1
|
Sander S, Leytens A, Dengjel J. Deep Proteome Profiling of Primary Skin Fibroblasts. Methods Mol Biol 2025; 2922:197-207. [PMID: 40208537 DOI: 10.1007/978-1-0716-4510-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Skin-derived primary cells and skin tissue are prime model systems to study molecular disease mechanisms on cell and tissue level. Cells and tissue can be cultivated ex vivo and protocols for both, simple 2D as well as 3D in vitro cultures reflecting different levels of complexity exist. Mass spectrometry (MS)-based proteomics is a prime approach to link molecular mechanisms to observable disease phenotypes. In this chapter, we describe in detail the analysis of 2D and 3D primary skin fibroblast cultures by MS. We focus on automated sample processing to increase throughput and usage of limited cell numbers to reduce costs. The described workflow supports the study of proteome regulation in large scale screening approaches, be it for drug discovery or in clinical studies.
Collapse
Affiliation(s)
- Sibilla Sander
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Alexandre Leytens
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
2
|
Li X, Ai X, Wang B, Luo M, Miyamoto A, Kuchay MS, Feng D, Zhang C. Application of 3D printing in the treatment of diabetic foot ulcers: current status and new insights. Front Bioeng Biotechnol 2024; 12:1475885. [PMID: 39605746 PMCID: PMC11598536 DOI: 10.3389/fbioe.2024.1475885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Background and Aims Diabetic foot ulcers (DFUs) are a serious complication of diabetes mellitus (DM), affecting around 25% of individuals with DM. Primary treatment of a DFU involves wound off-loading, surgical debridement, dressings to provide a moist wound environment, vascular assessment, and appropriate antibiotics through a multidisciplinary approach. Three-dimensional (3D) printing technology is considered an innovative tool for the management of DFUs. The utilization of 3D printing technology in the treatment of DFU involves the modernization of traditional methods and the exploration of new techniques. This review discusses recent advancements in 3D printing technology for the application of DFU care, and the development of personalized interventions for the treatment of DFUs. Methods We searched the electronic database for the years 2019-2024. Studies related to the use of 3D printing technology in Diabetic foot were included. Results A total of 25 identified articles based on database search and citation network analysis. After removing duplicates, 18 articles remained, and three articles that did not meet the inclusion criteria were removed after reading the title/abstract. A total of 97 relevant articles were included during the reading of references. In total, 112 articles were included. Conclusion 3D printing technology offers unparalleled advantages, particularly in the realm of personalized treatment. The amalgamation of traditional treatment methods with 3D printing has yielded favorable outcomes in decelerating the progression of DFUs and facilitating wound healing. However, there is a limited body of research regarding the utilization of 3D printing technology in the domain of DFUs.
Collapse
Affiliation(s)
- Xinrui Li
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xin Ai
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Bo Wang
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Mengqian Luo
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Akira Miyamoto
- Department of Nishikyushu University Faculty of Rehabilitation, Fukuoka, Japan
| | - Mohammad Shafi Kuchay
- Division of Endocrinology and Diabetes, Medanta the Medicity Hospital, Haryana, India
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
| | - Chi Zhang
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
3
|
Carvalho LN, Peres LC, Alonso-Goulart V, Santos BJD, Braga MFA, Campos FDAR, Palis GDAP, Quirino LS, Guimarães LD, Lafetá SA, Simbara MMO, Castro-Filice LDS. Recent advances in the 3D skin bioprinting for regenerative medicine: Cells, biomaterials, and methods. J Biomater Appl 2024; 39:421-438. [PMID: 39196759 DOI: 10.1177/08853282241276799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
The skin is a tissue constantly exposed to the risk of damage, such as cuts, burns, and genetic disorders. The standard treatment is autograft, but it can cause pain to the patient being extremely complex in patients suffering from burns on large body surfaces. Considering that there is a need to develop technologies for the repair of skin tissue like 3D bioprinting. Skin is a tissue that is approximately 1/16 of the total body weight and has three main layers: epidermis, dermis, and hypodermis. Therefore, there are several studies using cells, biomaterials, and bioprinting for skin regeneration. Here, we provide an overview of the structure and function of the epidermis, dermis, and hypodermis, and showed in the recent research in skin regeneration, the main cells used, biomaterials studied that provide initial support for these cells, allowing the growth and formation of the neotissue and general characteristics, advantages and disadvantages of each methodology and the landmarks in recent research in the 3D skin bioprinting.
Collapse
Affiliation(s)
- Loyna Nobile Carvalho
- Laboratory of Nanobiotechnology Prof. Dr Luiz Ricardo Goulart Filho, Institute of Biotechnology (IBTEC), Federal University of Uberlândia, Uberlândia, Brazil
| | - Lucas Correia Peres
- Laboratory of Nanobiotechnology Prof. Dr Luiz Ricardo Goulart Filho, Institute of Biotechnology (IBTEC), Federal University of Uberlândia, Uberlândia, Brazil
| | - Vivian Alonso-Goulart
- Laboratory of Nanobiotechnology Prof. Dr Luiz Ricardo Goulart Filho, Institute of Biotechnology (IBTEC), Federal University of Uberlândia, Uberlândia, Brazil
| | | | - Mário Fernando Alves Braga
- Laboratory of Nanobiotechnology Prof. Dr Luiz Ricardo Goulart Filho, Institute of Biotechnology (IBTEC), Federal University of Uberlândia, Uberlândia, Brazil
| | | | - Gabriela de Aquino Pinto Palis
- Laboratory of Nanobiotechnology Prof. Dr Luiz Ricardo Goulart Filho, Institute of Biotechnology (IBTEC), Federal University of Uberlândia, Uberlândia, Brazil
| | - Ludmilla Sousa Quirino
- Laboratory of Nanobiotechnology Prof. Dr Luiz Ricardo Goulart Filho, Institute of Biotechnology (IBTEC), Federal University of Uberlândia, Uberlândia, Brazil
| | - Laura Duarte Guimarães
- Laboratory of Nanobiotechnology Prof. Dr Luiz Ricardo Goulart Filho, Institute of Biotechnology (IBTEC), Federal University of Uberlândia, Uberlândia, Brazil
| | - Sofia Alencar Lafetá
- Laboratory of Nanobiotechnology Prof. Dr Luiz Ricardo Goulart Filho, Institute of Biotechnology (IBTEC), Federal University of Uberlândia, Uberlândia, Brazil
| | | | | |
Collapse
|
4
|
Aye KTN, Ferreira JN, Chaweewannakorn C, Souza GR. Advances in the application of iron oxide nanoparticles (IONs and SPIONs) in three-dimensional cell culture systems. SLAS Technol 2024; 29:100132. [PMID: 38582355 DOI: 10.1016/j.slast.2024.100132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/22/2024] [Accepted: 04/04/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND The field of tissue engineering has remarkably progressed through the integration of nanotechnology and the widespread use of magnetic nanoparticles. These nanoparticles have resulted in innovative methods for three-dimensional (3D) cell culture platforms, including the generation of spheroids, organoids, and tissue-mimetic cultures, where they play a pivotal role. Notably, iron oxide nanoparticles and superparamagnetic iron oxide nanoparticles have emerged as indispensable tools for non-contact manipulation of cells within these 3D environments. The variety and modification of the physical and chemical properties of magnetic nanoparticles have profound impacts on cellular mechanisms, metabolic processes, and overall biological function. This review article focuses on the applications of magnetic nanoparticles, elucidating their advantages and potential pitfalls when integrated into 3D cell culture systems. This review aims to shed light on the transformative potential of magnetic nanoparticles in terms of tissue engineering and their capacity to improve the cultivation and manipulation of cells in 3D environments.
