1
|
Lainioti GC, Druvari D. Designing Antibacterial-Based Quaternary Ammonium Coatings (Surfaces) or Films for Biomedical Applications: Recent Advances. Int J Mol Sci 2024; 25:12264. [PMID: 39596329 PMCID: PMC11595235 DOI: 10.3390/ijms252212264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Antibacterial coatings based on quaternary ammonium compounds (QACs) have been widely investigated in controlled release applications. Quaternary ammonium compounds are low-cost and easily accessible disinfectants that have been extensively used, especially after the COVID-19 outbreak. There has been a growing interest in developing a clearer understanding of various aspects that need to be taken into account for the design of quaternary ammonium compounds to be used in the biomedical field. In this contribution, we outline the mechanism of action of those materials as well as the key design parameters associated with their structure and antibacterial activity. Moreover, emphasis has been placed on the type of antibacterial coatings based on QACs and their applications in the biomedical field. A brief outlook on future research guidelines for the development of dual-function antibacterial coatings is also discussed.
Collapse
Affiliation(s)
- Georgia C. Lainioti
- Department of Food Science & Technology, University of Patras, GR-30100 Agrinio, Greece
| | - Denisa Druvari
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece;
| |
Collapse
|
2
|
Ma Y, Yi J, Ma J, Yu H, Luo L, Wu W, Jin L, Yang Q, Lou T, Sun D, Cao M. Hand Sanitizer Gels: Classification, Challenges, and the Future of Multipurpose Hand Hygiene Products. TOXICS 2023; 11:687. [PMID: 37624192 PMCID: PMC10459210 DOI: 10.3390/toxics11080687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023]
Abstract
Hand hygiene is a crucial measure in the prevention and control of infections, and there is a growing awareness among individuals who are making a conscious effort to maintain hand cleanliness. With the advent of the SARS-CoV-2 outbreak, the demand for hand hygiene products has also gradually shifted towards those with antimicrobial properties. Among these products, hand sanitizer gels (HSGs) have gained considerable popularity as an efficient method of hand cleaning, due to their rapid drying and sustained antimicrobial efficacy. Concurrently, there has been a growing interest in novel HSGs that offer additional functions such as skin whitening, moisturizing, and anti-inflammatory effects. These novel HSGs effectively address concerns associated with the ingestion of antimicrobial ingredients and demonstrate reduced skin irritation, thereby alleviating hand dermatological issues. This review provides an extensive overview of the application scenarios, classification, and challenges associated with HSGs while emphasizing the emergence of novel components with biological functions, aiming to contribute to the advancement of hand hygiene practices and offer novel insights for the development of novel HSGs with outstanding antimicrobial properties with other multiple biological functions and desirable biosafety profiles.
Collapse
Affiliation(s)
- Yilei Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Jia Yi
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Haiyang Yu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Li Luo
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523059, China
| | - Wei Wu
- Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Ting Lou
- Yiwu Center for Disease Control and Prevention, Yiwu 322000, China;
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Min Cao
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou 324000, China
| |
Collapse
|
3
|
Islam MS, Fukuda M, Hossain MJ, Rabin NN, Tagawa R, Nagashima M, Sadamasu K, Yoshimura K, Sekine Y, Ikeda T, Hayami S. SARS-CoV-2 suppression depending on the pH of graphene oxide nanosheets. NANOSCALE ADVANCES 2023; 5:2413-2417. [PMID: 37143819 PMCID: PMC10153081 DOI: 10.1039/d3na00084b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/07/2023] [Indexed: 05/06/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inactivation of pH-dependent graphene oxide (GO) nanosheets is presented. The observed virus inactivation using an authentic virus (Delta variant) and different GO dispersions at pH 3, 7, and 11 suggests that the higher pH of the GO dispersion yields a better performance compared to that of GO at neutral or lower pH. The current findings can be ascribed to the pH-driven functional group change and the overall charge of GO, favorable for the attachment between GO nanosheets and virus particles.
