1
|
Adeboye A, Onyeaka H, Al-Sharify Z, Nnaji N. Understanding the Influence of Rheology on Biofilm Adhesion and Implication for Food Safety. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:2208472. [PMID: 39781092 PMCID: PMC11707067 DOI: 10.1155/ijfo/2208472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/09/2024] [Accepted: 11/01/2024] [Indexed: 01/12/2025]
Abstract
Understanding biofilm rheology is crucial for industrial and domestic food safety practices. This comprehensive review addresses the knowledge gap on the rheology of biofilm. Specifically, the review explores the influence of fluid flow, shear stress, and substrate properties on the initiation, structure, and functionality of biofilms, as essential implications for food safety. The viscosity and shear-thinning characteristics of non-Newtonian fluids may impact the attachment and detachment dynamics of biofilms, influencing their stability and resilience under different flow conditions. The discussion spans multiple facets, including the role of extracellular polymeric substances (EPSs) in biofilm formation, the impact of rheological attributes of biofilm on their adhesion to surfaces, and the influence of shear forces between biofilms and substrate's surface characteristics on biofilm stability. Analytical techniques, encompassing rheometry, microscopy, and molecular biology approaches, are scrutinized for their contributions to understanding these interactions. The paper delves into the implications for the food industry, highlighting potential risks associated with biofilm formation and proposing strategies for effective control and prevention. Future research directions and the integration of rheological considerations into food safety regulations are underscored as pivotal steps in mitigating biofilm-related risks. The synthesis of microbiology, materials science, and engineering perspectives offers a multidimensional exploration of rheology-biofilm interactions, laying the groundwork for informed interventions in diverse industrial settings.
Collapse
Affiliation(s)
- Adedola Adeboye
- African Food Research Network, Pretoria 0002, Gauteng, South Africa
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B152TT, UK
| | - Zainab Al-Sharify
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B152TT, UK
- Pharmacy Department, Al Hikma University College, Baghdad, Iraq
- Department of Environmental Engineering, College of Engineering, Al-Mustansiriyah University, Baghdad, Iraq
| | - Nnabueze Nnaji
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B152TT, UK
| |
Collapse
|
2
|
Gotovtsev P. Microbial Cells as a Microrobots: From Drug Delivery to Advanced Biosensors. Biomimetics (Basel) 2023; 8:biomimetics8010109. [PMID: 36975339 PMCID: PMC10046805 DOI: 10.3390/biomimetics8010109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
The presented review focused on the microbial cell based system. This approach is based on the application of microorganisms as the main part of a robot that is responsible for the motility, cargo shipping, and in some cases, the production of useful chemicals. Living cells in such microrobots have both advantages and disadvantages. Regarding the advantages, it is necessary to mention the motility of cells, which can be natural chemotaxis or phototaxis, depending on the organism. There are approaches to make cells magnetotactic by adding nanoparticles to their surface. Today, the results of the development of such microrobots have been widely discussed. It has been shown that there is a possibility of combining different types of taxis to enhance the control level of the microrobots based on the microorganisms' cells and the efficiency of the solving task. Another advantage is the possibility of applying the whole potential of synthetic biology to make the behavior of the cells more controllable and complex. Biosynthesis of the cargo, advanced sensing, on/off switches, and other promising approaches are discussed within the context of the application for the microrobots. Thus, a synthetic biology application offers significant perspectives on microbial cell based microrobot development. Disadvantages that follow from the nature of microbial cells such as the number of external factors influence the cells, potential immune reaction, etc. They provide several limitations in the application, but do not decrease the bright perspectives of microrobots based on the cells of the microorganisms.