Collapse
Affiliation(s)
- Khin The Nu Aye
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Joao N Ferreira
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Chayanit Chaweewannakorn
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Occlusion, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| | - Glauco R Souza
- Greiner Bio-One North America, Inc., 4238 Capital Drive, Monroe, NC 28110, USA
| |
Collapse
|
5
|
Khan NLA, Muhandiram S, Dissanayake K, Godakumara K, Midekessa G, Andronowska A, Heath PR, Kodithuwakku S, Hart AR, Fazeli A. Effect of 3D and 2D cell culture systems on trophoblast extracellular vesicle physico-chemical characteristics and potency. Front Cell Dev Biol 2024; 12:1382552. [PMID: 38835509 PMCID: PMC11148233 DOI: 10.3389/fcell.2024.1382552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/30/2024] [Indexed: 06/06/2024] Open
Abstract
The growing understanding of the role of extracellular vesicles (EVs) in embryo-maternal communication has sparked considerable interest in their therapeutic potential within assisted reproductive technology, particularly in enhancing implantation success. However, the major obstacle remains the large-scale production of EVs, and there is still a gap in understanding how different culture systems affect the characteristics of the EVs. In the current study, trophoblast analogue human chorionic carcinoma cell line was cultivated in both conventional monolayer culture (2D) and as spheroids in suspension culture (3D) and how the cell growth environment affects the physical, biochemical and cellular signalling properties of EVs produced by them was studied. Interestingly, the 3D system was more active in secreting EVs compared to the 2D system, while no significant differences were observed in terms of morphology, size, and classical EV protein marker expression between EVs derived from the two culture systems. There were substantial differences in the proteomic cargo profile and cellular signalling potency of EVs derived from the two culture systems. Notably, 2D EVs were more potent in inducing a cellular response in endometrial epithelial cells (EECs) compared to 3D EVs. Therefore, it is essential to recognize that the biological activity of EVs depends not only on the cell of origin but also on the cellular microenvironment of the parent cell. In conclusion, caution is warranted when selecting an EV production platform, especially for assessing the functional and therapeutic potential of EVs through in vitro studies.
Collapse
Affiliation(s)
- Norhayati Liaqat Ali Khan
- Division of Clinical Medicine, School of Medicine and Population Health, The Medical School, University of Sheffield, Sheffield, United Kingdom
- Centre of Preclinical Science Studies, Faculty of Dentistry, University Teknologi MARA (UiTM), Sg. Buloh, Selangor, Malaysia
| | - Subhashini Muhandiram
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Keerthie Dissanayake
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Kasun Godakumara
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Getnet Midekessa
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Aneta Andronowska
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Paul R Heath
- Division of Clinical Medicine, School of Medicine and Population Health, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Suranga Kodithuwakku
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Department of Animal Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - Amber Rose Hart
- Division of Clinical Medicine, School of Medicine and Population Health, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Alireza Fazeli
- Division of Clinical Medicine, School of Medicine and Population Health, The Medical School, University of Sheffield, Sheffield, United Kingdom
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
6
|
Guan W, Gao H, Liu Y, Sun S, Li G. Application of magnetism in tissue regeneration: recent progress and future prospects. Regen Biomater 2024; 11:rbae048. [PMID: 38939044 PMCID: PMC11208728 DOI: 10.1093/rb/rbae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/14/2024] [Accepted: 04/25/2024] [Indexed: 06/29/2024] Open
Abstract
Tissue regeneration is a hot topic in the field of biomedical research in this century. Material composition, surface topology, light, ultrasonic, electric field and magnetic fields (MFs) all have important effects on the regeneration process. Among them, MFs can provide nearly non-invasive signal transmission within biological tissues, and magnetic materials can convert MFs into a series of signals related to biological processes, such as mechanical force, magnetic heat, drug release, etc. By adjusting the MFs and magnetic materials, desired cellular or molecular-level responses can be achieved to promote better tissue regeneration. This review summarizes the definition, classification and latest progress of MFs and magnetic materials in tissue engineering. It also explores the differences and potential applications of MFs in different tissue cells, aiming to connect the applications of magnetism in various subfields of tissue engineering and provide new insights for the use of magnetism in tissue regeneration.
