1
|
Funayama R, Wang Y, Hosogane M, Kao W, Toyama S, Ohira M, Matsumoto M, Aizawa T, Kobayashi M, Karasawa H, Ohnuma S, Nakayama KI, Unno M, Nakayama K. Alternative Splicing of FBLN2 Generates a Prometastatic Extracellular Matrix in Gastrointestinal Cancers by Determining N-Glycosylation of Fibulin 2. Genes Cells 2025; 30:e70027. [PMID: 40400104 PMCID: PMC12095903 DOI: 10.1111/gtc.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/19/2025] [Accepted: 05/13/2025] [Indexed: 05/23/2025]
Abstract
Fibulin 2 (FBLN2) is an extracellular matrix glycoprotein. Exclusion of exon 9 of FBLN2 is one of the most recurrent splicing events across multiple types of cancer, but its functional relevance in cancer has remained unexplored. We here reveal that the exclusion of exon 9 of FBLN2 results in the loss of a single N-glycosylation site that leads to misfolding of the FBLN2 protein as well as to a reduction in both its stability and secretion efficiency. Indeed, the extracellular matrix of human colorectal cancer tissue exhibits a reduced abundance of FBLN2. This deficiency of FBLN2 together with a concomitant increase in the abundance of fibronectin 1 in the tumor microenvironment promotes the adhesion and migration of colorectal cancer cells. Our data thus suggest that the alternative splicing of FBLN2 exon 9 generates a prometastatic extracellular environment in cancer tissue by determining FBLN2 glycosylation.
Collapse
Affiliation(s)
- Ryo Funayama
- Department of Cell Proliferation, ART, Graduate School of MedicineTohoku UniversitySendaiJapan
- Anticancer Strategies Laboratory, Advanced Research InitiativeInstitute of Science TokyoTokyoJapan
| | - Yujue Wang
- Department of Cell Proliferation, ART, Graduate School of MedicineTohoku UniversitySendaiJapan
- Department of Cellular Function, Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Masaki Hosogane
- Department of Cell Proliferation, ART, Graduate School of MedicineTohoku UniversitySendaiJapan
| | - Wei‐Chen Kao
- Department of Cell Proliferation, ART, Graduate School of MedicineTohoku UniversitySendaiJapan
| | - Shingo Toyama
- Department of Surgery, Graduate School of MedicineTohoku UniversitySendaiJapan
| | - Masahiro Ohira
- Department of Cell Proliferation, ART, Graduate School of MedicineTohoku UniversitySendaiJapan
| | - Masaki Matsumoto
- Department of Omics and Systems Biology, Graduate School of Medical and Dental SciencesNiigata UniversityNiigataJapan
| | - Takashi Aizawa
- Department of Surgery, Graduate School of MedicineTohoku UniversitySendaiJapan
| | - Minoru Kobayashi
- Department of Surgery, Graduate School of MedicineTohoku UniversitySendaiJapan
| | - Hideaki Karasawa
- Department of Surgery, Graduate School of MedicineTohoku UniversitySendaiJapan
| | - Shinobu Ohnuma
- Department of Surgery, Graduate School of MedicineTohoku UniversitySendaiJapan
| | - Keiichi I. Nakayama
- Anticancer Strategies Laboratory, Advanced Research InitiativeInstitute of Science TokyoTokyoJapan
- Department of Molecular and Cellular Biology, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Michiaki Unno
- Department of Surgery, Graduate School of MedicineTohoku UniversitySendaiJapan
| | - Keiko Nakayama
- Department of Cell Proliferation, ART, Graduate School of MedicineTohoku UniversitySendaiJapan
- Research Infrastructure Management CenterInstitute of Science TokyoTokyoJapan
| |
Collapse
|
2
|
Lee F, Shao X, Considine JM, Gao Y(T, Naba A. Time-lapse tryptic digestion: a proteomic approach to improve sequence coverage of extracellular matrix proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.26.645502. [PMID: 40196545 PMCID: PMC11974830 DOI: 10.1101/2025.03.26.645502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The extracellular matrix (ECM) is a complex and dynamic meshwork of proteins providing structural support to cells. It also provides biochemical signals governing cellular processes, including proliferation, adhesion, and migration. Alterations of ECM structure and/or composition have been linked to many pathological processes, including cancer and fibrosis. Over the past decade, mass-spectrometry-based proteomics has become the state-of-the-art method to profile the protein composition of ECMs. However, existing methods do not fully capture the broad dynamic range of protein abundances in the ECM. They also do not permit to achieve the high coverage needed to gain finer biochemical on ECM proteoforms (e.g., isoforms, post-translational modifications) and topographical information critical to better understand ECM protein functions. Here, we present the development of a time-lapsed proteomic pipeline using limited tryptic proteolysis and sequential release of peptides over time. This experimental pipeline was combined with data-independent acquisition mass spectrometry and the assembly of a custom matrisome spectral library to enhance peptide-to-spectrum matching. This pipeline shows superior protein identification, peptide-to-spectrum matching, and significantly increased sequence coverage against standard ECM proteomic pipelines. Exploiting the spatio-temporal resolution of this method, we further demonstrate how time-resolved 3-dimensional peptide mapping can identify protein regions differentially susceptible to trypsin, which may aid in identifying protein-protein interaction sites.
