1
|
Shang Y, Liang Y, Zhang B, Wu W, Peng Y, Wang J, Zhang M, Niu C. Periostin-mediated activation of NF-κB signaling promotes tumor progression and chemoresistance in glioblastoma. Sci Rep 2025; 15:13955. [PMID: 40263417 PMCID: PMC12015317 DOI: 10.1038/s41598-025-92969-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 03/04/2025] [Indexed: 04/24/2025] Open
Abstract
Glioblastoma (GBM) is the most aggressive form of diffuse glioma, characterized by high lethality. Temozolomide (TMZ)-based chemotherapy is a standard treatment for GBM, but development of chemoresistance poses a significant therapeutic challenge. Despite advances in understanding GBM biology, the mechanisms driving TMZ resistance remain unclear. Identifying vital molecular players involved in this resistance is crucial for developing new therapies. Our results indicated that periostin (POSTN) was significantly upregulated in GBM cell lines and patient samples, correlating with poorer clinical outcomes. POSTN overexpression enhanced GBM cell proliferation, migration, invasion, and chemoresistance, while lentiviral suppression of POSTN significantly reduced these behaviors. In vivo, bioluminescence imaging further confirmed the enhanced tumor growth associated with POSTN overexpression. Bioinformatics analysis was performed to explore the underlying molecular mechanism. The results revealed a strong correlation between POSTN and epithelial-mesenchymal transition (EMT) process and the tumor necrosis factor α (TNFα)-NF-κB signaling pathway. Moreover, exogenous POSTN silencing reduced IκB-kinase α (IKKα) phosphorylation, thereby decreasing NF-κB expression by limiting IκBα degradation. Collectively, our study demonstrated that POSTN-induced activation of NF-κB signaling and EMT processes promoted the malignancy and chemoresistance of GBM, suggesting that POSTN may serve as a reliable prognostic biomarker and potential therapeutic target for GBM.
Collapse
Affiliation(s)
- Yu Shang
- PET-CT Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Future Technology Institute, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Yuxia Liang
- Department of Physical Examination, The First Hospital Affiliated to Xi'an Jiao Tong University, Xi'an, 710061, Shaanxi, China
| | - Beichen Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Wei Wu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yihao Peng
- Future Technology Institute, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Jin Wang
- Future Technology Institute, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Ming Zhang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Chen Niu
- PET-CT Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
- Future Technology Institute, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
- Department of Information, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
2
|
Guan X, Shen Y, Zhao C, Li X, Li X, Lu D, Wang L, Liu L, Wu S, Huang B, Guo L, Xu H. Cascade-Responsive Nanoprodrug Disrupts Immune-Fibroblast Communications for Potentiated Cancer Mechanoimmunotherapy. Adv Healthc Mater 2025; 14:e2500176. [PMID: 40079115 DOI: 10.1002/adhm.202500176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/02/2025] [Indexed: 03/14/2025]
Abstract
The abnormal tumor mechanical microenvironment due to specific cancer-associated fibroblasts (CAFs) subset and low tumor immunogenicity caused by inefficient conversion of active chemotherapeutic agents are two key obstacles that impede patients with desmoplastic tumors from achieving stable and complete immune responses. Herein, it is demonstrated that FAP-α+CAFs-induced stromal stiffness accelerated tumor progression by precluding cytotoxic T lymphocytes. Subsequently, a cascade-responsive nanoprodrug capable of re-educating FAP-α+CAFs and amplifying tumor immunogenicity for potentiated cancer mechanoimmunotherapy is ingeniously designed. Benefiting from the active targeted release of angiotensin II receptor antagonist (losartan) guided by FAP-α cleavable peptide and the efficient conversion of topoisomerase I inhibitor (7-Ethyl-10-hydroxycamptothecin) prodrug under high glutathione/esterase within tumor cells, this regimen created an immune-activated landscape that retarded primary tumor growth and counteracted resistance to immune checkpoint inhibitor in mice with triple-negative breast cancer. This nanoprodrug-assisted mechanoimmunotherapy can serve as a universal strategy for conferring efficient tumoricidal immunity in "immune excluded" desmoplastic tumor interventions.