Collapse
Affiliation(s)
- Pavel Gotovtsev
- National Research Center "Kurchatov Institute", Biotechnology and Bioenergy Department, Akademika Kurchatova pl. 1, 123182 Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, 9 Institutskiy per., 141701 Moscow, Russia
| |
Collapse
|
3
|
Flavonoid-Rich Fractions of Bauhinia holophylla Leaves Inhibit Candida albicans Biofilm Formation and Hyphae Growth. PLANTS 2022; 11:plants11141796. [PMID: 35890430 PMCID: PMC9322443 DOI: 10.3390/plants11141796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022]
Abstract
This study evaluated the effect of the extract and fractions of Bauhinia holophylla on Candida albicans planktonic growth, biofilm formation, mature biofilm, and hyphae growth. Three C. albicans strains (SC5314, ATCC 18804, and ATCC 10231) were tested. The crude extract and the fractions were obtained by exhaustive percolation and liquid–liquid partition, respectively. Phytochemical analyses of B. holophylla extract and fractions were performed using high-performance liquid chromatography coupled with a diode-array detector and mass spectrometry (HPLC-DAD-MS). A microdilution assay was used to evaluate the effect of the B. holophylla extract and fractions on C. albicans planktonic growth, and crystal violet staining was used to measure the total biomass of the biofilm. Hyphae growth was analyzed using light microscopy. Thirteen flavonoids were identified, with a predominance of the flavonol-3-O-glycoside type based on quercetin, myricetin, and kaempferol. Flavonoid-rich fractions of B. holophylla leaves displayed antifungal activity and inhibited both biofilm formation and hyphae growth in all the tested strains, but were not effective on C. albicans planktonic growth and mature biofilm. This study indicates that flavonoid-rich fractions from B. holophylla leaves interfere with the virulence of Candida species and support the use of Bauhinia spp. in folk medicine to treat infections.
Collapse
|
4
|
Kosztołowicz T, Metzler R. Diffusion of antibiotics through a biofilm in the presence of diffusion and absorption barriers. Phys Rev E 2021; 102:032408. [PMID: 33075880 DOI: 10.1103/physreve.102.032408] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/27/2020] [Indexed: 12/24/2022]
Abstract
We propose a model of antibiotic diffusion through a bacterial biofilm when diffusion and/or absorption barriers develop in the biofilm. The idea of this model is: We deduce details of the diffusion process in a medium in which direct experimental study is difficult, based on probing diffusion in external regions. Since a biofilm has a gel-like consistency, we suppose that subdiffusion of particles in the biofilm may occur. To describe this process we use a fractional subdiffusion-absorption equation with an adjustable anomalous diffusion exponent. The boundary conditions at the boundaries of the biofilm are derived by means of a particle random walk model on a discrete lattice leading to an expression involving a fractional time derivative. We show that the temporal evolution of the total amount of substance that has diffused through the biofilm explicitly depends on whether there is antibiotic absorption in the biofilm. This fact is used to experimentally check for antibiotic absorption in the biofilm and if subdiffusion and absorption parameters of the biofilm change over time. We propose a four-stage model of antibiotic diffusion in biofilm based on the following physical characteristics: whether there is absorption of the antibiotic in the biofilm and whether all biofilm parameters remain unchanged over time. The biological interpretation of the stages, in particular their relation with the bacterial defense mechanisms, is discussed. Theoretical results are compared with empirical results of ciprofloxacin diffusion through Pseudomonas aeruginosa biofilm, and ciprofloxacin and gentamicin diffusion through Proteus mirabilis biofilm.
Collapse
Affiliation(s)
- Tadeusz Kosztołowicz
- Institute of Physics, Jan Kochanowski University, Uniwersytecka 7, 25-406 Kielce, Poland
| | - Ralf Metzler
- Institute for Physics and Astronomy, University of Potsdam, D-14476, Potsdam-Golm, Germany
| |
Collapse
|
5
|
Azevedo NF, Allkja J, Goeres DM. Biofilms vs. cities and humans vs. aliens - a tale of reproducibility in biofilms. Trends Microbiol 2021; 29:1062-1071. [PMID: 34088548 DOI: 10.1016/j.tim.2021.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022]
Abstract
Biofilms are complex and dynamic structures that include many more components than just viable cells. Therefore, the apparently simple goal of growing reproducible biofilms is often elusive. One of the challenges in defining reproducibility for biofilm research is that different research fields use a spectrum of parameters to define reproducibility for their particular application. For instance, is the researcher interested in achieving a similar population density, height of biofilm structures, or function of the biofilm in a certain ecosystem/industrial context? Within this article we categorize reproducibility into four different levels: level 1, no reproducibility; level 2, standard reproducibility; level 3, potential standard reproducibility; and level 4, total reproducibility. To better understand the need for these different levels of reproducibility, we expand on the 'cities of microbes' analogy for biofilms by imagining that a new civilization has reached the Earth's outskirts and starts studying the Earth's cities. This will provide a better sense of scale and illustrate how small details can impact profoundly on the growth and behavior of a biofilm and our understanding of reproducibility.