Collapse
Affiliation(s)
- Md Saidul Islam
- Department of Chemistry, Faculty of Advanced Science and Technology, Kumamoto University 2-39-1 Kurokami Kumamoto 860-8555 Japan
- Institute of Industrial Nanomaterials, Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| | - Masahiro Fukuda
- Institute of Industrial Nanomaterials, Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| | - Md Jakir Hossain
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University 2-2-1 Honjo Kumamoto 860-0811 Japan
- Graduate School of Medical Sciences, Kumamoto University Kumamoto 860-0811 Japan
| | - Nurun Nahar Rabin
- Department of Chemistry, Faculty of Advanced Science and Technology, Kumamoto University 2-39-1 Kurokami Kumamoto 860-8555 Japan
- Institute of Industrial Nanomaterials, Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| | - Ryuta Tagawa
- Department of Chemistry, Faculty of Advanced Science and Technology, Kumamoto University 2-39-1 Kurokami Kumamoto 860-8555 Japan
| | - Mami Nagashima
- Tokyo Metropolitan Institute of Public Health Tokyo Japan
| | - Kenji Sadamasu
- Tokyo Metropolitan Institute of Public Health Tokyo Japan
| | | | - Yoshihiro Sekine
- Priority Organization for Innovation and Excellence, Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| | - Terumasa Ikeda
- Graduate School of Medical Sciences, Kumamoto University Kumamoto 860-0811 Japan
| | - Shinya Hayami
- Department of Chemistry, Faculty of Advanced Science and Technology, Kumamoto University 2-39-1 Kurokami Kumamoto 860-8555 Japan
- Institute of Industrial Nanomaterials, Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
- International Research Center for Agricultural and Environmental Biology (IRCAEB) 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| |
Collapse
|
4
|
Ivanoska-Dacikj A, Oguz-Gouillart Y, Hossain G, Kaplan M, Sivri Ç, Ros-Lis JV, Mikucioniene D, Munir MU, Kizildag N, Unal S, Safarik I, Akgül E, Yıldırım N, Bedeloğlu AÇ, Ünsal ÖF, Herwig G, Rossi RM, Wick P, Clement P, Sarac AS. Advanced and Smart Textiles during and after the COVID-19 Pandemic: Issues, Challenges, and Innovations. Healthcare (Basel) 2023; 11:1115. [PMID: 37107948 PMCID: PMC10137734 DOI: 10.3390/healthcare11081115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/28/2023] [Accepted: 04/02/2023] [Indexed: 04/29/2023] Open
Abstract
The COVID-19 pandemic has hugely affected the textile and apparel industry. Besides the negative impact due to supply chain disruptions, drop in demand, liquidity problems, and overstocking, this pandemic was found to be a window of opportunity since it accelerated the ongoing digitalization trends and the use of functional materials in the textile industry. This review paper covers the development of smart and advanced textiles that emerged as a response to the outbreak of SARS-CoV-2. We extensively cover the advancements in developing smart textiles that enable monitoring and sensing through electrospun nanofibers and nanogenerators. Additionally, we focus on improving medical textiles mainly through enhanced antiviral capabilities, which play a crucial role in pandemic prevention, protection, and control. We summarize the challenges that arise from personal protective equipment (PPE) disposal and finally give an overview of new smart textile-based products that emerged in the markets related to the control and spread reduction of SARS-CoV-2.
Collapse
Affiliation(s)
- Aleksandra Ivanoska-Dacikj
- Research Centre for Environment and Materials, Macedonian Academy of Sciences and Arts, Krste Misirkov 2, 1000 Skopje, North Macedonia
| | - Yesim Oguz-Gouillart
- Department of Building and Urban Environment, Innovative Textile Material, JUNIA, 59000 Lille, France
| | - Gaffar Hossain
- V-Trion GmbH Textile Research, Millennium Park 15, 6890 Lustenau, Austria
| | - Müslüm Kaplan
- Department of Textile Engineering, Faculty of Engineering, Architecture and Design, Bartin University, Bartin 74110, Turkey
| | - Çağlar Sivri
- Management Engineering Department, Faculty of Engineering and Natural Sciences, Bahcesehir University, İstanbul 34349, Turkey
| | - José Vicente Ros-Lis
- Centro de Reconocimiento Molecular y Desarrollo Tecnologico (IDM), Unidad Mixta Universitat Politecnica de Valencia, Universitat de Valencia, Departamento de Química Inorgánica, Universitat de València, Doctor Moliner 56, 46100 Valencia, Spain
| | - Daiva Mikucioniene
- Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentu Str. 56, 50404 Kaunas, Lithuania
| | - Muhammad Usman Munir
- Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentu Str. 56, 50404 Kaunas, Lithuania
| | - Nuray Kizildag
- Institute of Nanotechnology, Gebze Technical University, Gebze, Kocaeli 41400, Turkey
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Pendik, Istanbul 34906, Turkey
| | - Serkan Unal
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Pendik, Istanbul 34906, Turkey
- Faculty of Engineering and Natural Sciences, Material Science and Nanoengineering, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Ivo Safarik
- Department of Nanobiotechnology, Biology Centre, ISBB, CAS, Na Sadkach 7, 370 05 Ceske Budejovice, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Esra Akgül
- Department of Industrial Design Engineering, Faculty of Engineering, Erciyes University, Kayseri 38039, Turkey
| | - Nida Yıldırım
- Trabzon Vocational School, Karadeniz Technical University, Trabzon 61080, Turkey
| | - Ayşe Çelik Bedeloğlu
- Department of Polymer Materials Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa 16310, Turkey
| | - Ömer Faruk Ünsal
- Department of Polymer Materials Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa 16310, Turkey
| | - Gordon Herwig
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, 9014 St. Gallen, Switzerland
| | - René M. Rossi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, 9014 St. Gallen, Switzerland
| | - Peter Wick
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Particle-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Pietro Clement
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Particle-Biology Interactions, 9014 St. Gallen, Switzerland
| | - A. Sezai Sarac