Collapse
Affiliation(s)
- Xin Guan
- Department of Ultrasound, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361000, P. R. China
| | - Yuting Shen
- Department of Ultrasound, Institiute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Chongke Zhao
- Department of Ultrasound, Institiute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Xiao Li
- Department of Ultrasound, Institiute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Xiaolong Li
- Department of Ultrasound, Institiute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Dan Lu
- Department of Ultrasound, Institiute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Lifan Wang
- Department of Ultrasound, Institiute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Linna Liu
- Department of Ultrasound, Institiute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Shengbo Wu
- Department of Ultrasound, Zhejiang Hospital, Hangzhou, 310013, P. R. China
| | - Bin Huang
- Department of Ultrasound, Zhejiang Hospital, Hangzhou, 310013, P. R. China
| | - Lehang Guo
- Department of Medical Ultrasound and Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Huixiong Xu
- Department of Ultrasound, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361000, P. R. China
| |
Collapse
|
3
|
Sun X, Hu X. Unveiling Matrix Metalloproteinase 13's Dynamic Role in Breast Cancer: A Link to Physical Changes and Prognostic Modulation. Int J Mol Sci 2025; 26:3083. [PMID: 40243781 PMCID: PMC11988641 DOI: 10.3390/ijms26073083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
The biomechanical properties of the extracellular matrix (ECM) including its stiffness, viscoelasticity, collagen architecture, and temperature constitute critical biomechanical cues governing breast cancer progression. Matrix metalloproteinase 13 (MMP13) is an important marker of breast cancer and plays important roles in matrix remodelling and cell metastasis. Emerging evidence highlights MMP13 as a dynamic modulator of the ECM's physical characteristics through dual mechanoregulatory mechanisms. While MMP13-mediated collagen degradation facilitates microenvironmental softening, thus promoting tumour cell invasion, paradoxically, its crosstalk with cancer-associated fibroblasts (CAFs) and tumour-associated macrophages (TAMs) drives pathological stromal stiffening via aberrant matrix deposition and crosslinking. This biomechanical duality is amplified through feedforward loops with an epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) populations, mediated by signalling axes such as TGF-β/Runx2. Intriguingly, MMP13 exhibits context-dependent mechanomodulatory effects, demonstrating anti-fibrotic activity and inhibiting the metastasis of breast cancer. At the same time, angiogenesis and increased metabolism are important mechanisms through which MMP13 promotes a temperature increase in breast cancer. Targeting the spatiotemporal regulation of MMP13's mechanobiological functions may offer novel therapeutic strategies for disrupting the tumour-stroma vicious cycle.
Collapse
Affiliation(s)
- Xiaomeng Sun
- Queen Mary School, Jiangxi Medical College, Nanchang University, Xuefu Avenue, Honggutan District, Nanchang 330031, China;
| | - Xiaojuan Hu
- Queen Mary School, Jiangxi Medical College, Nanchang University, Xuefu Avenue, Honggutan District, Nanchang 330031, China;
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Xuefu Avenue, Honggutan District, Nanchang 330031, China
| |
Collapse
|
4
|
Avolio E, Bassani B, Campanile M, Mohammed KA, Muti P, Bruno A, Spinetti G, Madeddu P. Shared molecular, cellular, and environmental hallmarks in cardiovascular disease and cancer: Any place for drug repurposing? Pharmacol Rev 2025; 77:100033. [PMID: 40148035 DOI: 10.1016/j.pharmr.2024.100033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 03/29/2025] Open
Abstract