Collapse
Affiliation(s)
- Wenchao Guan
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Hongxia Gao
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Yaqiong Liu
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Shaolan Sun
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Guicai Li
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
7
|
Liu H, Xing F, Yu P, Zhe M, Duan X, Liu M, Xiang Z, Ritz U. A review of biomacromolecule-based 3D bioprinting strategies for structure-function integrated repair of skin tissues. Int J Biol Macromol 2024; 268:131623. [PMID: 38642687 DOI: 10.1016/j.ijbiomac.2024.131623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/09/2024] [Accepted: 04/13/2024] [Indexed: 04/22/2024]
Abstract
When skin is damaged or affected by diseases, it often undergoes irreversible scar formation, leading to aesthetic concerns and psychological distress for patients. In cases of extensive skin defects, the patient's life can be severely compromised. In recent years, 3D printing technology has emerged as a groundbreaking approach to skin tissue engineering, offering promising solutions to various skin-related conditions. 3D bioprinting technology enables the precise fabrication of structures by programming the spatial arrangement of cells within the skin tissue and subsequently printing skin replacements either in a 3D bioprinter or directly at the site of the defect. This study provides a comprehensive overview of various biopolymer-based inks, with a particular emphasis on chitosan (CS), starch, alginate, agarose, cellulose, and fibronectin, all of which are natural polymers belonging to the category of biomacromolecules. Additionally, it summarizes artificially synthesized polymers capable of enhancing the performance of these biomacromolecule-based bioinks, thereby composing hybrid biopolymer inks aimed at better application in skin tissue engineering endeavors. This review paper examines the recent advancements, characteristics, benefits, and limitations of biological 3D bioprinting techniques for skin tissue engineering. By utilizing bioinks containing seed cells, hydrogels with bioactive factors, and biomaterials, complex structures resembling natural skin can be accurately fabricated in a layer-by-layer manner. The importance of biological scaffolds in promoting skin wound healing and the role of 3D bioprinting in skin tissue regeneration processes is discussed. Additionally, this paper addresses the challenges and constraints associated with current 3D bioprinting technologies for skin tissue and presents future perspectives. These include advancements in bioink formulations, full-thickness skin bioprinting, vascularization strategies, and skin appendages bioprinting.
Collapse
Affiliation(s)
- Hao Liu
- Department of Orthopedic Surgery, Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Xing
- Department of Pediatric Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Peiyun Yu
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Man Zhe
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin Duan
- Department of Orthopedic Surgery, Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Liu
- Department of Orthopedic Surgery, Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhou Xiang
- Department of Orthopedic Surgery, Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Orthopedics, Sanya People's Hospital, 572000 Sanya, Hainan, China.
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
8
|
Ma Y, Deng B, He R, Huang P. Advancements of 3D bioprinting in regenerative medicine: Exploring cell sources for organ fabrication. Heliyon 2024; 10:e24593. [PMID: 38318070 PMCID: PMC10838744 DOI: 10.1016/j.heliyon.2024.e24593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/02/2024] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
3D bioprinting has unlocked new possibilities for generating complex and functional tissues and organs. However, one of the greatest challenges lies in selecting the appropriate seed cells for constructing fully functional 3D artificial organs. Currently, there are no cell sources available that can fulfill all requirements of 3D bioprinting technologies, and each cell source possesses unique characteristics suitable for specific applications. In this review, we explore the impact of different 3D bioprinting technologies and bioink materials on seed cells, providing a comprehensive overview of the current landscape of cell sources that have been used or hold potential in 3D bioprinting. We also summarized key points to guide the selection of seed cells for 3D bioprinting. Moreover, we offer insights into the prospects of seed cell sources in 3D bioprinted organs, highlighting their potential to revolutionize the fields of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
| | | | - Runbang He
- State Key Laboratory of Advanced Medical Materials and Devices, Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| | - Pengyu Huang
- State Key Laboratory of Advanced Medical Materials and Devices, Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| |
Collapse
|
9
|
Zhao H, Chen Z, Kang X, Yang B, Luo P, Li H, He Q. The frontline of alternatives to animal testing: novel in vitro skin model application in drug development and evaluation. Toxicol Sci 2023; 196:152-169. [PMID: 37702017 DOI: 10.1093/toxsci/kfad093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
The FDA Modernization Act 2.0 has brought nonclinical drug evaluation into a new era. In vitro models are widely used and play an important role in modern drug development and evaluation, including early candidate drug screening and preclinical drug efficacy and toxicity assessment. Driven by regulatory steering and facilitated by well-defined physiology, novel in vitro skin models are emerging rapidly, becoming the most advanced area in alternative testing research. The revolutionary technologies bring us many in vitro skin models, either laboratory-developed or commercially available, which were all built to emulate the structure of the natural skin to recapitulate the skin's physiological function and particular skin pathology. During the model development, how to achieve balance among complexity, accessibility, capability, and cost-effectiveness remains the core challenge for researchers. This review attempts to introduce the existing in vitro skin models, align them on different dimensions, such as structural complexity, functional maturity, and screening throughput, and provide an update on their current application in various scenarios within the scope of chemical testing and drug development, including testing in genotoxicity, phototoxicity, skin sensitization, corrosion/irritation. Overall, the review will summarize a general strategy for in vitro skin model to enhance future model invention, application, and translation in drug development and evaluation.
Collapse
Affiliation(s)
- He Zhao
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhaozeng Chen
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| | - Xingchen Kang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| | - Hui Li
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| |
Collapse
|
10
|
Sänger CS, Cernakova M, Wietecha MS, Garau Paganella L, Labouesse C, Dudaryeva OY, Roubaty C, Stumpe M, Mazza E, Tibbitt MW, Dengjel J, Werner S. Serine protease 35 regulates the fibroblast matrisome in response to hyperosmotic stress. SCIENCE ADVANCES 2023; 9:eadh9219. [PMID: 37647410 PMCID: PMC10468140 DOI: 10.1126/sciadv.adh9219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023]
Abstract
Hyperosmotic stress occurs in several diseases, but its long-term effects are largely unknown. We used sorbitol-treated human fibroblasts in 3D culture to study the consequences of hyperosmotic stress in the skin. Sorbitol regulated many genes, which help cells cope with the stress condition. The most robustly regulated gene encodes serine protease 35 (PRSS35). Its regulation by hyperosmotic stress was dependent on the kinases p38 and JNK and the transcription factors NFAT5 and ATF2. We identified different collagens and collagen-associated proteins as putative PRSS35 binding partners. This is functionally important because PRSS35 affected the extracellular matrix proteome, which limited cell proliferation. The in vivo relevance of these findings is reflected by the coexpression of PRSS35 and its binding partners in human skin wounds, where hyperosmotic stress occurs as a consequence of excessive water loss. These results identify PRSS35 as a key regulator of the matrisome under hyperosmotic stress conditions.