Collapse
Affiliation(s)
- Fred Lee
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL 60612, U.S.A
| | - Xinhao Shao
- College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, U.S.A
| | - James M Considine
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL 60612, U.S.A
| | - Yu (Tom) Gao
- College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, U.S.A
- University of Illinois Cancer Center, Chicago, IL 60612, U.S.A
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL 60612, U.S.A
- University of Illinois Cancer Center, Chicago, IL 60612, U.S.A
| |
Collapse
|
3
|
Roozitalab MR, Prekete N, Allen M, Grose RP, Louise Jones J. The Microenvironment in DCIS and Its Role in Disease Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:211-235. [PMID: 39821028 DOI: 10.1007/978-3-031-70875-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Ductal carcinoma in situ (DCIS) accounts for ~20% of all breast cancer diagnoses but whilst known to be a precursor of invasive breast cancer (IBC), evidence suggests only one in six patients will ever progress. A key challenge is to distinguish between those lesions that will progress and those that will remain indolent. Molecular analyses of neoplastic epithelial cells have not identified consistent differences between lesions that progressed and those that did not, and this has focused attention on the tumour microenvironment (ME).The DCIS ME is unique, complex and dynamic. Myoepithelial cells form the wall of the ductal-lobular tree and exhibit broad tumour suppressor functions. However, in DCIS they acquire phenotypic changes that bestow them with tumour promoter properties, an important evolution since they act as the primary barrier for invasion. Changes in the peri-ductal stromal environment also arise in DCIS, including transformation of fibroblasts into cancer-associated fibroblasts (CAFs). CAFs orchestrate other changes in the stroma, including the physical structure of the extracellular matrix (ECM) through altered protein synthesis, as well as release of a plethora of factors including proteases, cytokines and chemokines that remodel the ECM. CAFs can also modulate the immune ME as well as impact on tumour cell signalling pathways. The heterogeneity of CAFs, including recognition of anti-tumourigenic populations, is becoming evident, as well as heterogeneity of immune cells and the interplay between these and the adipocyte and vascular compartments. Knowledge of the impact of these changes is more advanced in IBC but evidence is starting to accumulate for a role in DCIS. Detailed in vitro, in vivo and tissue studies focusing on the interplay between DCIS epithelial cells and the ME should help to define features that can better predict DCIS behaviour.
Collapse
Affiliation(s)
- Mohammad Reza Roozitalab
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, London, UK
| | - Niki Prekete
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, London, UK
| | - Michael Allen
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, London, UK
| | - Richard P Grose
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, London, UK
| | - J Louise Jones
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, London, UK.
| |
Collapse
|
4
|
Cassani M, Fernandes S, Pagliari S, Cavalieri F, Caruso F, Forte G. Unraveling the Role of the Tumor Extracellular Matrix to Inform Nanoparticle Design for Nanomedicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409898. [PMID: 39629891 PMCID: PMC11727388 DOI: 10.1002/advs.202409898] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/01/2024] [Indexed: 01/14/2025]
Abstract
The extracellular matrix (ECM)-and its mechanobiology-regulates key cellular functions that drive tumor growth and development. Accordingly, mechanotherapy is emerging as an effective approach to treat fibrotic diseases such as cancer. Through restoring the ECM to healthy-like conditions, this treatment aims to improve tissue perfusion, facilitating the delivery of chemotherapies. In particular, the manipulation of ECM is gaining interest as a valuable strategy for developing innovative treatments based on nanoparticles (NPs). However, further progress is required; for instance, it is known that the presence of a dense ECM, which hampers the penetration of NPs, primarily impacts the efficacy of nanomedicines. Furthermore, most 2D in vitro studies fail to recapitulate the physiological deposition of matrix components. To address these issues, a comprehensive understanding of the interactions between the ECM and NPs is needed. This review focuses on the main features of the ECM and its complex interplay with NPs. Recent advances in mechanotherapy are discussed and insights are offered into how its combination with nanomedicine can help improve nanomaterials design and advance their clinical translation.