Cancer and cardiovascular disease (CVD) are the 2 biggest killers worldwide. Specific treatments have been developed for the 2 diseases. However, mutual therapeutic targets should be considered because of the overlap of cellular and molecular mechanisms. Cancer research has grown at a fast pace, leading to an increasing number of new mechanistic treatments. Some of these drugs could prove useful for treating CVD, which realizes the concept of cancer drug repurposing. This review provides a comprehensive outline of the shared hallmarks of cancer and CVD, primarily ischemic heart disease and heart failure. We focus on chronic inflammation, altered immune response, stromal and vascular cell activation, and underlying signaling pathways causing pathological tissue remodeling. There is an obvious scope for targeting those shared mechanisms, thereby achieving reciprocal preventive and therapeutic benefits. Major attention is devoted to illustrating the logic, advantages, challenges, and viable examples of drug repurposing and discussing the potential influence of sex, gender, age, and ethnicity in realizing this approach. Artificial intelligence will help to refine the personalized application of drug repurposing for patients with CVD. SIGNIFICANCE STATEMENT: Cancer and cardiovascular disease (CVD), the 2 biggest killers worldwide, share several underlying cellular and molecular mechanisms. So far, specific therapies have been developed to tackle the 2 diseases. However, the development of new cardiovascular drugs has been slow compared with cancer drugs. Understanding the intersection between pathological mechanisms of the 2 diseases provides the basis for repurposing cancer therapeutics for CVD treatment. This approach could allow the rapid development of new drugs for patients with CVDs.
Collapse
Affiliation(s)
- Elisa Avolio
- Bristol Heart Institute, Laboratory of Experimental Cardiovascular Medicine, Translational Health Sciences, Bristol Medical School, University of Bristol, United Kingdom.
| | - Barbara Bassani
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry, and Immunology, IRCCS MultiMedica, Milan, Italy
| | - Marzia Campanile
- Laboratory of Cardiovascular Pathophysiology - Regenerative Medicine, IRCCS MultiMedica, Milan, Italy; Department of Biosciences, University of Milan, Milan, Italy
| | - Khaled Ak Mohammed
- Bristol Heart Institute, Laboratory of Experimental Cardiovascular Medicine, Translational Health Sciences, Bristol Medical School, University of Bristol, United Kingdom; Department of Cardiothoracic Surgery, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Paola Muti
- IRCCS MultiMedica, Milan, Italy; Department of Biomedical, Surgical and Dental Health Sciences, University of Milan, Italy
| | - Antonino Bruno
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry, and Immunology, IRCCS MultiMedica, Milan, Italy; Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy.
| | - Gaia Spinetti
- Laboratory of Cardiovascular Pathophysiology - Regenerative Medicine, IRCCS MultiMedica, Milan, Italy.
| | - Paolo Madeddu
- Bristol Heart Institute, Laboratory of Experimental Cardiovascular Medicine, Translational Health Sciences, Bristol Medical School, University of Bristol, United Kingdom.
| |
Collapse
|
5
|
Li R, Ji Q, Fu S, Gu J, Liu D, Wang L, Yuan X, Wen Y, Dai C, Li H. ITGA3 promotes pancreatic cancer progression through HIF1α- and c-Myc-driven glycolysis in a collagen I-dependent autocrine manner. Cancer Gene Ther 2025; 32:240-253. [PMID: 39690180 DOI: 10.1038/s41417-024-00864-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 11/19/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024]
Abstract