Collapse
Affiliation(s)
- Catharina S. Sänger
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Martina Cernakova
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Mateusz S. Wietecha
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Lorenza Garau Paganella
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland
- Institute for Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Céline Labouesse
- Institute for Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Oksana Y. Dudaryeva
- Institute for Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Carole Roubaty
- Faculty of Science and Medicine, Department of Biology, University of Fribourg, Ch. du Musée 10, 1700 Fribourg, Switzerland
| | - Michael Stumpe
- Faculty of Science and Medicine, Department of Biology, University of Fribourg, Ch. du Musée 10, 1700 Fribourg, Switzerland
| | - Edoardo Mazza
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland
| | - Mark W. Tibbitt
- Institute for Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Jörn Dengjel
- Faculty of Science and Medicine, Department of Biology, University of Fribourg, Ch. du Musée 10, 1700 Fribourg, Switzerland
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| |
Collapse
|
11
|
Hu H, Krishaa L, Fong ELS. Magnetic force-based cell manipulation for in vitro tissue engineering. APL Bioeng 2023; 7:031504. [PMID: 37736016 PMCID: PMC10511261 DOI: 10.1063/5.0138732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 08/22/2023] [Indexed: 09/23/2023] Open
Abstract
Cell manipulation techniques such as those based on three-dimensional (3D) bioprinting and microfluidic systems have recently been developed to reconstruct complex 3D tissue structures in vitro. Compared to these technologies, magnetic force-based cell manipulation is a simpler, scaffold- and label-free method that minimally affects cell viability and can rapidly manipulate cells into 3D tissue constructs. As such, there is increasing interest in leveraging this technology for cell assembly in tissue engineering. Cell manipulation using magnetic forces primarily involves two key approaches. The first method, positive magnetophoresis, uses magnetic nanoparticles (MNPs) which are either attached to the cell surface or integrated within the cell. These MNPs enable the deliberate positioning of cells into designated configurations when an external magnetic field is applied. The second method, known as negative magnetophoresis, manipulates diamagnetic entities, such as cells, in a paramagnetic environment using an external magnetic field. Unlike the first method, this technique does not require the use of MNPs for cell manipulation. Instead, it leverages the magnetic field and the motion of paramagnetic agents like paramagnetic salts (Gadobutrol, MnCl2, etc.) to propel cells toward the field minimum, resulting in the assembly of cells into the desired geometrical arrangement. In this Review, we will first describe the major approaches used to assemble cells in vitro-3D bioprinting and microfluidics-based platforms-and then discuss the use of magnetic forces for cell manipulation. Finally, we will highlight recent research in which these magnetic force-based approaches have been applied and outline challenges to mature this technology for in vitro tissue engineering.
Collapse
Affiliation(s)
- Huiqian Hu
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - L. Krishaa
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Eliza Li Shan Fong
- Present address: Translational Tumor Engineering Laboratory, 15 Kent Ridge Cres, E7, 06-01G, Singapore 119276, Singapore. Author to whom correspondence should be addressed:
| |
Collapse
|
12
|
Tabatabaei Rezaei N, Kumar H, Liu H, Lee SS, Park SS, Kim K. Recent Advances in Organ-on-Chips Integrated with Bioprinting Technologies for Drug Screening. Adv Healthc Mater 2023; 12:e2203172. [PMID: 36971091 PMCID: PMC11469032 DOI: 10.1002/adhm.202203172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/27/2023] [Indexed: 03/29/2023]
Abstract
Currently, the demand for more reliable drug screening devices has made scientists and researchers develop novel potential approaches to offer an alternative to animal studies. Organ-on-chips are newly emerged platforms for drug screening and disease metabolism investigation. These microfluidic devices attempt to recapitulate the physiological and biological properties of different organs and tissues using human-derived cells. Recently, the synergistic combination of additive manufacturing and microfluidics has shown a promising impact on improving a wide array of biological models. In this review, different methods are classified using bioprinting to achieve the relevant biomimetic models in organ-on-chips, boosting the efficiency of these devices to produce more reliable data for drug investigations. In addition to the tissue models, the influence of additive manufacturing on microfluidic chip fabrication is discussed, and their biomedical applications are reviewed.
Collapse
Affiliation(s)
- Nima Tabatabaei Rezaei
- Department of Mechanical and Manufacturing EngineeringUniversity of CalgaryCalgaryAlbertaT2N 1N4Canada
| | - Hitendra Kumar
- Department of Mechanical and Manufacturing EngineeringUniversity of CalgaryCalgaryAlbertaT2N 1N4Canada
- Department of Pathology and Laboratory MedicineCumming School of MedicineUniversity of CalgaryCalgaryAlbertaT2N 1N4Canada
| | - Hongqun Liu
- Liver UnitCumming School of MedicineUniversity of CalgaryCalgaryAlbertaT2N 1N4Canada
| | - Samuel S. Lee
- Liver UnitCumming School of MedicineUniversity of CalgaryCalgaryAlbertaT2N 1N4Canada
| | - Simon S. Park
- Department of Mechanical and Manufacturing EngineeringUniversity of CalgaryCalgaryAlbertaT2N 1N4Canada
| | - Keekyoung Kim
- Department of Mechanical and Manufacturing EngineeringUniversity of CalgaryCalgaryAlbertaT2N 1N4Canada
- Department of Biomedical EngineeringUniversity of CalgaryCalgaryAlbertaT2N 1N4Canada
| |
Collapse
|
13
|
Khatun MR, Bhattacharyya A, Gunbayar M, Jung M, Noh I. Study on Bioresponsive Gelatin-Hyaluronic Acid-Genipin Hydrogel for High Cell-Density 3D Bioprinting. Gels 2023; 9:601. [PMID: 37623056 PMCID: PMC10453927 DOI: 10.3390/gels9080601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 08/26/2023] Open
Abstract
The Development of bioresponsive extrudable hydrogels for 3D bioprinting is imperative to address the growing demand for scaffold design as well as efficient and reliable methods of tissue engineering and regenerative medicine. This study proposed genipin (5 mg) cross-linked gelatin (1 to 1.5 g)-hyaluronic acid (0.3 g) hydrogel bioink (20 mL) tailored for 3D bioprinting. The focus is on high cell loading and a less artificial extra-cellular matrix (ECM) effect, as well as exploring their potential applications in tissue engineering. The bioresponsiveness of these hydrogel scaffolds was successfully evaluated at 37 °C and room temperature (at pH 2.5, 7.4, and 9). The rheological and mechanical properties (more than three times) increased with the increase in gelatin content in the hydrogel; however, the hydrogel with the least amount of gelatin showed the best extrusion capability. This optimized hydrogel's high extrusion ability and post-printing shape fidelity were evident from 3D and four-axis printing of complex structures such as hollow tubes, stars, pyramids, and zigzag porous tubular (four-axis) scaffolds (printed at 90 kPa pressure, 70 mm/s speed, 22G needle, fourth axis rotation of 4 rpm). 3 million/mL MC3T3-E1 mouse osteoblast cells were used in preparing 3D bioprinted samples. The in vitro cell culture studies have been carried out in a CO2 incubator (at 37 °C, 5% CO2). In the cytocompatibility study, almost three times more cell viability was observed in 3 days compared to day 1 control, proving the non-toxicity and cell-supportiveness of these hydrogels. High cell viability and cell-to-cell interactions observed at the end of day 3 using this moderately stable hydrogel in 3D bioprinting exhibit high potential for precise cell delivery modes in tissue engineering as well as regenerative medicine.