Collapse
Affiliation(s)
- Marco Cassani
- International Clinical Research CenterSt. Anne's University HospitalBrno60200Czech Republic
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Soraia Fernandes
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
- School of ScienceRMIT UniversityMelbourneVictoria3000Australia
| | - Stefania Pagliari
- International Clinical Research CenterSt. Anne's University HospitalBrno60200Czech Republic
- School of Cardiovascular and Metabolic Medicine & SciencesKing's College LondonLondonWC2R 2LSUK
| | - Francesca Cavalieri
- School of ScienceRMIT UniversityMelbourneVictoria3000Australia
- Dipartimento di Scienze e Tecnologie ChimicheUniversita di Roma “Tor Vergata”Via della Ricerca Scientifica 1Rome00133Italy
| | - Frank Caruso
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Giancarlo Forte
- International Clinical Research CenterSt. Anne's University HospitalBrno60200Czech Republic
- School of Cardiovascular and Metabolic Medicine & SciencesKing's College LondonLondonWC2R 2LSUK
| |
Collapse
|
5
|
Klimontova M, Zhang H, Campos-Laborie F, Webster N, Andrews B, Kim Chung KC, Hili R, Kouzarides T, Bannister AJ. THUMPD3 regulates alternative splicing of ECM transcripts in human lung cancer cells and promotes proliferation and migration. PLoS One 2024; 19:e0314655. [PMID: 39656728 DOI: 10.1371/journal.pone.0314655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 11/13/2024] [Indexed: 12/17/2024] Open
Abstract
RNA-modifying enzymes have recently garnered considerable attention due to their relevance in cancer biology, identifying them as potential targets for novel therapeutic intervention. THUMPD3 was recently identified as an RNA methyltransferase catalysing N2-methylguanosine (m2G) within certain tRNAs. In this study, we unveil a novel role for THUMPD3 in lung cancer cells. Depletion of the enzyme from lung cancer cells significantly impairs their fitness, negatively impacting key cellular processes such as proliferation and migration. Notably, exogenous expression of THUMPD3 in normal lung fibroblasts stimulates their proliferation rate. Additionally, transcriptome-wide analyses reveal that depletion of THUMPD3 from lung cancer cells induces substantial changes in the expression of cell surface proteins, including those comprising the extracellular matrix (ECM). We further demonstrate that THUMPD3 maintains expression of an extra-domain B (EDB) containing pro-tumour isoform of Fibronectin-1 mRNA, encoding FN1, an important ECM protein. Crucially, depletion of THUMPD3 promotes an alternative splicing event that removes the EDB-encoding exon from Fibronectin-1. This is consistent with THUMPD3 depletion reducing cellular proliferation and migration. Moreover, depletion of THUMPD3 selectively and preferentially affects the alternative splicing of ECM and cell adhesion molecule encoding transcripts, as well as those encoding neurodevelopmental proteins. Overall, these findings highlight THUMPD3 as an important player in regulating cancer-relevant alternative splicing and they provide a rationale for further investigations into THUMPD3 as a candidate target in anti-cancer therapy.
Collapse
Affiliation(s)
- Marie Klimontova
- The Gurdon Institute and Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- STORM Therapeutics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Han Zhang
- The Gurdon Institute and Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Francisco Campos-Laborie
- The Gurdon Institute and Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Natalie Webster
- STORM Therapeutics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Byron Andrews
- STORM Therapeutics Ltd., Babraham Research Campus, Cambridge, United Kingdom
| | - Kimberley Chung Kim Chung
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, ON, Canada
| | - Ryan Hili
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, ON, Canada
| | - Tony Kouzarides
- The Gurdon Institute and Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Milner Therapeutics Institute, University of Cambridge, Cambridge, United Kingdom
| | - Andrew J Bannister
- The Gurdon Institute and Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
6
|
Wang R, Sui Y, Liu Q, Xiong Y, Li S, Guo W, Xu Y, Zhang S. Recent advances in extracellular matrix manipulation for kidney organoid research. Front Pharmacol 2024; 15:1472361. [PMID: 39568581 PMCID: PMC11576200 DOI: 10.3389/fphar.2024.1472361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/23/2024] [Indexed: 11/22/2024] Open
Abstract
The kidney plays a crucial role in maintaining the body's microenvironment homeostasis. However, current treatment options and therapeutic agents for chronic kidney disease (CKD) are limited. Fortunately, the advent of kidney organoids has introduced a novel in vitro model for studying kidney diseases and drug screening. Despite significant efforts has been leveraged to mimic the spatial-temporal dynamics of fetal renal development in various types of kidney organoids, there is still a discrepancy in cell types and maturity compared to native kidney tissue. The extracellular matrix (ECM) plays a crucial role in regulating cellular signaling, which ultimately affects cell fate decision. As a result, ECM can refine the microenvironment of organoids, promoting their efficient differentiation and maturation. This review examines the existing techniques for culturing kidney organoids, evaluates the strengths and weaknesses of various types of kidney organoids, and assesses the advancements and limitations associated with the utilization of the ECM in kidney organoid culture. Additionally, it presents a discussion on constructing specific physiological and pathological microenvironments using decellularized extracellular matrix during certain developmental stages or disease occurrences, aiding the development of kidney organoids and disease models.
