1
|
Zhou W, Fang J, Jia Q, Meng H, Liu F, Mao J. Transcription factor specificity protein (SP) family in renal physiology and diseases. PeerJ 2025; 13:e18820. [PMID: 39850832 PMCID: PMC11756367 DOI: 10.7717/peerj.18820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 12/15/2024] [Indexed: 01/25/2025] Open
Abstract
Dysregulated specificity proteins (SPs), members of the C2H2 zinc-finger family, are crucial transcription factors (TFs) with implications for renal physiology and diseases. This comprehensive review focuses on the role of SP family members, particularly SP1 and SP3, in renal physiology and pathology. A detailed analysis of their expression and cellular localization in the healthy human kidney is presented, highlighting their involvement in fatty acid metabolism, electrolyte regulation, and the synthesis of important molecules. The review also delves into the diverse roles of SPs in various renal diseases, including renal ischemia/reperfusion injury, diabetic nephropathy, renal interstitial fibrosis, and lupus nephritis, elucidating their molecular mechanisms and potential as therapeutic targets. The review further discusses pharmacological modulation of SPs and its implications for treatment. Our findings provide a comprehensive understanding of SPs in renal health and disease, offering new avenues for targeted therapeutic interventions and precision medicine in nephrology.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Jiaxi Fang
- Department of Ultrasound, Taizhou Central Hospital, Taizhou, Zhejiang, China
| | - Qingqing Jia
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Hanyan Meng
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Fei Liu
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Jianhua Mao
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Liu Z, Hou P, Fang J, Shao C, Shi Y, Melino G, Peschiaroli A. Hyaluronic acid metabolism and chemotherapy resistance: recent advances and therapeutic potential. Mol Oncol 2024; 18:2087-2106. [PMID: 37953485 PMCID: PMC11467803 DOI: 10.1002/1878-0261.13551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/04/2023] [Accepted: 11/10/2023] [Indexed: 11/14/2023] Open
Abstract
Hyaluronic acid (HA) is a major component of the extracellular matrix, providing essential mechanical scaffolding for cells and, at the same time, mediating essential biochemical signals required for tissue homeostasis. Many solid tumors are characterized by dysregulated HA metabolism, resulting in increased HA levels in cancer tissues. HA interacts with several cell surface receptors, such as cluster of differentiation 44 and receptor for hyaluronan-mediated motility, thus co-regulating important signaling pathways in cancer development and progression. In this review, we describe the enzymes controlling HA metabolism and its intracellular effectors emphasizing their impact on cancer chemotherapy resistance. We will also explore the current and future prospects of HA-based therapy, highlighting the opportunities and challenges in the field.
Collapse
Affiliation(s)
- Zhanhong Liu
- Department of Experimental MedicineUniversity of Rome Tor VergataRomeItaly
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Pengbo Hou
- Department of Experimental MedicineUniversity of Rome Tor VergataRomeItaly
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Jiankai Fang
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Changshun Shao
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Yufang Shi
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Gerry Melino
- Department of Experimental MedicineUniversity of Rome Tor VergataRomeItaly
| | - Angelo Peschiaroli
- Institute of Translational Pharmacology (IFT), National Research Council (CNR)RomeItaly
| |
Collapse
|
3
|
Tammi MI, Oikari S, Pasonen-Seppänen S, Rilla K, Auvinen P, Tammi RH. Activated hyaluronan metabolism in the tumor matrix — Causes and consequences. Matrix Biol 2019; 78-79:147-164. [PMID: 29709595 DOI: 10.1016/j.matbio.2018.04.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/13/2018] [Accepted: 04/25/2018] [Indexed: 02/08/2023]
|
4
|
Heldin P, Lin CY, Kolliopoulos C, Chen YH, Skandalis SS. Regulation of hyaluronan biosynthesis and clinical impact of excessive hyaluronan production. Matrix Biol 2018; 78-79:100-117. [PMID: 29374576 DOI: 10.1016/j.matbio.2018.01.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/22/2018] [Accepted: 01/22/2018] [Indexed: 10/25/2022]
Abstract
The tightly regulated biosynthesis and catabolism of the glycosaminoglycan hyaluronan, as well as its role in organizing tissues and cell signaling, is crucial for the homeostasis of tissues. Overexpression of hyaluronan plays pivotal roles in inflammation and cancer, and markedly high serum and tissue levels of hyaluronan are noted under such pathological conditions. This review focuses on the complexity of the regulation at transcriptional and posttranslational level of hyaluronan synthetic enzymes, and the outcome of their aberrant expression and accumulation of hyaluronan in clinical conditions, such as systemic B-cell cancers, aggressive breast carcinomas, metabolic diseases and virus infection.