Collapse
Affiliation(s)
- Mst Rita Khatun
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; (M.R.K.); (A.B.); (M.G.); (M.J.)
| | - Amitava Bhattacharyya
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; (M.R.K.); (A.B.); (M.G.); (M.J.)
- Functional, Innovative and Smart Textiles, PSG Institute of Advanced Studies, Coimbatore 641004, India
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Maral Gunbayar
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; (M.R.K.); (A.B.); (M.G.); (M.J.)
| | - Minsik Jung
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; (M.R.K.); (A.B.); (M.G.); (M.J.)
| | - Insup Noh
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; (M.R.K.); (A.B.); (M.G.); (M.J.)
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| |
Collapse
|
14
|
Karanfil AS, Louis F, Matsusaki M. Biofabrication of vascularized adipose tissues and their biomedical applications. MATERIALS HORIZONS 2023; 10:1539-1558. [PMID: 36789675 DOI: 10.1039/d2mh01391f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Recent advances in adipose tissue engineering and cell biology have led to the development of innovative therapeutic strategies in regenerative medicine for adipose tissue reconstruction. To date, the many in vitro and in vivo models developed for vascularized adipose tissue engineering cover a wide range of research areas, including studies with cells of various origins and types, polymeric scaffolds of natural and synthetic derivation, models presented using decellularized tissues, and scaffold-free approaches. In this review, studies on adipose tissue types with different functions, characteristics and body locations have been summarized with 3D in vitro fabrication approaches. The reason for the particular focus on vascularized adipose tissue models is that current liposuction and fat transplantation methods are unsuitable for adipose tissue reconstruction as the lack of blood vessels results in inadequate nutrient and oxygen delivery, leading to necrosis in situ. In the first part of this paper, current studies and applications of white and brown adipose tissues are presented according to the polymeric materials used, focusing on the studies which could show vasculature in vitro and after in vivo implantation, and then the research on adipose tissue fabrication and applications are explained.
Collapse
Affiliation(s)
- Aslı Sena Karanfil
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Japan.
| | - Fiona Louis
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Japan.
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Japan
| |
Collapse
|
15
|
Mohandas S, Gayatri V, Kumaran K, Gopinath V, Paulmurugan R, Ramkumar KM. New Frontiers in Three-Dimensional Culture Platforms to Improve Diabetes Research. Pharmaceutics 2023; 15:pharmaceutics15030725. [PMID: 36986591 PMCID: PMC10056755 DOI: 10.3390/pharmaceutics15030725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Diabetes mellitus is associated with defects in islet β-cell functioning and consequent hyperglycemia resulting in multi-organ damage. Physiologically relevant models that mimic human diabetic progression are urgently needed to identify new drug targets. Three-dimensional (3D) cell-culture systems are gaining a considerable interest in diabetic disease modelling and are being utilized as platforms for diabetic drug discovery and pancreatic tissue engineering. Three-dimensional models offer a marked advantage in obtaining physiologically relevant information and improve drug selectivity over conventional 2D (two-dimensional) cultures and rodent models. Indeed, recent evidence persuasively supports the adoption of appropriate 3D cell technology in β-cell cultivation. This review article provides a considerably updated view of the benefits of employing 3D models in the experimental workflow compared to conventional animal and 2D models. We compile the latest innovations in this field and discuss the various strategies used to generate 3D culture models in diabetic research. We also critically review the advantages and the limitations of each 3D technology, with particular attention to the maintenance of β-cell morphology, functionality, and intercellular crosstalk. Furthermore, we emphasize the scope of improvement needed in the 3D culture systems employed in diabetes research and the promises they hold as excellent research platforms in managing diabetes.
Collapse
Affiliation(s)
- Sundhar Mohandas
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Vijaya Gayatri
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Kriya Kumaran
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Vipin Gopinath
- Department of Radiology, Molecular Imaging Program at Stanford, Canary Centre for Cancer Early Detection, Bio-X Program, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Molecular Oncology Division, Malabar Cancer Centre, Moozhikkara P.O, Thalassery 670103, Kerala, India
| | - Ramasamy Paulmurugan
- Department of Radiology, Molecular Imaging Program at Stanford, Canary Centre for Cancer Early Detection, Bio-X Program, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Correspondence: (R.P.); (K.M.R.)
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
- Department of Radiology, Molecular Imaging Program at Stanford, Canary Centre for Cancer Early Detection, Bio-X Program, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Correspondence: (R.P.); (K.M.R.)
| |
Collapse
|
16
|
De Simone U, Pignatti P, Villani L, Russo LA, Sargenti A, Bonetti S, Buscaglia E, Coccini T. Human Astrocyte Spheroids as Suitable In Vitro Screening Model to Evaluate Synthetic Cannabinoid MAM2201-Induced Effects on CNS. Int J Mol Sci 2023; 24:ijms24021421. [PMID: 36674936 PMCID: PMC9861655 DOI: 10.3390/ijms24021421] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
There is growing concern about the consumption of synthetic cannabinoids (SCs), one of the largest groups of new psychoactive substances, its consequence on human health (general population and workers), and the continuous placing of new SCs on the market. Although drug-induced alterations in neuronal function remain an essential component for theories of drug addiction, accumulating evidence indicates the important role of activated astrocytes, whose essential and pleiotropic role in brain physiology and pathology is well recognized. The study aims to clarify the mechanisms of neurotoxicity induced by one of the most potent SCs, named MAM-2201 (a naphthoyl-indole derivative), by applying a novel three-dimensional (3D) cell culture model, mimicking the physiological and biochemical properties of brain tissues better than traditional two-dimensional in vitro systems. Specifically, human astrocyte spheroids, generated from the D384 astrocyte cell line, were treated with different MAM-2201 concentrations (1-30 µM) and exposure times (24-48 h). MAM-2201 affected, in a concentration- and time-dependent manner, the cell growth and viability, size and morphological structure, E-cadherin and extracellular matrix, CB1-receptors, glial fibrillary acidic protein, and caspase-3/7 activity. The findings demonstrate MAM-2201-induced cytotoxicity to astrocyte spheroids, and support the use of this human 3D cell-based model as species-specific in vitro tool suitable for the evaluation of neurotoxicity induced by other SCs.