Collapse
Affiliation(s)
- Ren Wang
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yufei Sui
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Qiuyan Liu
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yucui Xiong
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Shanshan Li
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wu Guo
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yiwei Xu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Sheng Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Chang X, Han YM, Li QL, Wang C, Guo B, Jiang HL. Spatiotemporally cascade-driven "Lipo micelles" enhance extracellular matrix penetration and remodel intercellular crosstalk in pulmonary fibrosis. J Control Release 2024; 376:861-879. [PMID: 39489465 DOI: 10.1016/j.jconrel.2024.10.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Pulmonary fibrosis (PF) is an inevitable phase of many respiratory diseases with high mortality and limited effective treatments in the clinic. In PF, aberrant extracellular matrix (ECM) deposition is a significant pathological structural alteration that blocks intercellular crosstalk and hinders the deep penetration of therapeutics into lung tissues, reducing the effectiveness of conventional treatment strategies. Herein, a penetrating enhancer (Lipomicelles) composed of thermosensitive liposome shells loaded with collagenase IV and micellar cores containing thioketal bonds encapsulated with curcumin and decorated with cyclic RGDfc, is developed to alleviate PF. Specifically, Lipomicelles exhibit a cascade-responsive pattern to achieve precision delivery of curcumin through thermosensitivity, enhanced ECM penetration, site-specific targeting, and rapid release in injured alveolar epithelial type II cells (CellAEC2s). Subsequently, intercellular crosstalk is remodeled through the curcumin-mediated repair of CellAEC2s, combined with collagenase IV-mediated ECM degradation to inhibit myofibroblasts, ultimately achieving PF reversal. This work provides an innovative approach to enhance ECM penetration of therapeutics before remodeling intercellular crosstalk, addressing multi-phase PF therapy.
Collapse
Affiliation(s)
- Xin Chang
- School of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning 121001, China; Liaoning Provincial Key Laboratory of Marine Bioactive Substances, Jinzhou Medical University, Jinzhou, Liaoning 121001, China; Technological Innovation Center of Liaoning Pharmaceutical Action and Quality Evaluation, Jinzhou Medical University, Jinzhou, Liaoning 121001, China.
| | - Yu-Mo Han
- School of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Qiu-Ling Li
- School of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Chao Wang
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Bin Guo
- School of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning 121001, China; Liaoning Provincial Key Laboratory of Marine Bioactive Substances, Jinzhou Medical University, Jinzhou, Liaoning 121001, China; Technological Innovation Center of Liaoning Pharmaceutical Action and Quality Evaluation, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, Jiangsu 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, Jiangsu 210009, China..
| |
Collapse
|
8
|
Abstract
The extracellular matrix (ECM) is the complex meshwork of proteins and glycans that forms the scaffold that surrounds and supports cells. It exerts key roles in all aspects of metazoan physiology, from conferring physical and mechanical properties on tissues and organs to modulating cellular processes such as proliferation, differentiation and migration. Understanding the mechanisms that orchestrate the assembly of the ECM scaffold is thus crucial to understand ECM functions in health and disease. This Review discusses novel insights into the compositional diversity of matrisome components and the mechanisms that lead to tissue-specific assemblies and architectures tailored to support specific functions. The Review then highlights recently discovered mechanisms, including post-translational modifications and metabolic pathways such as amino acid availability and the circadian clock, that modulate ECM secretion, assembly and remodelling in homeostasis and human diseases. Last, the Review explores the potential of 'matritherapies', that is, strategies to normalize ECM composition and architecture to achieve a therapeutic benefit.
Collapse
Affiliation(s)
- Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, USA.