Pancreatic cancer is characterized by severe metabolic stress due to its prominent desmoplasia and poor vascularization. Integrin subunit alpha 3 (ITGA3) is a cell surface adhesion protein involved in tumor progression. However, the role of ITGA3 in pancreatic cancer progression, especially in metabolic reprogramming, remains largely unknown. In this study, we found that ITGA3 expression is elevated in pancreatic cancer tissues and predicts poor prognosis for patients with pancreatic cancer. Functional assays revealed that ITGA3 promotes the growth and liver metastasis of pancreatic cancer via boosting glycolysis. Mechanistically, Collagen I (Col1) derived from cancer cells acts as a ligand for ITGA3 to activate the FAK/PI3K/AKT/mTOR signaling pathway in an autocrine manner, thereby increasing the expression of HIF1α and c-Myc, two critical regulators of glycolysis. Blockade of Col1 by siRNA or of ITGA3 by a blocking antibody leads to specific inactivation of the FAK/PI3K/AKT/mTOR pathway and impairs malignant tumor behaviors induced by ITGA3. Thus, our data indicate that ITGA3 enhances glycolysis to promote pancreatic cancer growth and metastasis via increasing HIF1α and c-Myc expression in a Col1-dependent autocrine manner, making ITGA3 as a candidate diagnostic biomarker and a potential therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Rongkun Li
- Chest Oncology Department, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| | - Qian Ji
- Department of Pulmonary Oncology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Shengqiao Fu
- Chest Oncology Department, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Jichun Gu
- Department of Pancreatic surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Dejun Liu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Lu Wang
- Abdominal Oncology Department, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Xiao Yuan
- Chest Oncology Department, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Yi Wen
- Chest Oncology Department, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Chunhua Dai
- Chest Oncology Department, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| | - Hengchao Li
- Department of Pancreatic surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
6
|
Wang Y, Hou X, Wu Z, Ren J, Zhao Y. Influence of the ERK/CHGB pathway in breast cancer progression under chronic stress. Int J Biochem Cell Biol 2025; 179:106733. [PMID: 39756572 DOI: 10.1016/j.biocel.2024.106733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/12/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND Breast cancer is one of the most common malignancies among women, and its development involves a variety of complex molecular mechanisms. Extracellular signal-regulated kinase (ERK) and Chromogranin B (CHGB) are known to play key roles in various cancers. This study aims to explore the impact of the ERK/CHGB pathway in a chronic stress environment simulated by salbutamol on the development of breast cancer. METHODS This study utilized female BALB/c mice to establish a breast cancer model, dividing them into control, salbutamol-treated, and salbutamol-inhibitor-treated groups. Cell culture, immunohistochemistry, Western Blot, real-time fluorescent quantitative PCR, and Transwell migration assays were employed to assess the effects of salbutamol and the ERK/CHGB pathway. RESULTS Salbutamol treatment significantly enhanced the proliferation, migration, and invasiveness of breast cancer cells, associated with the activation of the ERK pathway and the inhibition of CHGB. The salbutamol-inhibitor-treated group exhibited a marked suppression of these effects. Additionally, the interaction of the ERK/CHGB pathway in an extracellular stress environment provided advantages for the survival and proliferation of breast cancer cells. CONCLUSION This study demonstrates that a chronic stress environment simulated by salbutamol can promote malignant behaviors in breast cancer cells through the ERK/CHGB pathway. These findings offer new molecular targets for breast cancer treatment and highlight the potential importance of managing chronic stress and blocking specific molecular pathways in cancer therapy.
Collapse
Affiliation(s)
- Yue Wang
- Oncology Department, People's Hospital of Yuxi City, Yuxi, Yunnan, China.