Collapse
Affiliation(s)
- Uliana De Simone
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre-National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| | - Patrizia Pignatti
- Allergy and Immunology Unit, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| | - Laura Villani
- Pathology Unit, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| | | | | | - Simone Bonetti
- CNR-ISMN, Institute for Nanostructured Materials, 40129 Bologna, Italy
| | - Eleonora Buscaglia
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre-National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| | - Teresa Coccini
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre-National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
- Correspondence: ; Tel.: +39-0382-592416
| |
Collapse
|
17
|
Aleman J, Young CD, Karam SD, Wang XJ. Revisiting laminin and extracellular matrix remodeling in metastatic squamous cell carcinoma: What have we learned after more than four decades of research? Mol Carcinog 2023; 62:5-23. [PMID: 35596706 PMCID: PMC9676410 DOI: 10.1002/mc.23417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/18/2022] [Indexed: 02/06/2023]
Abstract
Patients with squamous cell carcinoma (SCC) have significantly lower survival upon the development of distant metastases. The extracellular matrix (ECM) is a consistent yet dynamic influence on the metastatic capacity of SCCs. The ECM encompasses a milieu of structural proteins, signaling molecules, and enzymes. Just over 40 years ago, the fibrous ECM glycoprotein laminin was identified. Roughly four decades of research have revealed a pivotal role of laminins in metastasis. However, trends in ECM alterations in some cancers have been applied broadly to all metastatic diseases, despite evidence that these characteristics vary by tumor type. We will summarize how laminins influence the SCC metastatic process exclusively. Enhanced laminin protein deposition occurs at the invasive edge of SCC tumors, which correlates with elevated levels of laminin-binding β1 integrins on SCC cells, increased MMP-3 presence, worse prognosis, and lymphatic dissemination. Although these findings are significant, gaps in knowledge of the formation of a premetastatic niche, the processes of intra- and extravasation, and the contributions of the ECM to SCC metastatic cell dormancy persist. Bridging these gaps requires novel in vitro systems and animal models that reproduce tumor-stromal interactions and spontaneous metastasis seen in the clinic. These advances will allow accurate assessment of laminins to predict responders to transforming growth factor-β inhibitors and immunotherapy, as well as potential combinatorial therapies with the standard of care. Such clinical interventions may drastically improve quality of life and patient survival by explicitly targeting SCC metastasis.
Collapse
Affiliation(s)
- John Aleman
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christian D. Young
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sana D. Karam
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, Colorado, USA
| |
Collapse
|
18
|
Fu A, Chang M, Zhu H, Liu H, Wu D, Zeng H. Air-blood barrier (ABB) on a chip. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
19
|
Marques IA, Fernandes C, Tavares NT, Pires AS, Abrantes AM, Botelho MF. Magnetic-Based Human Tissue 3D Cell Culture: A Systematic Review. Int J Mol Sci 2022; 23:ijms232012681. [PMID: 36293537 PMCID: PMC9603906 DOI: 10.3390/ijms232012681] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Cell-based assays, conducted on monolayer (2D) cultured cells, are an unquestionably valuable tool for biomedical research. However, three-dimensional (3D) cell culture models have gained relevance over the last few years due to the advantages of better mimicking the microenvironment and tissue microarchitecture in vivo. Recent magnetic-based 3D (m3D) cell culture systems can be used for this purpose. These systems are based on exposing magnetized cells to magnetic fields by levitation, bioprinting, or ring formation to promote cell aggregation into 3D structures. However, the successful development of these structures is dependent on several methodological characteristics and can be applied to mimic different human tissues. Thus, a systematic review was performed using Medline (via Pubmed), Scopus, and Web of Science (until February 2022) databases to aggregate studies using m3D culture in which human tissues were mimicked. The search generated 3784 records, of which 25 met the inclusion criteria. The usability of these m3D systems for the development of homotypic or heterotypic spheroids with or without scaffolds was explored in these studies. We also explore methodological differences specifically related to the magnetic method. Generally, the development of m3D cultures has been increasing, with bioprinting and levitation systems being the most used to generate homotypic or heterotypic cultures, mainly to mimic the physiology of human tissues, but also to perform therapeutic screening. This systematic review showed that there are areas of research where the application of this method remains barely explored, such as cancer research.
Collapse
Affiliation(s)
- Inês Alexandra Marques
- Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment, Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Carolina Fernandes
- Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment, Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Faculty of Science and Technology, University of Coimbra, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| | - Nuno Tiago Tavares
- Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment, Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto), Porto Comprehensive Cancer Centre (P.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Ana Salomé Pires
- Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment, Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Correspondence:
| | - Ana Margarida Abrantes
- Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment, Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto), Porto Comprehensive Cancer Centre (P.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Maria Filomena Botelho
- Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment, Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| |
Collapse
|
20
|
Gretzinger S, Schmieg B, Guthausen G, Hubbuch J. Virtual Reality as Tool for Bioprinting Quality Inspection: A Proof of Principle. Front Bioeng Biotechnol 2022; 10:895842. [PMID: 35757809 PMCID: PMC9218671 DOI: 10.3389/fbioe.2022.895842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
As virtual reality (VR) has drastically evolved over the past few years, the field of applications of VR flourished way beyond the gaming industry. While commercial VR solutions might be available, there is a need to develop a workflow for specific applications. Bioprinting represents such an example. Here, complex 3D data is generated and needs to be visualized in the context of quality control. We demonstrate that the transfer to a commercially available VR software is possible by introducing an optimized workflow. In the present work, we developed a workflow for the visualization of the critical quality attribute (cQA) cell distribution in bioprinted (extrusion-based) samples in VR. The cQA cell distribution is directly influenced by the pre-processing step mixing of cell material in the bioink. Magnetic Resonance Imaging (MRI) was used as an analytical tool to generate spatially resolved 2.5 and 3D data of the bioprinted objects. A sample with poor quality in respect of the cQA cell distribution was identified as its inhomogeneous cell distribution could be displayed spatially resolved in VR. The described workflow facilitates the usage of VR as a tool for quality inspection in the field of bioprinting and represents a powerful tool for visualization of complex 3D MRI data.
