expression. In the 8-week subgroup, the expression of MMP-3 decreased, while aggrecan increased in males; however, both MMP-9 and TIMP increased in the female group (P<0.05). In the 12-week subgroup, the expression of MMP-3 increased, while TIMP, MMP-9 (male only) and aggrecan (female only) decreased (P<0.05). CONCLUSIONS The present results indicate that the experimentally created disordered occlusion led to osteoarthritis-like lesions accompanied by changes in the expression of MMP-3, MMP-9, TIMP-1 and aggrecan in mandibular condyle cartilage with gender differences.
Collapse
Affiliation(s)
- Guo-Wei Wang
- Department of Oral Anatomy and Physiology and TMD, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | |
Collapse
|
17
|
Ganguly K, McRury ID, Goodwin PM, Morgan RE, Augé Ii WK. Histopomorphic evaluation of radiofrequency mediated débridement chondroplasty. Open Orthop J 2010; 4:211-20. [PMID: 20721322 PMCID: PMC2923343 DOI: 10.2174/1874325001004010211] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 05/21/2010] [Accepted: 05/27/2010] [Indexed: 11/22/2022] Open
Abstract
The use of radiofrequency devices has become widespread for surgical ablation procedures. When ablation devices have been deployed in treatment settings requiring tissue preservation like débridement chondroplasty, adoption has been limited due to the collateral damage caused by these devices in healthy tissue surrounding the treatment site. Ex vivo radiofrequency mediated débridement chondroplasty was performed on osteochondral specimens demonstrating surface fibrillation obtained from patients undergoing knee total joint replacement. Three radiofrequency systems designed to perform débridement chondroplasty were tested each demonstrating different energy delivery methods: monopolar ablation, bipolar ablation, and non-ablation energy. Treatment outcomes were compared with control specimens as to clinical endpoint and histopomorphic characteristics. Fibrillated cartilage was removed in all specimens; however, the residual tissue remaining at the treatment site displayed significantly different characteristics attributable to radiofrequency energy delivery method. Systems that delivered ablation-based energies caused tissue necrosis and collateral damage at the treatment site including corruption of cartilage Superficial and Transitional Zones; whereas, the non-ablation system created a smooth articular surface with Superficial Zone maintenance and without chondrocyte death or tissue necrosis. The mechanism of radiofrequency energy deposition upon tissues is particularly important in treatment settings requiring tissue preservation. Ablation-based device systems can cause a worsened state of articular cartilage from that of pre-treatment. Non-ablation energy can be successful in modifying/preconditioning tissue during débridement chondroplasty without causing collateral damage. Utilizing a non-ablation radiofrequency system provides the ability to perform successful débridement chondroplasty without causing additional articular cartilage tissue damage and may allow for other cartilage intervention success.
Collapse
Affiliation(s)
- Kumkum Ganguly
- B-Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | | | | | | | | |
Collapse
|
18
|
Boxberger JI, Orlansky AS, Sen S, Elliott DM. Reduced nucleus pulposus glycosaminoglycan content alters intervertebral disc dynamic viscoelastic mechanics. J Biomech 2009; 42:1941-6. [PMID: 19539936 PMCID: PMC2756063 DOI: 10.1016/j.jbiomech.2009.05.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 05/01/2009] [Accepted: 05/08/2009] [Indexed: 01/11/2023]
Abstract
The intervertebral disc functions over a range of dynamic loading regimes including axial loads applied across a spectrum of frequencies at varying compressive loads. Biochemical changes occurring in early degeneration, including reduced nucleus pulposus glycosaminoglycan content, may alter disc mechanical behavior and thus may contribute to the progression of degeneration. The objective of this study was to determine disc dynamic viscoelastic properties under several equilibrium loads and loading frequencies, and further, to determine how reduced nucleus glycosaminoglycan content alters dynamic mechanics. We hypothesized that (1) dynamic stiffness would be elevated with increasing equilibrium load and increasing frequency, (2) the disc would behave more elastically at higher frequencies, and finally, (3) dynamic stiffness would be reduced at low equilibrium loads under all frequencies due to nucleus glycosaminoglycan loss. We mechanically tested control and chondroitinase ABC injected rat lumbar motion segments at several equilibrium loads using oscillatory loading at frequencies ranging from 0.05 to 5Hz. The rat lumbar disc behaved non-linearly with higher dynamic stiffness at elevated compressive loads irrespective of frequency. Phase angle was not affected by equilibrium load, although it decreased as frequency was increased. Reduced glycosaminoglycan decreased dynamic stiffness at low loads but not at high equilibrium loads and led to increased phase angle at all loads and frequencies. The findings of this study demonstrate the effect of equilibrium load and loading frequencies on dynamic disc mechanics and indicate possible mechanical mechanisms through which disc degeneration can progress.