| | - Xi Hou
- Clinical psychology department, People's Hospital of Yuxi City, Yuxi, Yunnan, China
| | - Zijing Wu
- Association of Colleges of Teacher Education, Dali University, Dali, Yunnan, China
| | - Junyu Ren
- Pathology Department, People's Hospital of Yuxi City, Yuxi, Yunnan, China
| | - Yanfang Zhao
- Oncology Department, Yan 'an Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
7
|
Lou L, Peng K, Ouyang S, Ding W, Mo J, Yan J, Gong X, Liu G, Lu J, Yue P, Zhang K, Zhang J, Wang YD, Zhang XL. Periostin-mediated NOTCH1 activation between tumor cells and HSCs crosstalk promotes liver metastasis of small cell lung cancer. J Exp Clin Cancer Res 2025; 44:6. [PMID: 39762921 PMCID: PMC11706058 DOI: 10.1186/s13046-024-03266-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Metastasis is the primary cause of mortality in small cell lung cancer (SCLC), with the liver being a predominant site for distal metastasis. Despite this clinical significance, mechanisms underlying the interaction between SCLC and liver microenvironment, fostering metastasis, remain unclear. METHODS SCLC patient tissue array, bioinformatics analysis were performed to demonstrate the role of periostin (POSTN) in SCLC progression, metastasis, and prognosis. Cell migration, invasion and sphere formation assay were performed to determine the oncogenic role of POSTN. RNA sequencing analysis was utilized to identify the key signaling pathway regulated by POSTN. Immunoprecipitation, immunofluorescence and co-culture system were used to clarify the mechanism of POSTN-NOTCH1 axis in tumor cells-hepatic stellate cells (HSCs) crosstalk. Subcutaneous xenograft model and liver metastasis model were established to examine the anti-tumor growth and metastases effect of targeting POSTN-NOTCH1 signaling axis. RESULTS Elevated expression of POSTN in SCLC is correlated with accelerated tumor progression and metastasis. Conditioned medium rich in POSTN derived from SCLC tumors demonstrates the ability to activate HSCs in the liver microenvironment. Mechanistically, POSTN emerges as a binding partner for the membrane receptor NOTCH1 and transducing the extracellular signals to intracellular fibroblasts. Furthermore, targeting the POSTN-NOTCH1 signaling axis proves effective in suppressing SCLC tumor growth and inhibiting liver metastasis. This study elucidates that the SCLC-derived secreted protein POSTN interacts with NOTCH1 on HSCs to promote the activation of HSCs, thereby providing a favorable microenvironment for liver metastasis. CONCLUSION These findings uncover the intricate communications between primary SCLC cells and HSCs in the tumor microenvironment mediated by the secreted protein POSTN in the context of liver metastasis. Consequently, targeting the POSTN-NOTCH1 signaling axis emerges as a promising therapeutic strategy for metastatic SCLC.
Collapse
Affiliation(s)
- Linlin Lou
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Keren Peng
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shumin Ouyang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Wen Ding
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Jianshan Mo
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jiayu Yan
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xiaoxiao Gong
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Guopin Liu
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Jinjian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Peibin Yue
- Department of Medicine, Division of Hematology-Oncology, and Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Kai Zhang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Jian Zhang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Yan-Dong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China.
| | - Xiao-Lei Zhang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
8
|
Lei YM, Liu C, Hu HM, Li N, Zhang N, Wang Q, Zeng SE, Ye HR, Zhang G. Combined use of super-resolution ultrasound imaging and shear-wave elastography for differential diagnosis of breast masses. Front Oncol 2024; 14:1497140. [PMID: 39759128 PMCID: PMC11695221 DOI: 10.3389/fonc.2024.1497140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025] Open
Abstract
Objectives Shear-wave elastography (SWE) provides valuable stiffness within breast masses, making it a useful supplement to conventional ultrasound imaging. Super-resolution ultrasound (SRUS) imaging enhances microvascular visualization, aiding in the differential diagnosis of breast masses. Current clinical ultrasound diagnosis of breast cancer primarily relies on gray-scale ultrasound. The combined diagnostic potential of tissue stiffness and microvascular characteristics, two critical tumor biomarkers, remains insufficiently explored. This study aims to evaluate the correlation between the elastic modulus, assessed using SWE, and microvascular characteristics captured through SRUS, in order to evaluate the effectiveness of combining these techniques in distinguishing between benign and malignant breast masses. Materials and methods In this single-center prospective study, 97 patients underwent SWE to obtain parameters including maximum elasticity (Emax), minimum elasticity (Emin), mean elasticity (Emean), standard deviation of elasticity (Esd), and elasticity ratio. SRUS was used to calculate the microvascular flow rate and microvessel density (MVD) within the breast masses. Spearman correlation analysis was used to explore correlations between Emax and MVD. Receiver operating characteristic curves and nomogram were employed to assess the diagnostic efficacy of combining SRUS with SWE, using pathological results as the gold standard. Results Emax, Emean, Esd, and MVD were significantly higher in malignant breast masses compared to benign ones (p < 0.001), while Emin was significantly lower in malignant masses (p < 0.05). In Spearman correlation analysis, Emax was significantly positively correlated with MVD (p < 0.01). The area under the curve for SRUS combined with SWE (0.924) was significantly higher than that for SWE (0.883) or SRUS (0.830) alone (p < 0.001), thus indicating improved diagnostic accuracy. The decision curve analysis of the nomogram indicated that SWE combined with SRUS model had a higher net benefit in predicting breast cancer. Conclusions The MVD of the breast mass shows a significant positive correlation with Emax. By integrating SRUS with SWE, this study proposes a novel diagnostic approach designed to improve specificity and accuracy in breast cancer detection, surpassing the limitations of current ultrasound-based methods. This approach shows promise for early breast cancer detection, with the potential to reduce the need for unnecessary biopsies and improve patient outcomes.