Collapse
Affiliation(s)
- Sarah Gretzinger
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute of Engineering in Life Sciences, Section IV: Molecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Barbara Schmieg
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute of Engineering in Life Sciences, Section IV: Molecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Gisela Guthausen
- Institute of Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Engler Bunte Institute Water Chemistry and Technology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Jürgen Hubbuch
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute of Engineering in Life Sciences, Section IV: Molecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
21
|
Martínez-Martínez E, Atzei P, Vionnet C, Roubaty C, Kaeser-Pebernard S, Naef R, Dengjel J. A Dual-Acting Nitric Oxide Donor and Phosphodiesterase 5 Inhibitor Activates Autophagy in Primary Skin Fibroblasts. Int J Mol Sci 2022; 23:ijms23126860. [PMID: 35743299 PMCID: PMC9224465 DOI: 10.3390/ijms23126860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/07/2022] [Accepted: 06/17/2022] [Indexed: 02/01/2023] Open
Abstract
Wound healing pathologies are an increasing problem in ageing societies. Chronic, non-healing wounds, which cause high morbidity and severely reduce the quality of life of affected individuals, are frequently observed in aged individuals and people suffering from diseases affected by the Western lifestyle, such as diabetes. Causal treatments that support proper wound healing are still scarce. Here, we performed expression proteomics to study the effects of the small molecule TOP-N53 on primary human skin fibroblasts and keratinocytes. TOP-N53 is a dual-acting nitric oxide donor and phosphodiesterase-5 inhibitor increasing cGMP levels to support proper wound healing. In contrast to keratinocytes, which did not exhibit global proteome alterations, TOP-N53 had profound effects on the proteome of skin fibroblasts. In fibroblasts, TOP-N53 activated the cytoprotective, lysosomal degradation pathway autophagy and induced the expression of the selective autophagy receptor p62/SQSTM1. Thus, activation of autophagy might in part be responsible for beneficial effects of TOP-N53.
Collapse
Affiliation(s)
- Esther Martínez-Martínez
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland; (E.M.-M.); (C.V.); (C.R.); (S.K.-P.)
| | - Paola Atzei
- Topadur Pharma AG, Grabenstrasse 11A, 8952 Schlieren, Switzerland; (P.A.); (R.N.)
| | - Christine Vionnet
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland; (E.M.-M.); (C.V.); (C.R.); (S.K.-P.)
| | - Carole Roubaty
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland; (E.M.-M.); (C.V.); (C.R.); (S.K.-P.)
| | - Stephanie Kaeser-Pebernard
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland; (E.M.-M.); (C.V.); (C.R.); (S.K.-P.)
| | - Reto Naef
- Topadur Pharma AG, Grabenstrasse 11A, 8952 Schlieren, Switzerland; (P.A.); (R.N.)
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland; (E.M.-M.); (C.V.); (C.R.); (S.K.-P.)
- Correspondence:
| |
Collapse
|
22
|
Seiler K, Humbert M, Minder P, Mashimo I, Schläfli AM, Krauer D, Federzoni EA, Vu B, Moresco JJ, Yates JR, Sadowski MC, Radpour R, Kaufmann T, Sarry JE, Dengjel J, Tschan MP, Torbett BE. Hexokinase 3 enhances myeloid cell survival via non-glycolytic functions. Cell Death Dis 2022; 13:448. [PMID: 35538058 PMCID: PMC9091226 DOI: 10.1038/s41419-022-04891-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 04/10/2022] [Accepted: 04/28/2022] [Indexed: 12/14/2022]
Abstract
The family of hexokinases (HKs) catalyzes the first step of glycolysis, the ATP-dependent phosphorylation of glucose to glucose-6-phosphate. While HK1 and HK2 are ubiquitously expressed, the less well-studied HK3 is primarily expressed in hematopoietic cells and tissues and is highly upregulated during terminal differentiation of some acute myeloid leukemia (AML) cell line models. Here we show that expression of HK3 is predominantly originating from myeloid cells and that the upregulation of this glycolytic enzyme is not restricted to differentiation of leukemic cells but also occurs during ex vivo myeloid differentiation of healthy CD34+ hematopoietic stem and progenitor cells. Within the hematopoietic system, we show that HK3 is predominantly expressed in cells of myeloid origin. CRISPR/Cas9 mediated gene disruption revealed that loss of HK3 has no effect on glycolytic activity in AML cell lines while knocking out HK2 significantly reduced basal glycolysis and glycolytic capacity. Instead, loss of HK3 but not HK2 led to increased sensitivity to ATRA-induced cell death in AML cell lines. We found that HK3 knockout (HK3-null) AML cells showed an accumulation of reactive oxygen species (ROS) as well as DNA damage during ATRA-induced differentiation. RNA sequencing analysis confirmed pathway enrichment for programmed cell death, oxidative stress, and DNA damage response in HK3-null AML cells. These signatures were confirmed in ATAC sequencing, showing that loss of HK3 leads to changes in chromatin configuration and increases the accessibility of genes involved in apoptosis and stress response. Through isoform-specific pulldowns, we furthermore identified a direct interaction between HK3 and the proapoptotic BCL-2 family member BIM, which has previously been shown to shorten myeloid life span. Our findings provide evidence that HK3 is dispensable for glycolytic activity in AML cells while promoting cell survival, possibly through direct interaction with the BH3-only protein BIM during ATRA-induced neutrophil differentiation.
Collapse
Affiliation(s)
- Kristina Seiler
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Magali Humbert
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Petra Minder
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Iris Mashimo
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Anna M Schläfli
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Deborah Krauer
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Elena A Federzoni
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Bich Vu
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - James J Moresco
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - John R Yates
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Martin C Sadowski
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Ramin Radpour
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Tumor Immunology, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Jean-Emmanuel Sarry
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, Inserm, CNRS, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Joern Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Mario P Tschan
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland.
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.
| | - Bruce E Torbett
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA.
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA, USA.
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA.