Collapse
Affiliation(s)
- Paraskevi Heldin
- Department Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden.
| | - Chun-Yu Lin
- Department Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden; Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Constantinos Kolliopoulos
- Department Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden
| | - Yen-Hsu Chen
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsin Chu, Taiwan
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26110 Patras, Greece
| |
Collapse
|
5
|
Puperi DS, O’Connell RW, Punske ZE, Wu Y, West JL, Grande-Allen KJ. Hyaluronan Hydrogels for a Biomimetic Spongiosa Layer of Tissue Engineered Heart Valve Scaffolds. Biomacromolecules 2016; 17:1766-75. [PMID: 27120017 PMCID: PMC4986518 DOI: 10.1021/acs.biomac.6b00180] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Advanced tissue engineered heart valves must be constructed from multiple materials to better mimic the heterogeneity found in the native valve. The trilayered structure of aortic valves provides the ability to open and close consistently over a full human lifetime, with each layer performing specific mechanical functions. The middle spongiosa layer consists primarily of proteoglycans and glycosaminoglycans, providing lubrication and dampening functions as the valve leaflet flexes open and closed. In this study, hyaluronan hydrogels were tuned to perform the mechanical functions of the spongiosa layer, provide a biomimetic scaffold in which valve cells were encapsulated in 3D for tissue engineering applications, and gain insight into how valve cells maintain hyaluronan homeostasis within heart valves. Expression of the HAS1 isoform of hyaluronan synthase was significantly higher in hyaluronan hydrogels compared to blank-slate poly(ethylene glycol) diacrylate (PEGDA) hydrogels. Hyaluronidase and matrix metalloproteinase enzyme activity was similar between hyaluronan and PEGDA hydrogels, even though these scaffold materials were each specifically susceptible to degradation by different enzyme types. KIAA1199 was expressed by valve cells and may play a role in the regulation of hyaluronan in heart valves. Cross-linked hyaluronan hydrogels maintained healthy phenotype of valve cells in 3D culture and were tuned to approximate the mechanical properties of the valve spongiosa layer. Therefore, hyaluronan can be used as an appropriate material for the spongiosa layer of a proposed laminate tissue engineered heart valve scaffold.