Collapse
Affiliation(s)
- Yu-Meng Lei
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Chen Liu
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, China
- Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Hai-Man Hu
- Department of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan, China
| | - Nan Li
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Ning Zhang
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Qi Wang
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Shu-E Zeng
- Department of Medical Ultrasound, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Breast Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Provincial Clinical Research Center for Breast Cancer, Wuhan Clinical Research Center for Breast Cancer, Wuhan, China
| | - Hua-Rong Ye
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Ge Zhang
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, China
- Department of Cardiovascular Medicine, Wuhan Asia Heart Hospital, Wuhan, China
| |
Collapse
|
9
|
Lo Buglio G, Lo Cicero A, Campora S, Ghersi G. The Multifaced Role of Collagen in Cancer Development and Progression. Int J Mol Sci 2024; 25:13523. [PMID: 39769286 PMCID: PMC11678882 DOI: 10.3390/ijms252413523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 01/05/2025] Open
Abstract
Collagen is a crucial protein in the extracellular matrix (ECM) essential for preserving tissue architecture and supporting crucial cellular functions like proliferation and differentiation. There are twenty-eight identified types of collagen, which are further divided into different subgroups. This protein plays a critical role in regulating tissue homeostasis. However, in solid tumors, the balance can be disrupted, due to an abundance of collagen in the tumor microenvironment, which significantly affects tumor growth, cell invasion, and metastasis. It is important to investigate the specific types of collagens in cancer ECM and their distinct roles in tumor progression to comprehend their unique contribution to tumor behavior. The diverse pathophysiological functions of different collagen types in cancers illustrate collagen's dual roles, offering potential therapeutic options and serving as prognostic markers.
Collapse
Affiliation(s)
- Gabriele Lo Buglio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (G.L.B.); (S.C.)
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Alessandra Lo Cicero
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (G.L.B.); (S.C.)
| | - Simona Campora
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (G.L.B.); (S.C.)
| | - Giulio Ghersi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (G.L.B.); (S.C.)
- Abiel srl, 90128 Palermo, Italy
| |
Collapse
|
10
|
Liu S, Zhang X, Wang W, Li X, Sun X, Zhao Y, Wang Q, Li Y, Hu F, Ren H. Metabolic reprogramming and therapeutic resistance in primary and metastatic breast cancer. Mol Cancer 2024; 23:261. [PMID: 39574178 PMCID: PMC11580516 DOI: 10.1186/s12943-024-02165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/31/2024] [Indexed: 11/25/2024] Open
Abstract
Metabolic alterations, a hallmark of cancer, enable tumor cells to adapt to their environment by modulating glucose, lipid, and amino acid metabolism, which fuels rapid growth and contributes to treatment resistance. In primary breast cancer, metabolic shifts such as the Warburg effect and enhanced lipid synthesis are closely linked to chemotherapy failure. Similarly, metastatic lesions often display distinct metabolic profiles that not only sustain tumor growth but also confer resistance to targeted therapies and immunotherapies. The review emphasizes two major aspects: the mechanisms driving metabolic resistance in both primary and metastatic breast cancer, and how the unique metabolic environments in metastatic sites further complicate treatment. By targeting distinct metabolic vulnerabilities at both the primary and metastatic stages, new strategies could improve the efficacy of existing therapies and provide better outcomes for breast cancer patients.
