1
|
Baulin VA, Linklater DP, Juodkazis S, Ivanova EP. Exploring Broad-Spectrum Antimicrobial Nanotopographies: Implications for Bactericidal, Antifungal, and Virucidal Surface Design. ACS NANO 2025; 19:12606-12625. [PMID: 40130596 DOI: 10.1021/acsnano.4c15671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Inspired by the natural defense strategies of insect wings and plant leaves, nanostructured surfaces have emerged as a promising tool in various fields, including engineering, biomedical sciences, and materials science, to combat bacterial contamination and disrupt biofilm formation. However, the development of effective antimicrobial surfaces against fungal and viral pathogens presents distinct challenges, necessitating tailored approaches. Here, we aimed to review the recent advancements of the use of nanostructured surfaces to combat microbial contamination, particularly focusing on their mechano-bactericidal and antifungal properties, as well as their potential in mitigating viral transmission. We comparatively analyzed the diverse geometries and nanoarchitectures of these surfaces and discussed their application in various biomedical contexts, such as dental and orthopedic implants, drug delivery systems, and tissue engineering. Our review highlights the importance of preventing microbial attachment and biofilm formation, especially in the context of rising antimicrobial resistance and the economic impact of biofilms. We also discussed the latest progress in materials science, particularly nanostructured surface engineering, as a promising strategy for reducing viral transmission through surfaces. Overall, our findings underscore the significance of innovative strategies to mitigate microbial attachment and surface-mediated transmission, while also emphasizing the need for further interdisciplinary research in this area to optimize antimicrobial efficacy and address emerging challenges.
Collapse
Affiliation(s)
- Vladimir A Baulin
- Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Denver P Linklater
- Department of Biomedical Engineering, Graeme Clark Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Saulius Juodkazis
- Swinburne University of Technology, Hawthorn, Victoria 3021, Australia
| | - Elena P Ivanova
- School of Engineering, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
2
|
Mah SL, Linklater DP, Tzanov V, Le PH, Dekiwadia C, Mayes E, Simons R, Eyckens DJ, Moad G, Saita S, Joudkazis S, Jans DA, Baulin VA, Borg NA, Ivanova EP. Piercing of the Human Parainfluenza Virus by Nanostructured Surfaces. ACS NANO 2024; 18:1404-1419. [PMID: 38127731 PMCID: PMC10902884 DOI: 10.1021/acsnano.3c07099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/20/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
This paper presents a comprehensive experimental and theoretical investigation into the antiviral properties of nanostructured surfaces and explains the underlying virucidal mechanism. We used reactive ion etching to fabricate silicon (Si) surfaces featuring an array of sharp nanospikes with an approximate tip diameter of 2 nm and a height of 290 nm. The nanospike surfaces exhibited a 1.5 log reduction in infectivity of human parainfluenza virus type 3 (hPIV-3) after 6 h, a substantially enhanced efficiency, compared to that of smooth Si. Theoretical modeling of the virus-nanospike interactions determined the virucidal action of the nanostructured substrata to be associated with the ability of the sharp nanofeatures to effectively penetrate the viral envelope, resulting in the loss of viral infectivity. Our research highlights the significance of the potential application of nanostructured surfaces in combating the spread of viruses and bacteria. Notably, our study provides valuable insights into the design and optimization of antiviral surfaces with a particular emphasis on the crucial role played by sharp nanofeatures in maximizing their effectiveness.
Collapse
Affiliation(s)
- Samson
W. L. Mah
- School
of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
- CSIRO
Manufacturing, Clayton, Victoria 3168, Australia
| | - Denver P. Linklater
- School
of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
- Department
of Biomedical Engineering, Graeme Clarke Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Vassil Tzanov
- Departament
de Química Física i Inorgànica, Universitat Rovira i Virgili, C/Marcel.lí Domingo s/n, Tarragona 43007, Spain
| | - Phuc H. Le
- School
of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Chaitali Dekiwadia
- RMIT
Microscopy and Microanalysis Facility, STEM College,RMIT University, Melbourne, Victoria 3000, Australia
| | - Edwin Mayes
- RMIT
Microscopy and Microanalysis Facility, STEM College,RMIT University, Melbourne, Victoria 3000, Australia
| | - Ranya Simons
- CSIRO
Manufacturing, Clayton, Victoria 3168, Australia
| | | | - Graeme Moad
- CSIRO
Manufacturing, Clayton, Victoria 3168, Australia
| | - Soichiro Saita
- The KAITEKI
Institute Inc., Chiyoda-ku, Tokyo 100-8251, Japan
| | - Saulius Joudkazis
- Optical
Science Centre, Swinburne University of
Technology, Hawthorn, Melbourne, Victoria 3122, Australia
| | - David A. Jans
- Nuclear
Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Monash, Victoria 3800, Australia
| | - Vladimir A. Baulin
- Departament
de Química Física i Inorgànica, Universitat Rovira i Virgili, C/Marcel.lí Domingo s/n, Tarragona 43007, Spain
| | - Natalie A. Borg
- School
of Health and Biomedical Sciences, RMIT
University, Bundoora, Victoria 3083, Australia
| | - Elena P. Ivanova
- School
of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|