Collapse
Affiliation(s)
- Daniel S. Puperi
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Ronan W. O’Connell
- Department of Biomedical Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Zoe E. Punske
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Yan Wu
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Jennifer L. West
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - K. Jane Grande-Allen
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
6
|
Nagaoka A, Yoshida H, Nakamura S, Morikawa T, Kawabata K, Kobayashi M, Sakai S, Takahashi Y, Okada Y, Inoue S. Regulation of Hyaluronan (HA) Metabolism Mediated by HYBID (Hyaluronan-binding Protein Involved in HA Depolymerization, KIAA1199) and HA Synthases in Growth Factor-stimulated Fibroblasts. J Biol Chem 2015; 290:30910-23. [PMID: 26518873 DOI: 10.1074/jbc.m115.673566] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Indexed: 11/06/2022] Open
Abstract
Regulation of hyaluronan (HA) synthesis and degradation is essential to maintenance of extracellular matrix homeostasis. We recently reported that HYBID (HYaluronan-Binding protein Involved in hyaluronan Depolymerization), also called KIAA1199, plays a key role in HA depolymerization in skin and arthritic synovial fibroblasts. However, regulation of HA metabolism mediated by HYBID and HA synthases (HASs) under stimulation with growth factors remains obscure. Here we report that TGF-β1, basic FGF, EGF, and PDGF-BB commonly enhance total amount of HA in skin fibroblasts through up-regulation of HAS expression, but molecular size of newly produced HA is dependent on HYBID expression levels. Stimulation of HAS1/2 expression and suppression of HYBID expression by TGF-β1 were abrogated by blockade of the MAPK and/or Smad signaling and the PI3K-Akt signaling, respectively. In normal human skin, expression of the TGF-β1 receptors correlated positively with HAS2 expression and inversely with HYBID expression. On the other hand, TGF-β1 up-regulated HAS1/2 expression but exerted only a slight suppressive effect on HYBID expression in synovial fibroblasts from the patients with osteoarthritis or rheumatoid arthritis, resulting in the production of lower molecular weight HA compared with normal skin and synovial fibroblasts. These data demonstrate that although TGF-β1, basic FGF, EGF, and PDGF-BB enhance HA production in skin fibroblasts, TGF-β1 most efficiently contributes to production of high molecular weight HA by HAS up-regulation and HYBID down-regulation and suggests that inefficient down-regulation of HYBID by TGF-β1 in arthritic synovial fibroblasts may be linked to accumulation of depolymerized HA in synovial fluids in arthritis patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shingo Sakai
- Health Beauty Products Research, Kao Corporation, 3-28, 5-chome, Kotobuki-cho, Odawara-shi, Kanagawa, 250-0002 Japan
| | | | - Yasunori Okada
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-0016 Japan, and
| | - Shintaro Inoue
- Kanebo Cosmetics Inc., 1-14-10, Nihonbashi Kayabacho, Chuo-ku, Tokyo, 103-8210 Japan
| |
Collapse
|
7
|
Regulation of synthesis and roles of hyaluronan in peritoneal dialysis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:427038. [PMID: 26550568 PMCID: PMC4621352 DOI: 10.1155/2015/427038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/16/2015] [Indexed: 12/08/2022]
Abstract
Hyaluronan (HA) is a ubiquitous extracellular matrix glycosaminoglycan composed of repeated disaccharide units of alternating D-glucuronic acid and D-N-acetylglucosamine residues linked via alternating β-1,4 and β-1,3 glycosidic bonds. HA is synthesized in humans by HA synthase (HAS) enzymes 1, 2, and 3, which are encoded by the corresponding HAS genes. Previous in vitro studies have shown characteristic changes in HAS expression and increased HA synthesis in response to wounding and proinflammatory cytokines in human peritoneal mesothelial cells. In addition, in vivo models and human peritoneal biopsy samples have provided evidence of changes in HA metabolism in the fibrosis that at present accompanies peritoneal dialysis treatment. This review discusses these published observations and how they might contribute to improvement in peritoneal dialysis.