Collapse
Affiliation(s)
- Shan Liu
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xingda Zhang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wenzheng Wang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Li
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Sun
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuqian Zhao
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qi Wang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yingpu Li
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Fangjie Hu
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - He Ren
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
11
|
Yu S, Wang S, Wang X, Xu X. The axis of tumor-associated macrophages, extracellular matrix proteins, and cancer-associated fibroblasts in oncogenesis. Cancer Cell Int 2024; 24:335. [PMID: 39375726 PMCID: PMC11459962 DOI: 10.1186/s12935-024-03518-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/29/2024] [Indexed: 10/09/2024] Open
Abstract
The extracellular matrix (ECM) is a complex, dynamic network of multiple macromolecules that serve as a crucial structural and physical scaffold for neighboring cells. In the tumor microenvironment (TME), ECM proteins play a significant role in mediating cellular communication between cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs). Revealing the ECM modification of the TME necessitates the intricate signaling cascades that transpire among diverse cell populations and ECM proteins. The advent of single-cell sequencing has enabled the identification and refinement of specific cellular subpopulations, which has substantially enhanced our comprehension of the intricate milieu and given us a high-resolution perspective on the diversity of ECM proteins. However, it is essential to integrate single-cell data and establish a coherent framework. In this regard, we present a comprehensive review of the relationships among ECM, TAMs, and CAFs. This encompasses insights into the ECM proteins released by TAMs and CAFs, signaling integration in the TAM-ECM-CAF axis, and the potential applications and limitations of targeted therapies for CAFs. This review serves as a reliable resource for focused therapeutic strategies while highlighting the crucial role of ECM proteins as intermediates in the TME.
Collapse
Affiliation(s)
- Shuhong Yu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Siyu Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xuanyu Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ximing Xu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
12
|
Hao J, Yu X, Tang K, Ma X, Lu H, Wu C. 3D modular bioceramic scaffolds for the investigation of the interaction between osteosarcoma cells and MSCs. Acta Biomater 2024; 184:431-443. [PMID: 38897335 DOI: 10.1016/j.actbio.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/10/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Recent advances in bone tissue engineering have shown promise for bone repair post osteosarcoma excision. However, conflicting research on mesenchymal stem cells (MSCs) has raised concerns about their potential to either promote or inhibit tumor cell proliferation. It is necessary to thoroughly understand the interactions between MSCs and tumor cells. Most previous studies only focused on the interactions between cells within the tumor tissues. It has been challenging to develop an in vitro model of osteosarcoma excision sites replicating the complexity of the bone microenvironment and cell distribution. In this work, we designed and fabricated modular bioceramic scaffolds to assemble into a co-culture model. Because of the bone-like composition and mechanical property, tricalcium phosphate bioceramic could mimic the bone microenvironment and recapitulate the cell-extracellular matrix interaction. Moreover, the properties for easy assembly enabled the modular units to mimic the spatial distribution of cells in the osteosarcoma excision site. Under this co-culture model, MSCs showed a noticeable tumor-stimulating effect with a potential risk of tumor recurrence. In addition, tumor cells also could inhibit the osteogenic ability of MSCs. To undermine the stimulating effects of MSCs on tumor cells, we present the methods of pre-differentiated MSCs, which had lower expression of IL-8 and higher expression of osteogenic proteins. Both in vitro and in vivo studies confirm that pre-differentiated MSCs could maintain high osteogenic capacity without promoting tumor growth, offering a promising approach for MSCs' application in bone regeneration. Overall, 3D modular scaffolds provide a valuable tool for constructing hard tissue in vitro models. STATEMENT OF SIGNIFICANCE: Bone tissue engineering using mesenchymal stem cells (MSCs) and biomaterials has shown promise for bone repair post osteosarcoma excision. However, conflicting researches on MSCs have raised concerns about their potential to either promote or inhibit tumor cell proliferation. It remains challenges to develop in vitro models to investigate cell interactions, especially of osteosarcoma with high hardness and special composition of bone tissue. In this work, modular bioceramic scaffolds were fabricated and assembled to co-culture models. The interactions between MSCs and MG-63 were manifested as tumor-stimulating and osteogenesis-inhibiting, which means potential risk of tumor recurrence. To undermine the stimulating effect, pre-differentiation method was proposed to maintain high osteogenic capacity without tumor-stimulating, offering a promising approach for MSCs' application in bone regeneration.