- Department of Chemistry, Polymer Science and Technology, Faculty of Sciences and Letters, Istanbul Technical University, Istanbul 34469, Turkey
| |
Collapse
|
5
|
Application of Nanotechnology in COVID-19 Infection: Findings and Limitations. JOURNAL OF NANOTHERANOSTICS 2022. [DOI: 10.3390/jnt3040014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
There is an urgent need to address the global mortality of the COVID-19 pandemic, as it reached 6.3 million as of July 2022. As such, the experts recommended the mass diagnosis of SARS-CoV-2 infection at an early stage using nanotechnology-based sensitive diagnostic approaches. The development of nanobiosensors for Point-of-Care (POC) sampling of COVID-19 could ensure mass detection without the need for sophisticated laboratories or expert personnel. The use of Artificial Intelligence (AI) techniques for POC detection was also proposed. In addition, the utilization of various antiviral nanomaterials such as Silver Nanoparticles (AgNPs) for the development of masks for personal protection mitigates viral transmission. Nowadays, nano-assisted vaccines have been approved for emergency use, but their safety and effectiveness in the mutant strain of the SARS-CoV-2 virus remain challenging. Methodology: Updated literature was sourced from various research indexing databases such as PubMed, SCOPUS, Science Direct, Research Gate and Google Scholars. Result: We presented the concept of novel nanotechnology researched discovery, including nano-devices, electrochemical biosensing, nano-assisted vaccine, and nanomedicines, for use in recent times, which could be a formidable step for future management of COVID-19.
Collapse
|
6
|
Rastogi A, Singh A, Naik K, Mishra A, Chaudhary S, Manohar R, Singh Parmar A. A systemic review on liquid crystals, nanoformulations and its application for detection and treatment of SARS - CoV- 2 (COVID - 19). J Mol Liq 2022; 362:119795. [PMID: 35832289 PMCID: PMC9265145 DOI: 10.1016/j.molliq.2022.119795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 01/31/2023]
Abstract
The COVID-19 is a pandemic caused by the SARS-CoV-2 virus, has instigated major health problems and prompted WHO to proclaim a worldwide medical emergency. The knowledge of SARS-CoV-2 fundamental structure, aetiology, its entrance mechanism, membrane hijacking and immune response against the virus, are important parameters to develop effective vaccines and medicines. Liquid crystals integrated nano-techniques and various nanoformulations were applied to tackle the severity of the virus. It was reported that nanoformulations have helped to enhance the effectiveness of presently accessible antiviral medicines or to elicit a fast immunological response against COVID-19 virus. Applications of liquid crystals, nanostructures, nanoformulations and nanotechnology in diagnosis, prevention, treatment and tailored vaccine administration against COVID-19 which will help in establishing the framework for a successful pandemic combat are reviewed. This review also focuses on limitations associated with liquid crystal-nanotechnology based systems and suggests the possible ways to address these limitations. Also, topical advancements in the ground of liquid crystals and nanostructures established diagnostics (nanosensor/biosensor) are discussed in detail.
Collapse
Affiliation(s)
- Ayushi Rastogi
- Liquid Crystal Laboratory, Department of Physics, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
- Department of Humanity and Applied Sciences (Physics), SMS College of Engineering, Institute of Technology, Lucknow 226001, Uttar Pradesh, India
| | - Abhilasha Singh
- Department of Physics, J.S.S Academy of Technical Education, Bangalore 560060, Karnataka, India
| | - Kaustubh Naik
- Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Archana Mishra
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay - 400085, Mumbai, India
| | - Shilpi Chaudhary
- Department of Applied Sciences, Punjab Engineering College (Deemed to be University), Chandigarh 160012, Punjab, India
| | - Rajiv Manohar
- Liquid Crystal Laboratory, Department of Physics, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | | |
Collapse
|
7
|
Rapid and efficient testing of the toxicity of graphene-related materials in primary human lung cells. Sci Rep 2022; 12:7664. [PMID: 35538131 PMCID: PMC9088729 DOI: 10.1038/s41598-022-11840-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 04/28/2022] [Indexed: 11/25/2022] Open
Abstract
Graphene and its derivative materials are manufactured by numerous companies and research laboratories, during which processes they can come into contact with their handlers' physiological barriers—for instance, their respiratory system. Despite their potential toxicity, these materials have even been used in face masks to prevent COVID-19 transmission. The increasingly widespread use of these materials requires the design and implementation of appropriate, versatile, and accurate toxicological screening methods to guarantee their safety. Murine models are adequate, though limited when exploring different doses and lengths of exposure—as this increases the number of animals required, contrary to the Three R's principle in animal experimentation. This article proposes an in vitro model using primary, non-transformed normal human bronchial epithelial (NHBE) cells as an alternative to the most widely used model to date, the human lung tumor cell line A549. The model has been tested with three graphene derivatives—graphene oxide (GO), few-layer graphene (FLG), and small FLG (sFLG). We observed a cytotoxic effect (necrosis and apoptosis) at early (6- and 24-h) exposures, which intensified after seven days of contact between cells and the graphene-related materials (GRMs)—with cell death reaching 90% after a 5 µg/mL dose. A549 cells are more resistant to necrosis and apoptosis, yielding values less than half of NHBE cells at low concentrations of GRMs (between 0.05 and 5 µg/mL). Indeed, GRM-induced cell death in NHBE cells is comparable to that induced by toxic compounds such as diesel exhaust particles on the same cell line. We propose NHBE as a suitable model to test GRM-induced toxicity, allowing refinement of the dose concentrations and exposure timings for better-designed in vivo mouse assays.