Collapse
|
8
|
Wang S, Zhen L, Liu Z, Ai Q, Ji Y, Du G, Wang Y, Bu Y. Identification and analysis of the promoter region of the human HAS3 gene. Biochem Biophys Res Commun 2015; 460:1008-14. [PMID: 25843802 DOI: 10.1016/j.bbrc.2015.03.142] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 03/03/2015] [Indexed: 01/18/2023]
Abstract
Hyaluronan (HA) is a key component of the vertebrate extracellular matrix that is synthesized at the plasma membrane by the hyaluronan synthases including HAS1, HAS2 and HAS3. The expression and regulation of HAS1-3 are implicated in numerous physiological and pathological processes. The promoters of human HAS1 and HAS2 genes have been identified previously whereas HAS3 promoter remains unclear. In the present study, we have for the first time identified and characterized the human HAS3 gene promoter region. 5' RACE assay revealed two novel transcriptional variants of HAS3 gene with distinct transcription start sites. Progressive deletion analysis of the 5'-flanking region of HAS3 gene demonstrated that HAS3 proximal promoter is mainly restricted to a 450-bp region (i.e. -761 to -305 bp upstream of the major HAS3 transcription start site), whereas its core promoter is located to a minimal 129-bp region (i.e. -433 to -305 bp upstream of the major HAS3 transcription start site). Transcriptional factor binding analysis indicated that HAS3 gene promoter lacks of canonical TATA box, but contains classical GC box as well as other putative binding sites for transcriptional factors such as C/EBP and NFκB. In addition, site-directed mutagenesis assay demonstrated that the proximal Sp1 binding site is essential for the robust proximal promoter activity of HAS3 gene whereas the core MTE (core promoter motif ten elements) motif is required for the basic core promoter activity of HAS3 gene. Our present study should facilitate further studies on the mechanism regulating the expression of this important gene.
Collapse
Affiliation(s)
- Sen Wang
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Lei Zhen
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Zhu Liu
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Qing Ai
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Ying Ji
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Gang Du
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Yitao Wang
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Youquan Bu
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
9
|
Midgley AC, Duggal L, Jenkins R, Hascall V, Steadman R, Phillips AO, Meran S. Hyaluronan regulates bone morphogenetic protein-7-dependent prevention and reversal of myofibroblast phenotype. J Biol Chem 2015; 290:11218-34. [PMID: 25716319 PMCID: PMC4416830 DOI: 10.1074/jbc.m114.625939] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Indexed: 12/16/2022] Open
Abstract
Hyaluronan (HA) promotes transforming growth factor (TGF)-β1-driven myofibroblast phenotype. However, HA can also have disease-limiting activity. Bone morphogenetic protein-7 (BMP7) is an antifibrotic cytokine that antagonizes TGF-β1, and isolated studies have demonstrated that HA can both mediate and modulate BMP7 responses. In this study, we investigated whether BMP7 can modulate HA in a manner that leads to prevention/reversal of TGF-β1-driven myofibroblast differentiation in human lung fibroblasts. Results demonstrated that BMP7 prevented and reversed TGF-β1-driven myofibroblast differentiation through a novel mechanism. BMP7 promoted the dissolution and internalization of cell-surface HA into cytoplasmic endosomes. Endosomal HA co-localized with the HA-degrading enzymes, hyaluronidase-1 and hyaluronidase-2 (Hyal2). Moreover, BMP7 showed differential regulation of CD44 standard and variant isoform expression, when compared with TGF-β1. In particular, BMP7 increased membrane expression of CD44v7/8. Inhibiting CD44v7/8 as well as blocking Hyal2 and the Na+/H+ exchanger-1 at the cell-surface prevented BMP7-driven HA internalization and BMP7-mediated prevention/reversal of myofibroblast phenotype. In summary, a novel mechanism of TGF-β1 antagonism by BMP7 is shown and identifies alteration in HA as critical in mediating BMP7 responses. In addition, we identify Hyal2 and CD44v7/8 as new potential targets for manipulation in prevention and reversal of fibrotic pathology.