Collapse
Affiliation(s)
- Jianxin Hao
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China
| | - Xiaopeng Yu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China
| | - Kai Tang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China
| | - Xueru Ma
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China
| | - Hongxu Lu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, PR China
| | - Chengtie Wu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, PR China.
| |
Collapse
|
13
|
Naik A, Chitturi P, Nguyen J, Leask A. The yes-associated protein-1 (YAP1) inhibitor celastrol suppresses the ability of transforming growth factor β to activate human gingival fibroblasts. Arch Oral Biol 2024; 160:105910. [PMID: 38364717 DOI: 10.1016/j.archoralbio.2024.105910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/18/2024]
Abstract
OBJECTIVE To determine whether celastrol, an inhibitor of the mechanosensitive transcriptional cofactor yes-associated protein-1 (YAP1), impairs the ability of TGFβ1 to stimulate fibrogenic activity in human gingival fibroblast cell line. DESIGN Human gingival fibroblasts were pre-treated with celastrol or DMSO followed by stimulation with or without TGFβ1 (4 ng/ml). We then utilized bulk RNA sequencing (RNAseq), real-time polymerase chain reaction (RT-PCR), Western blot, immunofluorescence, cell proliferation assays to determine if celastrol impaired TGFβ1-induced responses in a human gingival fibroblast cell line. RESULTS Celastrol impaired the ability of TGFβ1 to induce expression of the profibrotic marker and mediator CCN2. Bulk RNAseq analysis of gingival fibroblasts treated with TGFβ1, in the presence or absence of celastrol, revealed that celastrol impaired the ability of TGFβ1 to induce mRNA expression of genes within extracellular matrix, wound healing, focal adhesion and cytokine/Wnt signaling clusters. RT-PCR analysis of extracted RNAs confirmed that celastrol antagonized the ability of TGFβ1 to induce expression of genes anticipated to contribute to fibrotic responses. Celastrol also reduced gingival fibroblast proliferation, and YAP1 nuclear localization in response to TGFβ1. CONCLUSION YAP1 inhibitors such as celastrol could be used to impair pro-fibrotic responses to TGFβ1 in human gingival fibroblasts.
Collapse
Affiliation(s)
- Angha Naik
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - John Nguyen
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Andrew Leask
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
14
|
Pally D, Naba A. Extracellular matrix dynamics: A key regulator of cell migration across length-scales and systems. Curr Opin Cell Biol 2024; 86:102309. [PMID: 38183892 PMCID: PMC10922734 DOI: 10.1016/j.ceb.2023.102309] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/11/2023] [Accepted: 12/11/2023] [Indexed: 01/08/2024]
Abstract
The interactions between cells and their surrounding extracellular matrix (ECM) are dynamic and play critical roles in cell migration during development, health, and diseases. Recent advances have highlighted the complexity and diversity of ECM compositions, or "matrisomes", of tissues resulting in ECMs of different physical, mechanical, and biochemical properties. Investigating the effects of these properties on cell-ECM interactions in the context of cell migration have led to a better understanding of the principles underlying tissue morphogenesis, wound healing, immune response, or cancer metastasis. These new insights into the interplay between ECM dynamics and cell migration can lead to the identification of unique opportunities for therapeutic interventions.
Collapse
Affiliation(s)
- Dharma Pally
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL 60612, USA; University of Illinois Cancer Center, Chicago, IL 60612, USA.
| |
Collapse
|