Collapse
Affiliation(s)
- Nuno F Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
| | - Jontana Allkja
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Darla M Goeres
- Montana State University, Center for Biofilm Engineering, 366 Barnard Hall, Bozeman, MT 59717, USA
| |
Collapse
|
6
|
Zabiegaj D, Hajirasouliha F, Duilio A, Guido S, Caserta S, Kostoglou M, Petala M, Karapantsios T, Trybala A. Wetting/spreading on porous media and on deformable, soluble structured substrates as a model system for studying the effect of morphology on biofilms wetting and for assessing anti-biofilm methods. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Chodorski J, Hauth J, Strieth D, Wirsen A, Ulber R. Diffusion profiles in L. lactis biofilms under different conditions. Eng Life Sci 2021; 21:29-36. [PMID: 33531888 PMCID: PMC7837298 DOI: 10.1002/elsc.202000059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/23/2020] [Indexed: 01/26/2023] Open
Abstract
Despite being an important topic in biofilm research, we still know little about diffusion in biofilms. Emerging biofilms of Lactococcus lactis growing in custom-made flow-cells were monitored and diffusion constants across the height of the biofilms recorded. The biofilms showed different diffusional behavior with regard to flow rate and pH variations, despite growing to similar thickness. At a higher flow rate, the biofilm exhibits slower diffusion compared to the reference cultivation at lower flow rate. By increasing pH, the biofilm exhibited fast growth and little difference in diffusion compared to the reference cultivation. Furthermore, the diffusion inside of the biofilms differed depending on the position in the flow-cell. The present study reveals new insights in how external factors can affect structure and density of biofilms. The method can be reliably used for L. lactis biofilms with a thickness up to 120 μm.
Collapse
Affiliation(s)
- Jonas Chodorski
- Institute of Bioprocess Engineering, Department of Mechanical and Process EngineeringTU KaiserslauternKaiserslauternGermany
| | - Jan Hauth
- Fraunhofer ITWMKaiserslauternGermany
| | - Dorina Strieth
- Institute of Bioprocess Engineering, Department of Mechanical and Process EngineeringTU KaiserslauternKaiserslauternGermany
| | | | - Roland Ulber
- Institute of Bioprocess Engineering, Department of Mechanical and Process EngineeringTU KaiserslauternKaiserslauternGermany
| |
Collapse
|
8
|
Kublanovskaya A, Baulina O, Chekanov K, Lobakova E. The microalga Haematococcus lacustris (Chlorophyceae) forms natural biofilms in supralittoral White Sea coastal rock ponds. PLANTA 2020; 252:37. [PMID: 32778946 DOI: 10.1007/s00425-020-03438-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Haematococcus lacustris inhabits supralittoral rock ponds and forms, under natural conditions, biofilms including layered cyanobacterial and fermentative microbial mats. Dry mats, formed under extremely stressful conditions, contained only haematocysts. Under favorable growth conditions, modeled for dry biofilms in vitro, microalgal free-living stages were detected. Haematococcus lacustris is the microalga known for its high potential to survive under a wide range of unfavorable conditions, particularly in the supralittoral temporal rock ponds of the White Sea. Previously, we described microbial communities containing H. lacustris in this region. In many cases, they were organized into systems exhibiting complex three-dimensional structure similar to that of natural biofilms. In this study, for the first time, we clarify structural description and provide microscopic evidence that these communities of H. lacustris and bacteria are assembled into the true biofilms. There are (1) simple single layer biofilms on the surface of rocks and macrophytic algae, (2) floccules (or flocs) not attached to a surface, (3) as well as stratified (layered) biofilms, wet, and dehydrated in nature. Being involved into primary organic production, H. lacustris and cyanobacteria are located exclusively in the upper layers of stratified biofilms, where they are capable to absorb sufficient for photosynthesis amount of light. The presence of acidic polysaccharides in the extracellular matrix revealed by specific staining with ruthenium red in the H. lacustris-containing microbial communities is a biochemical evidence of biofilm formation. Meanwhile, the presence of bacterial L-form is an ultrastructural confirmation of that fact. Under favorable conditions, modeled in vitro, H. lacustris from the dry microbial mats moves to the free-living states represented by vegetative palmelloid cells and motile zoospores. Owing to the fact that inside biofilms cells of microorganisms exist under stable conditions, we consider the biofilm formation as an additional mechanism that contributes to the survival of H. lacustris in the supralittoral zone of the White Sea.