- University of Illinois Cancer Center, Chicago, IL, USA.
| |
Collapse
|
9
|
Bains AK, Naba A. Proteomic insights into the extracellular matrix: a focus on proteoforms and their implications in health and disease. Expert Rev Proteomics 2024; 21:463-481. [PMID: 39512072 PMCID: PMC11602344 DOI: 10.1080/14789450.2024.2427136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/15/2024]
Abstract
INTRODUCTION The extracellular matrix (ECM) is a highly organized and dynamic network of proteins and glycosaminoglycans that provides critical structural, mechanical, and biochemical support to cells. The functions of the ECM are directly influenced by the conformation of the proteins that compose it. ECM proteoforms, which can result from genetic, transcriptional, and/or post-translational modifications, adopt different conformations and, consequently, confer different structural properties and functionalities to the ECM in both physiological and pathological contexts. AREAS COVERED In this review, we discuss how bottom-up proteomics has been applied to identify, map, and quantify post-translational modifications (e.g. additions of chemical groups, proteolytic cleavage, or cross-links) and ECM proteoforms arising from alternative splicing or genetic variants. We further illustrate how proteoform-level information can be leveraged to gain novel insights into ECM protein structure and ECM functions in health and disease. EXPERT OPINION In the Expert opinion section, we discuss remaining challenges and opportunities with an emphasis on the importance of devising experimental and computational methods tailored to account for the unique biochemical properties of ECM proteins with the goal of increasing sequence coverage and, hence, accurate ECM proteoform identification.
Collapse
Affiliation(s)
- Amanpreet Kaur Bains
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL 60612, USA
- University of Illinois Cancer Center, Chicago, IL 60612, USA
| |
Collapse
|
10
|
Ashworth JC, Cox TR. The importance of 3D fibre architecture in cancer and implications for biomaterial model design. Nat Rev Cancer 2024; 24:461-479. [PMID: 38886573 DOI: 10.1038/s41568-024-00704-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/07/2024] [Indexed: 06/20/2024]
Abstract
The need for improved prediction of clinical response is driving the development of cancer models with enhanced physiological relevance. A new concept of 'precision biomaterials' is emerging, encompassing patient-mimetic biomaterial models that seek to accurately detect, treat and model cancer by faithfully recapitulating key microenvironmental characteristics. Despite recent advances allowing tissue-mimetic stiffness and molecular composition to be replicated in vitro, approaches for reproducing the 3D fibre architectures found in tumour extracellular matrix (ECM) remain relatively unexplored. Although the precise influences of patient-specific fibre architecture are unclear, we summarize the known roles of tumour fibre architecture, underlining their implications in cell-matrix interactions and ultimately clinical outcome. We then explore the challenges in reproducing tissue-specific 3D fibre architecture(s) in vitro, highlighting relevant biomaterial fabrication techniques and their benefits and limitations. Finally, we discuss imaging and image analysis techniques (focussing on collagen I-optimized approaches) that could hold the key to mapping tumour-specific ECM into high-fidelity biomaterial models. We anticipate that an interdisciplinary approach, combining materials science, cancer research and image analysis, will elucidate the role of 3D fibre architecture in tumour development, leading to the next generation of patient-mimetic models for mechanistic studies and drug discovery.
Collapse
Affiliation(s)
- Jennifer C Ashworth
- School of Veterinary Medicine & Science, Sutton Bonington Campus, University of Nottingham, Leicestershire, UK.
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, UK.
- Cancer Ecosystems Program, The Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.
| | - Thomas R Cox
- Cancer Ecosystems Program, The Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.
- The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia.
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
11
|
Lulla AR, Akli S, Karakas C, Caruso JA, Warma LD, Fowlkes NW, Rao X, Wang J, Hunt KK, Watowich SS, Keyomarsi K. Neutrophil Elastase Remodels Mammary Tumors to Facilitate Lung Metastasis. Mol Cancer Ther 2024; 23:492-506. [PMID: 37796181 PMCID: PMC10987287 DOI: 10.1158/1535-7163.mct-23-0414] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/28/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023]
Abstract
Metastatic disease remains the leading cause of death due to cancer, yet the mechanism(s) of metastasis and its timely detection remain to be elucidated. Neutrophil elastase (NE), a serine protease secreted by neutrophils, is a crucial mediator of chronic inflammation and tumor progression. In this study, we used the PyMT model (NE+/+ and NE-/-) of breast cancer to interrogate the tumor-intrinsic and -extrinsic mechanisms by which NE can promote metastasis. Our results showed that genetic ablation of NE significantly reduced lung metastasis and improved metastasis-free survival. RNA-sequencing analysis of primary tumors indicated differential regulation of tumor-intrinsic actin cytoskeleton signaling pathways by NE. These NE-regulated pathways are critical for cell-to-cell contact and motility and consistent with the delay in metastasis in NE-/- mice. To evaluate whether pharmacologic inhibition of NE inhibited pulmonary metastasis and phenotypically mimicked PyMT NE-/- mice, we utilized AZD9668, a clinically available and specific NE inhibitor. We found AZD9668 treated PyMT-NE+/+ mice showed significantly reduced lung metastases, improved recurrence-free, metastasis-free and overall survival, and their tumors showed similar molecular alterations as those observed in PyMT-NE-/- tumors. Finally, we identified a NE-specific signature that predicts recurrence and metastasis in patients with breast cancer. Collectively, our studies suggest that genetic ablation and pharmacologic inhibition of NE reduces metastasis and extends survival of mouse models of breast cancer, providing rationale to examine NE inhibitors as a treatment strategy for the clinical management of patients with metastatic breast cancer.