Collapse
Affiliation(s)
- John I Boxberger
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19104-6081, USA
| | | | | | | |
Collapse
|
19
|
Dattena M, Pilichi S, Rocca S, Mara L, Casu S, Masala G, Manunta L, Manunta A, Passino ES, Pool RR, Cappai P. Sheep embryonic stem-like cells transplanted in full-thickness cartilage defects. J Tissue Eng Regen Med 2009; 3:175-87. [PMID: 19226519 DOI: 10.1002/term.151] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Articular cartilage regeneration is limited. Embryonic stem (ES) cell lines provide a source of totipotent cells for regenerating cartilage. Anatomical, biomechanical, physiological and immunological similarities between humans and sheep make this animal an optimal experimental model. This study examines the repair process of articular cartilage in sheep after transplantation of ES-like cells isolated from inner cell masses (ICMs) derived from in vitro-produced (IVP) vitrified embryos. Thirty-five ES-like colonies from 40 IVP embryos, positive for stage-specific embryonic antigens (SSEAs), were pooled in groups of two or three, embedded in fibrin glue and transplanted into osteochondral defects in the medial femoral condyles of 14 ewes. Empty defect (ED) and cell-free glue (G) in the controlateral stifle joint served as controls. The Y gene sequence was used to detect ES-like cells in the repair tissue by in situ hybridization (ISH). Two ewes were euthanized at 1 month post-operatively, three each at 2 and 6 months and four at 12 months. Repairing tissue was examined by biomechanical, macroscopic, histological, immunohistochemical (collagen type II) and ISH assays. Scores of all treatments showed no statistical significant differences among treatment groups at a given time period, although ES-like grafts showed a tendency toward a better healing process. ISH was positive in all ES-like specimens. This study demonstrates that ES-like cells transplanted into cartilage defects stimulate the repair process to promote better organization and tissue bulk. However, the small number of cells applied and the short interval between surgery and euthanasia might have negatively affected the results.
Collapse
Affiliation(s)
- Maria Dattena
- AGRIS Sardegna, Laboratory of Biotechnology of Animal Reproduction, Department of Research in Animal Production, Sassari, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
An important and longstanding field of research in orthopedic biomechanics is the elucidation and mathematical modeling of the mechanical response of cartilaginous tissues. Traditional approaches have treated such tissues as continua and have described their mechanical response in terms of macroscopic models borrowed from solid mechanics. The most important of such models are the biphasic and single-phase viscoelastic models, and the many variations thereof. These models have reached a high level of maturity and have been successful in describing a wide range of phenomena. An alternative approach that has received considerable recent interest, both in orthopedic biomechanics and in other fields, is the description of mechanical response based on consideration of a tissue's structure—so-called microstructural modeling. Examples of microstructurally based approaches include fibril-reinforced biphasic models and homogenization approaches. A review of both macroscopic and microstructural constitutive models is given in the present work.
Collapse
Affiliation(s)
- Zeike A Taylor
- Intelligent Systems for Medicine Laboratgory, School of Mechanical Engineering, University of Western Australia, Crawley/Perth WA, Australia
| | | |
Collapse
|
21
|
Chowdhury TT, Appleby RN, Salter DM, Bader DA, Lee DA. Integrin-mediated mechanotransduction in IL-1 beta stimulated chondrocytes. Biomech Model Mechanobiol 2006; 5:192-201. [PMID: 16544161 DOI: 10.1007/s10237-006-0032-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Accepted: 08/08/2005] [Indexed: 01/22/2023]
Abstract
Mechanical loading and interleukin-1 beta (IL-1 beta) influence the release of nitric oxide (*NO) and prostaglandin E2 (PGE2) from articular chondrocytes via distinct signalling mechanisms. The exact nature of the interplay between the respective signalling pathways remains unclear. Recent studies have shown that integrins act as mechanoreceptors and may transduce extracellular stimuli into intracellular signals, thereby influencing cellular response. The current study demonstrates that the application of dynamic compression induced an inhibition of *NO and an upregulation of cell proliferation and proteoglycan synthesis in the presence and absence of IL-1 beta. PGE2 release was not affected by dynamic compression in the absence of IL-1 beta but was inhibited in the presence of the cytokine. The integrin binding peptide, GRGDSP, abolished or reversed the compression-induced alterations in all four parameters assessed in the presence and absence of IL-1 beta. The non-binding control peptide, GRADSP, had no effect. These data clearly demonstrate that the metabolic response of the chondrocytes to dynamic compression in the presence and absence of IL-1 beta, are integrin mediated.
Collapse
Affiliation(s)
- T T Chowdhury
- Medical Engineering Division and IRC in Biomedical Materials, Department of Engineering, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK.
| | | | | | | | | |
Collapse
|