Collapse
Affiliation(s)
- Anna Kublanovskaya
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119192, Russia.
| | - Olga Baulina
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119192, Russia
| | - Konstantin Chekanov
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119192, Russia
- Centre for Humanities Research and Technology, National Research Nuclear University MEPhI, 31 Kashirskoye highway, Moscow, 115522, Russia
| | - Elena Lobakova
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119192, Russia
| |
Collapse
|
9
|
Hayta EN, Lieleg O. Biopolymer-enriched B. subtilis NCIB 3610 biofilms exhibit increased erosion resistance. Biomater Sci 2019; 7:4675-4686. [PMID: 31475697 DOI: 10.1039/c9bm00927b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The erosion resistance of bacterial biofilms can be a double-edged sword: it hampers the removal of undesired biofilms in biomedical settings, but it is necessary for beneficial biofilms to be used in aqueous environments for biotechnological applications. Whether or not a bacterial biofilm exhibits this material property depends on the bacterial species and the detailed composition of the biofilm matrix. Here, we demonstrate how the erosion resistance of B. subtilis NCIB 3610 biofilms can be enhanced by integrating foreign (bio)polymers into the matrix during biofilm growth. As a result of this artificial macromolecule addition, the engineered biofilm colonies show changes in their surface topography which, in turn, cause an alteration in the mode of surface superhydrophobicity. Surprisingly, the viscoelastic properties and permeability of the biofilms towards antibiotics remain unaffected. The method introduced here may present a promising strategy for engineering beneficial biofilms such, that they become more stable towards shear forces caused by flowing water but, at the same time, remain permeable to nutrients or other molecules.
Collapse
Affiliation(s)
- Elif N Hayta
- Munich School of Bioengineering and Department of Mechanical Engineering, Technical University of Munich, 85748 Garching, Germany.
| | - Oliver Lieleg
- Munich School of Bioengineering and Department of Mechanical Engineering, Technical University of Munich, 85748 Garching, Germany.
| |
Collapse
|
10
|
Ali IAA, Cheung BPK, Yau JYY, Matinlinna JP, Lévesque CM, Belibasakis GN, Neelakantan P. The influence of substrate surface conditioning and biofilm age on the composition of
Enterococcus faecalis
biofilms. Int Endod J 2019; 53:53-61. [DOI: 10.1111/iej.13202] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/09/2019] [Indexed: 02/06/2023]
Affiliation(s)
- I. A. A. Ali
- Faculty of Dentistry The University of Hong Kong Hong Kong SAR
| | - B. P. K. Cheung
- Faculty of Dentistry The University of Hong Kong Hong Kong SAR
| | - J. Y. Y. Yau
- Faculty of Dentistry The University of Hong Kong Hong Kong SAR
| | | | - C. M. Lévesque
- Faculty of Dentistry University of Toronto Toronto ON Canada
| | - G. N. Belibasakis
- Division of Oral Diseases Department of Dental Medicine Karolinska Institute Huddinge Sweden
| | - P. Neelakantan
- Faculty of Dentistry The University of Hong Kong Hong Kong SAR
| |
Collapse
|