Collapse
Affiliation(s)
- Amriti R. Lulla
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Said Akli
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Cansu Karakas
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Joseph A. Caruso
- Department of Pathology and Helen Diller Cancer Center, University of California, San Francisco, CA 94143, USA
| | - Lucas D. Warma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Natalie W. Fowlkes
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiayu Rao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kelly K. Hunt
- Department of Breast Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Stephanie S. Watowich
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
12
|
Lu D, Mihoayi M, Ablikim Y, Arikin A. RNA splicing regulator EIF3D regulates the tumor microenvironment through immunogene-related alternative splicing in head and neck squamous cell carcinoma. Aging (Albany NY) 2024; 16:5929-5948. [PMID: 38535990 PMCID: PMC11042944 DOI: 10.18632/aging.205681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/27/2024] [Indexed: 04/23/2024]
Abstract
Study finds that eukaryotic translation initiation factor 3 subunit D (EIF3D) may play an important role in aberrant alternative splicing (AS) events in tumors. AS possesses a pivotal role in both tumour progression and the constitution of the tumour microenvironment (TME). Regrettably, our current understanding of AS remains circumscribed especially in the context of immunogene-related alternative splicing (IGAS) profiles within Head and Neck Squamous Cell Carcinoma (HNSC). In this study, we comprehensively analyzed the function and mechanism of action of EIF3D by bioinformatics analysis combined with in vitro cellular experiments, and found that high expression of EIF3D in HNSC was associated with poor prognosis of overall survival (OS) and progression-free survival (PFS). The EIF3D low expression group had a higher degree of immune infiltration and better efficacy against PD1 and CTLA4 immunotherapy compared to the EIF3D high expression group. TCGA SpliceSeq analysis illustrated that EIF3D influenced differentially spliced alternative splicing (DSAS) events involving 105 differentially expressed immunogenes (DEIGs). We observed an induction of apoptosis and a suppression of cell proliferation, migration, and invasion in EIF3D knock-down FaDu cells. RNA-seq analysis unveiled that 531 genes exhibited differential expression following EIF3D knockdown in FaDu cells. These include 52 DEIGs. Furthermore, EIF3D knockdown influenced the patterns of 1923 alternative splicing events (ASEs), encompassing 129 IGASs. This study identified an RNA splicing regulator and revealed its regulatory role in IGAS and the TME of HNSC, suggesting that EIF3D may be a potential target for predicting HNSC prognosis and immunotherapeutic response.
Collapse
Affiliation(s)
- Dandan Lu
- Otolaryngology Diagnosis and Treatment Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830000, China
- Department of Otolaryngology, Shaanxi Nuclear Industry 215 Hospital, Xianyang 712000, China
| | - Mijti Mihoayi
- Otolaryngology Diagnosis and Treatment Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830000, China
| | - Yimin Ablikim
- Otolaryngology Diagnosis and Treatment Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830000, China
| | - Abdeyrim Arikin
- Otolaryngology Diagnosis and Treatment Center, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830000, China
| |
Collapse
|
13
|
Pally D, Naba A. Extracellular matrix dynamics: A key regulator of cell migration across length-scales and systems. Curr Opin Cell Biol 2024; 86:102309. [PMID: 38183892 PMCID: PMC10922734 DOI: 10.1016/j.ceb.2023.102309] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/11/2023] [Accepted: 12/11/2023] [Indexed: 01/08/2024]
Abstract
The interactions between cells and their surrounding extracellular matrix (ECM) are dynamic and play critical roles in cell migration during development, health, and diseases. Recent advances have highlighted the complexity and diversity of ECM compositions, or "matrisomes", of tissues resulting in ECMs of different physical, mechanical, and biochemical properties. Investigating the effects of these properties on cell-ECM interactions in the context of cell migration have led to a better understanding of the principles underlying tissue morphogenesis, wound healing, immune response, or cancer metastasis. These new insights into the interplay between ECM dynamics and cell migration can lead to the identification of unique opportunities for therapeutic interventions.