Collapse
Affiliation(s)
- Adam C Midgley
- From the Institute of Nephrology, Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, United Kingdom and
| | - Lucy Duggal
- From the Institute of Nephrology, Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, United Kingdom and
| | - Robert Jenkins
- From the Institute of Nephrology, Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, United Kingdom and
| | - Vincent Hascall
- the Lerner Research Institute, Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio 44195
| | - Robert Steadman
- From the Institute of Nephrology, Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, United Kingdom and
| | - Aled O Phillips
- From the Institute of Nephrology, Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, United Kingdom and
| | - Soma Meran
- From the Institute of Nephrology, Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, United Kingdom and
| |
Collapse
|
10
|
Siiskonen H, Oikari S, Pasonen-Seppänen S, Rilla K. Hyaluronan synthase 1: a mysterious enzyme with unexpected functions. Front Immunol 2015; 6:43. [PMID: 25699059 PMCID: PMC4318391 DOI: 10.3389/fimmu.2015.00043] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/22/2015] [Indexed: 11/13/2022] Open
Abstract
Hyaluronan synthase 1 (HAS1) is one of three isoenzymes responsible for cellular hyaluronan synthesis. Interest in HAS1 has been limited because its role in hyaluronan production seems to be insignificant compared to the two other isoenzymes, HAS2 and HAS3, which have higher enzymatic activity. Furthermore, in most cell types studied so far, the expression of its gene is low and the enzyme requires high concentrations of sugar precursors for hyaluronan synthesis, even when overexpressed in cell cultures. Both expression and activity of HAS1 are induced by pro-inflammatory factors like interleukins and cytokines, suggesting its involvement in inflammatory conditions. Has1 is upregulated in states associated with inflammation, like atherosclerosis, osteoarthritis, and infectious lung disease. In addition, both full length and splice variants of HAS1 are expressed in malignancies like bladder and prostate cancers, multiple myeloma, and malignant mesothelioma. Interestingly, immunostainings of tissue sections have demonstrated the role of HAS1 as a poor predictor in breast cancer, and is correlated with high relapse rate and short overall survival. Utilization of fluorescently tagged proteins has revealed the intracellular distribution pattern of HAS1, distinct from other isoenzymes. In all cell types studied so far, a high proportion of HAS1 is accumulated intracellularly, with a faint signal detected on the plasma membrane and its protrusions. Furthermore, the pericellular hyaluronan coat produced by HAS1 is usually thin without induction by inflammatory agents or glycemic stress and depends on CD44–HA interactions. These specific interactions regulate the organization of hyaluronan into a leukocyte recruiting matrix during inflammatory responses. Despite the apparently minor enzymatic activity of HAS1 under normal conditions, it may be an important factor under conditions associated with glycemic stress like metabolic syndrome, inflammation, and cancer.
Collapse
Affiliation(s)
- Hanna Siiskonen
- Department of Dermatology, Kuopio University Hospital, University of Eastern Finland , Kuopio , Finland
| | - Sanna Oikari
- Institute of Biomedicine, University of Eastern Finland , Kuopio , Finland
| | | | - Kirsi Rilla
- Institute of Biomedicine, University of Eastern Finland , Kuopio , Finland
| |
Collapse
|
11
|
Rybinski B, Franco-Barraza J, Cukierman E. The wound healing, chronic fibrosis, and cancer progression triad. Physiol Genomics 2014; 46:223-44. [PMID: 24520152 PMCID: PMC4035661 DOI: 10.1152/physiolgenomics.00158.2013] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 02/04/2014] [Indexed: 02/07/2023] Open
Abstract
For decades tumors have been recognized as "wounds that do not heal." Besides the commonalities that tumors and wounded tissues share, the process of wound healing also portrays similar characteristics with chronic fibrosis. In this review, we suggest a tight interrelationship, which is governed as a concurrence of cellular and microenvironmental reactivity among wound healing, chronic fibrosis, and cancer development/progression (i.e., the WHFC triad). It is clear that the same cell types, as well as soluble and matrix elements that drive wound healing (including regeneration) via distinct signaling pathways, also fuel chronic fibrosis and tumor progression. Hence, here we review the relationship between fibrosis and cancer through the lens of wound healing.
Collapse
Affiliation(s)
- Brad Rybinski
- Cancer Biology Program, Fox Chase Cancer Center/Temple Health, Philadelphia, Pennsylvania
| | | | | |
Collapse
|