Collapse
|
8
|
Estevan C, Vilanova E, Sogorb MA. Case study: risk associated to wearing silver or graphene nanoparticle-coated facemasks for protection against COVID-19. Arch Toxicol 2021; 96:105-119. [PMID: 34786588 PMCID: PMC8594636 DOI: 10.1007/s00204-021-03187-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 10/28/2021] [Indexed: 11/25/2022]
Abstract
The world is living a pandemic situation derived from the worldwide spreading of SARS-CoV-2 virus causing COVID-19. Facemasks have proven to be one of the most effective prophylactic measures to avoid the infection that has made that wearing of facemasks has become mandatory in most of the developed countries. Silver and graphene nanoparticles have proven to have antimicrobial properties and are used as coating of these facemasks to increase the effectivity of the textile fibres. In the case of silver nanoparticles, we have estimated that in a real scenario the systemic (internal) exposure derived from wearing these silver nanoparticle facemasks would be between 7.0 × 10–5 and 2.8 × 10–4 mg/kg bw/day. In addition, we estimated conservative systemic no effect levels between 0.075 and 0.01 mg/kg bw/day. Therefore, we estimate that the chronic exposure to silver nanoparticles derived form facemasks wearing is safe. In the case of graphene, we detected important gaps in the database, especially regarding toxicokinetics, which prevents the derivation of a systemic no effect level. Nevertheless, the qualitative approach suggests that the risk of dermal repeated exposure to graphene is very low, or even negligible. We estimated that for both nanomaterials, the risk of skin sensitisation and genotoxicity is also negligible.
Collapse
Affiliation(s)
- Carmen Estevan
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Avenida de la Universidad s/n, 03202, Elche, Spain
| | - Eugenio Vilanova
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Avenida de la Universidad s/n, 03202, Elche, Spain
| | - Miguel A Sogorb
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Avenida de la Universidad s/n, 03202, Elche, Spain.
| |
Collapse
|
9
|
Yayehrad AT, Siraj EA, Wondie GB, Alemie AA, Derseh MT, Ambaye AS. Could Nanotechnology Help to End the Fight Against COVID-19? Review of Current Findings, Challenges and Future Perspectives. Int J Nanomedicine 2021; 16:5713-5743. [PMID: 34465991 PMCID: PMC8402990 DOI: 10.2147/ijn.s327334] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/29/2021] [Indexed: 12/21/2022] Open
Abstract
A serious viral infectious disease was introduced to the globe by the end of 2019 that was seen primarily from China, but spread worldwide in a few months to be a pandemic. Since then, accurate prevention, early detection, and effective treatment strategies are not yet outlined. There is no approved drug to counter its worldwide transmission. However, integration of nanostructured delivery systems with the current management strategies has promised a pronounced opportunity to tackle the pandemic. This review addressed the various promising nanotechnology-based approaches for the diagnosis, prevention, and treatment of the pandemic. The pharmaceutical, pharmacoeconomic, and regulatory aspects of these systems with currently achieved or predicted beneficial outcomes, challenges, and future perspectives are also highlighted.
Collapse
Affiliation(s)
- Ashagrachew Tewabe Yayehrad
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Pharmacy, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Ebrahim Abdela Siraj
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Pharmacy, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Gebremariam Birhanu Wondie
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Atlaw Abate Alemie
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Ethiopian Food and Drug Authority (EFDA), Federal Ministry of Health (FMoH), Addis Ababa, Ethiopia
| | - Manaye Tamrie Derseh
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Departement of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, Mizan-Tepi University, Mizan-Aman, Ethiopia
| | - Abyou Seyfu Ambaye
- Departement of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, Mizan-Tepi University, Mizan-Aman, Ethiopia
| |
Collapse
|