Collapse
Affiliation(s)
- Dharma Pally
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL 60612, USA; University of Illinois Cancer Center, Chicago, IL 60612, USA.
| |
Collapse
|
14
|
Li F, Yang J, Li Y, Tan Z, Li H, Zhang N. Long non-coding RNA FENDRR suppresses cancer-associated fibroblasts and serves as a prognostic indicator in colorectal cancer. Transl Oncol 2023; 36:101740. [PMID: 37487432 PMCID: PMC10369470 DOI: 10.1016/j.tranon.2023.101740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023] Open
Abstract
Genetically abnormal fibroblasts are notably more prevalent in colorectal cancer (CRC) than in adjacent normal tissue, emphasizing their significance in driving the heterogeneity of the tumor microenvironment. Functioning as a significant regulatory gene in the context of fibrosis, FOXF1 adjacent non-coding developmental regulatory RNA (FENDRR) has exhibited abnormal expression in colorectal cancer and interstitial localization in our experiments. However, current research on the role of FENDRR in cancer has focused solely on its impact on cancer cells. Its crucial role in the tumor stroma is yet to be explored. The goal of this study was to understand the relationship between atypical FENDRR expression, its distinct localization, and genetically abnormal fibroblasts in CRC. We aimed to establish the function of FENDRR within the stromal compartment of patients through bioinformatics. Our study confirmed that FENDRR suppresses cancer-associated fibroblasts by inhibiting their activation and collagen generation in CRC. Furthermore, our findings suggest that low FENDRR expression indicates a poor prognosis. Therefore, we propose that FENDRR is a promising therapeutic target for future studies in CRC.
Collapse
Affiliation(s)
- Fengxia Li
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jing Yang
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Yankun Li
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zhenyu Tan
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Hui Li
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Nong Zhang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
15
|
Ju Z, Xiang J, Xiao L, He Y, Zhang L, Wang Y, Lei R, Nie Y, Yang L, Miszczyk J, Zhou P, Huang R. TXNL4B regulates radioresistance by controlling the PRP3-mediated alternative splicing of FANCI. MedComm (Beijing) 2023; 4:e258. [PMID: 37168687 PMCID: PMC10165318 DOI: 10.1002/mco2.258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 05/13/2023] Open
Abstract
Ionizing radiation (IR) has been extensively used for cancer therapy, but the radioresistance hinders and undermines the radiotherapy efficacy in clinics greatly. Here, we reported that the spliceosomal protein thioredoxin-like 4B (TXNL4B) is highly expressed in lung tissues from lung cancer patients with radiotherapy. Lung cancer cells with TXNL4B knockdown illustrate increased sensitivity to IR. Mechanistically, TXNL4B interacts with RNA processing factor 3 (PRP3) and co-localizes in the nucleus post-IR. Nuclear localization of PRP3 promotes the alternative splicing of the Fanconi anemia group I protein (FANCI) transcript variants, FANCI-12 and FANCI-13. PRP3 regulates alternative splicing of FANCI toward the two variants, FANCI-12 and FANCI-13. Radioresistance was greatly enhanced through the combination of PRP31 and PRP8, the critical components of core spliceosome promoted by PRP3. Notably, the inhibition of PRP3 to suppress the production of FANCI-12 would deprive PRP31 and PRP8 of such interaction. As a result, cell cycle G2/M arrest was induced, DNA damage repair was delayed, and radiosensitivity was improved. Collectively, our study highlights potential novel underlying mechanisms of the involvement of TXNL4B and alternative splicing in radioresistance. The results would benefit potential cancer radiotherapy.