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA, USA.
| |
Collapse
|
23
|
A Comparative Study on the Adipogenic Differentiation of Mesenchymal Stem/Stromal Cells in 2D and 3D Culture. Cells 2022; 11:cells11081313. [PMID: 35455993 PMCID: PMC9029885 DOI: 10.3390/cells11081313] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSC) are capable of renewing the progenitor cell fraction or differentiating in a tissue-specific manner. Adipogenic differentiation of adipose-tissue-derived MSC (adMSC) is important in various pathological processes. Adipocytes and their progenitors are metabolically active and secrete molecules (adipokines) that have both pro- and anti-inflammatory properties. Cell culturing in 2D is commonly used to study cellular responses, but the 2D environment does not reflect the structural situation for most cell types. Therefore, 3D culture systems have been developed to create an environment considered more physiological. Since knowledge about the effects of 3D cultivation on adipogenic differentiation is limited, we investigated its effects on adipogenic differentiation and adipokine release of adMSC (up to 28 days) and compared these with the effects in 2D. We demonstrated that cultivation conditions are crucial for cell behavior: in both 2D and 3D culture, adipogenic differentiation occurred only after specific stimulation. While the size and structure of adipogenically stimulated 3D spheroids remained stable during the experiment, the unstimulated spheroids showed signs of disintegration. Adipokine release was dependent on culture dimensionality; we found upregulated adiponectin and downregulated pro-inflammatory factors. Our findings are relevant for cell therapeutic applications of adMSC in complex, three-dimensionally arranged tissues.
Collapse
|
24
|
Luo L, Zhang W, Wang J, Zhao M, Shen K, Jia Y, Li Y, Zhang J, Cai W, Xiao D, Bai X, Liu K, Wang K, Zhang Y, Zhu H, Zhou Q, Hu D. A Novel 3D Culture Model of Human ASCs Reduces Cell Death in Spheroid Cores and Maintains Inner Cell Proliferation Compared With a Nonadherent 3D Culture. Front Cell Dev Biol 2021; 9:737275. [PMID: 34858974 PMCID: PMC8632442 DOI: 10.3389/fcell.2021.737275] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
3D cell culture technologies have recently shown very valuable promise for applications in regenerative medicine, but the most common 3D culture methods for mesenchymal stem cells still have limitations for clinical application, mainly due to the slowdown of inner cell proliferation and increase in cell death rate. We previously developed a new 3D culture of adipose-derived mesenchymal stem cells (ASCs) based on its self-feeder layer, which solves the two issues of ASC 3D cell culture on ultra-low attachment (ULA) surface. In this study, we compared the 3D spheroids formed on the self-feeder layer (SLF-3D ASCs) with the spheroids formed by using ULA plates (ULA-3D ASCs). We discovered that the cells of SLF-3D spheroids still have a greater proliferation ability than ULA-3D ASCs, and the volume of these spheroids increases rather than shrinks, with more viable cells in 3D spheroids compared with the ULA-3D ASCs. Furthermore, it was discovered that the SLF-3D ASCs are likely to exhibit the abovementioned unique properties due to change in the expression level of ECM-related genes, like COL3A1, MMP3, HAS1, and FN1. These results indicate that the SLF-3D spheroid is a promising way forward for clinical application.
Collapse
Affiliation(s)
- Liang Luo
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, China
| | - Wei Zhang
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Jing Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, China
| | - Ming Zhao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, China
| | - Kuo Shen
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, China
| | - Yanhui Jia
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, China
| | - Yan Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, China
| | - Jian Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, China
| | - Weixia Cai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, China
| | - Dan Xiao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, China
| | - Xiaozhi Bai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, China
| | - Kaituo Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, China
| | - Kejia Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, China
| | - Yue Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, China
| | - Huayu Zhu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, China
| | - Qin Zhou
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi' an, China
| |
Collapse
|
25
|
Caleffi JT, Aal MCE, Gallindo HDOM, Caxali GH, Crulhas BP, Ribeiro AO, Souza GR, Delella FK. Magnetic 3D cell culture: State of the art and current advances. Life Sci 2021; 286:120028. [PMID: 34627776 DOI: 10.1016/j.lfs.2021.120028] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/24/2021] [Accepted: 10/02/2021] [Indexed: 02/07/2023]
Abstract
Cell culture is an important tool for the understanding of cell biology and behavior. In vitro cultivation has been increasingly indispensable for biomedical, pharmaceutical, and biotechnology research. Nevertheless, with the demand for in vitro experimentation strategies more representative of in vivo conditions, tridimensional (3D) cell culture models have been successfully developed. Although these 3D models are efficient and address critical questions from different research areas, there are considerable differences between the existing techniques regarding both elaboration and cost. In light of this, this review describes the construction of 3D spheroids using magnetization while bringing the most recent updates in this field. Magnetic 3D cell culture consists of magnetizing cells using an assembly of gold and iron oxide nanoparticles cross-linked with poly-l-lysine nanoparticles. Then, 3D culture formation in special plates with the assistance of magnets for levitation or bioprinting. Here, we discuss magnetic 3D cell culture advancements, including tumor microenvironment, tissue reconstruction, blood vessel engineering, toxicology, cytotoxicity, and 3D culture of cardiomyocytes, bronchial and pancreatic cells.
Collapse
Affiliation(s)
- Juliana Trindade Caleffi
- São Paulo State University (UNESP), Institute of Biosciences, Department of Structural and Functional Biology, Botucatu, São Paulo, Brazil
| | - Mirian Carolini Esgoti Aal
- São Paulo State University (UNESP), Institute of Biosciences, Department of Structural and Functional Biology, Botucatu, São Paulo, Brazil
| | | | - Gabriel Henrique Caxali
- São Paulo State University (UNESP), Institute of Biosciences, Department of Structural and Functional Biology, Botucatu, São Paulo, Brazil
| | | | - Amanda Oliveira Ribeiro
- São Paulo State University (UNESP), Institute of Biosciences, Department of Structural and Functional Biology, Botucatu, São Paulo, Brazil
| | - Glauco R Souza
- University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Flávia Karina Delella
- São Paulo State University (UNESP), Institute of Biosciences, Department of Structural and Functional Biology, Botucatu, São Paulo, Brazil.
| |
Collapse
|
26
|
Mongiat M, Nyström A. The Yin and Yang of extracellular matrix. Matrix Biol Plus 2021; 11:100075. [PMID: 34435186 PMCID: PMC8377003 DOI: 10.1016/j.mbplus.2021.100075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano, IRCCS, Italy
| | - Alexander Nyström
- Department of Dermatology, Medical Faculty, Medical Center – University of Freiburg, Freiburg, Germany
- Freiburg Institute for Advanced Studies, Germany
| |
Collapse
|