Collapse
Affiliation(s)
- Zhao Ju
- Department of Occupational and Environmental Health, Xiangya School of Public HealthCentral South UniversityChangshaHunanChina
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation MedicineAMMSBeijingChina
| | - Jing Xiang
- Department of Occupational and Environmental Health, Xiangya School of Public HealthCentral South UniversityChangshaHunanChina
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation MedicineAMMSBeijingChina
| | - Liang Xiao
- Faculty of Naval MedicineNaval Medical University (Second Military Medical University)ShanghaiChina
| | - Yan He
- Department of Ophthalmology, Hunan Clinical Research Center of Ophthalmic Disease, The Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Le Zhang
- Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Yin Wang
- Department of Occupational and Environmental Health, Xiangya School of Public HealthCentral South UniversityChangshaHunanChina
| | - Ridan Lei
- Department of Occupational and Environmental Health, Xiangya School of Public HealthCentral South UniversityChangshaHunanChina
| | - Yunfeng Nie
- Hunan Prevention and Treatment Institute for Occupational Diseases ChangshaChangshaHunanChina
| | - Long Yang
- Hunan Prevention and Treatment Institute for Occupational Diseases ChangshaChangshaHunanChina
| | - Justyna Miszczyk
- Department of Experimental Physics of Complex SystemsThe H. Niewodniczański Institute of Nuclear Physics, Polish Academy of SciencesKrakówPoland
| | - Pingkun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation MedicineAMMSBeijingChina
| | - Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public HealthCentral South UniversityChangshaHunanChina
| |
Collapse
|
16
|
Naba A. 10 years of extracellular matrix proteomics: Accomplishments, challenges, and future perspectives. Mol Cell Proteomics 2023; 22:100528. [PMID: 36918099 PMCID: PMC10152135 DOI: 10.1016/j.mcpro.2023.100528] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023] Open
Abstract
The extracellular matrix (ECM) is a complex assembly of hundreds of proteins forming the architectural scaffold of multicellular organisms. In addition to its structural role, the ECM conveys signals orchestrating cellular phenotypes. Alterations of ECM composition, abundance, structure, or mechanics, have been linked to diseases and disorders affecting all physiological systems, including fibrosis and cancer. Deciphering the protein composition of the ECM and how it changes in pathophysiological contexts is thus the first step toward understanding the roles of the ECM in health and disease and toward the development of therapeutic strategies to correct disease-causing ECM alterations. Potentially, the ECM also represents a vast, yet untapped reservoir of disease biomarkers. ECM proteins are characterized by unique biochemical properties that have hindered their study: they are large, heavily and uniquely post-translationally modified, and highly insoluble. Overcoming these challenges, we and others have devised mass-spectrometry-based proteomic approaches to define the ECM composition, or "matrisome", of tissues. This review provides a historical overview of ECM proteomics research and presents the latest advances that now allow the profiling of the ECM of healthy and diseased tissues. The second part highlights recent examples illustrating how ECM proteomics has emerged as a powerful discovery pipeline to identify prognostic cancer biomarkers. The third part discusses remaining challenges limiting our ability to translate findings to clinical application and proposes approaches to overcome them. Last, the review introduces readers to resources available to facilitate the interpretation of ECM proteomics datasets. The ECM was once thought to be impenetrable. MS-based proteomics has proven to be a powerful tool to decode the ECM. In light of the progress made over the past decade, there are reasons to believe that the in-depth exploration of the matrisome is within reach and that we may soon witness the first translational application of ECM proteomics.
Collapse
Affiliation(s)
- Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA; University of Illinois Cancer Center, Chicago, IL 60612, USA.
| |
Collapse
|
17
|
Apte SS, Naba A. Beyond the matrisome: New frontiers in ECM research. Matrix Biol 2023; 115:133-138. [PMID: 36572230 DOI: 10.1016/j.matbio.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA.
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA; University of Illinois Cancer Center, Chicago, IL 60612, USA.
| |
Collapse
|
18
|
Shao X, Gomez CD, Kapoor N, Considine JM, Grams C, Gao Y(T, Naba A. MatrisomeDB 2.0: 2023 updates to the ECM-protein knowledge database. Nucleic Acids Res 2022; 51:D1519-D1530. [PMID: 36399478 PMCID: PMC9825471 DOI: 10.1093/nar/gkac1009] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/12/2022] [Accepted: 10/25/2022] [Indexed: 11/19/2022] Open
Abstract
The extracellular matrix (ECM) is a complex assembly of proteins that constitutes the scaffold organizing cells, tissues, and organs. Over the past decade, mass-spectrometry-based proteomics has become the method of choice to profile the composition of the ECM, or the matrisome, of tissues. To assist non-specialists with the reuse of ECM proteomic datasets, we released MatrisomeDB (https://matrisomedb.org) in 2020. Here, we report the expansion of the database to include 25 new curated studies on the ECM of 24 new tissues in addition to datasets on tissues previously included, more than doubling the size of the original database and achieving near-complete coverage of the in-silico predicted matrisome. We further enhanced data visualization by maps of peptides and post-translational-modifications detected onto domain-based representations and 3D structures of ECM proteins. We also referenced external resources to facilitate the design of targeted mass spectrometry assays. Last, we implemented an abstract-mining tool that generates an enrichment word cloud from abstracts of studies in which a queried protein is found with higher confidence and higher abundance relative to other studies in MatrisomeDB.
Collapse
Affiliation(s)
- Xinhao Shao
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Clarissa D Gomez
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Nandini Kapoor
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - James M Considine
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Christopher Grams
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Yu (Tom) Gao
- Correspondence may also be addressed to Dr. Yu (Tom) Gao. Tel: +1 312 996 8087;
| | - Alexandra Naba
- To whom correspondence should be addressed. Tel: +1 312 355 5417;
| |
Collapse
|