1
|
Qiao L, Khalilimeybodi A, Linden-Santangeli NJ, Rangamani P. The Evolution of Systems Biology and Systems Medicine: From Mechanistic Models to Uncertainty Quantification. Annu Rev Biomed Eng 2025; 27:425-447. [PMID: 39971380 DOI: 10.1146/annurev-bioeng-102723-065309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Understanding interaction mechanisms within cells, tissues, and organisms is crucial for driving developments across biology and medicine. Mathematical modeling is an essential tool for simulating such biological systems. Building on experiments, mechanistic models are widely used to describe small-scale intracellular networks. The development of sequencing techniques and computational tools has recently enabled multiscale models. Combining such larger scale network modeling with mechanistic modeling provides us with an opportunity to reveal previously unknown disease mechanisms and pharmacological interventions. Here, we review systems biology models from mechanistic models to multiscale models that integrate multiple layers of cellular networks and discuss how they can be used to shed light on disease states and even wellness-related states. Additionally, we introduce several methods that increase the certainty and accuracy of model predictions. Thus, combining mechanistic models with emerging mathematical and computational techniques can provide us with increasingly powerful tools to understand disease states and inspire drug discoveries.
Collapse
Affiliation(s)
- Lingxia Qiao
- Department of Pharmacology, University of California San Diego, La Jolla, California, USA;
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA
| | - Ali Khalilimeybodi
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA
| | | | - Padmini Rangamani
- Department of Pharmacology, University of California San Diego, La Jolla, California, USA;
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
2
|
Bhat AS. A stochastic field theory for the evolution of quantitative traits in finite populations. Theor Popul Biol 2025; 161:1-12. [PMID: 39608500 DOI: 10.1016/j.tpb.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/30/2024]
Abstract
Infinitely many distinct trait values may arise in populations bearing quantitative traits, and modeling their population dynamics is thus a formidable task. While classical models assume fixed or infinite population size, models in which the total population size fluctuates due to demographic noise in births and deaths can behave qualitatively differently from constant or infinite population models due to density-dependent dynamics. In this paper, I present a stochastic field theory for the eco-evolutionary dynamics of finite populations bearing one-dimensional quantitative traits. I derive stochastic field equations that describe the evolution of population densities, trait frequencies, and the mean value of any trait in the population. These equations recover well-known results such as the replicator-mutator equation, Price equation, and gradient dynamics in the infinite population limit. For finite populations, the equations describe the intricate interplay between natural selection, noise-induced selection, eco-evolutionary feedback, and neutral genetic drift in determining evolutionary trajectories. My work uses ideas from statistical physics, calculus of variations, and SPDEs, providing alternative methods that complement the measure-theoretic martingale approach that is more common in the literature.
Collapse
Affiliation(s)
- Ananda Shikhara Bhat
- Department of Biology, Indian Institute of Science Education and Research Pune, Maharashtra 411008, India; Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, Karnataka 560012, India; Institute of Organismic and Molecular Evolution (iomE) and Institute for Quantitative and Computational Biosciences (IQCB), Johannes Gutenberg University, 55128 Mainz, Germany.
| |
Collapse
|
3
|
Schnell S, Maini PK. In Memory of Edmund John Crampin: Multi-scale and multi-physics phenomena in biology. Math Biosci 2024; 376:109283. [PMID: 39182601 DOI: 10.1016/j.mbs.2024.109283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Affiliation(s)
- Santiago Schnell
- Department of Biological Sciences and Department of Applied & Computational Mathematics & Statistics, University of Notre Dame, Notre Dame, 46556, IN, USA.
| | - Philip K Maini
- Wolfson Centre for Mathematical Biology, Mathematical Institute, Andrew Wiles Building, University of Oxford, Radcliffe Observatory Quarter, Oxford, OX2 6GG, United Kingdom
| |
Collapse
|
4
|
Bhattacharya P, Raman K, Tangirala AK. Design Principles for Biological Adaptation: A Systems and Control-Theoretic Treatment. Methods Mol Biol 2024; 2760:35-56. [PMID: 38468081 DOI: 10.1007/978-1-0716-3658-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Establishing a mapping between (from and to) the functionality of interest and the underlying network structure (design principles) remains a crucial step toward understanding and design of bio-systems. Perfect adaptation is one such crucial functionality that enables every living organism to regulate its essential activities in the presence of external disturbances. Previous approaches to deducing the design principles for adaptation have either relied on computationally burdensome brute-force methods or rule-based design strategies detecting only a subset of all possible adaptive network structures. This chapter outlines a scalable and generalizable method inspired by systems theory that unravels an exhaustive set of adaptation-capable structures. We first use the well-known performance parameters to characterize perfect adaptation. These performance parameters are then mapped back to a few parameters (poles, zeros, gain) characteristic of the underlying dynamical system constituted by the rate equations. Therefore, the performance parameters evaluated for the scenario of perfect adaptation can be expressed as a set of precise mathematical conditions involving the system parameters. Finally, we use algebraic graph theory to translate these abstract mathematical conditions to certain structural requirements for adaptation. The proposed algorithm does not assume any particular dynamics and is applicable to networks of any size. Moreover, the results offer a significant advancement in the realm of understanding and designing complex biochemical networks.
Collapse
Affiliation(s)
- Priyan Bhattacharya
- Department of Chemical Engineering, Indian Institute of Technology, Madras (IIT Madras), Chennai, India
- Robert Bosch Centre of Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai, India
- Initiative for Biological Science and Systems mEdicine (IBSE), IIT Madras, Chennai, India
| | - Karthik Raman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India.
- Robert Bosch Centre of Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai, India.
- Initiative for Biological Science and Systems mEdicine (IBSE), IIT Madras, Chennai, India.
| | - Arun K Tangirala
- Robert Bosch Centre of Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai, India.
- Initiative for Biological Science and Systems mEdicine (IBSE), IIT Madras, Chennai, India.
| |
Collapse
|
5
|
Tedeschi LO. Review: The prevailing mathematical modeling classifications and paradigms to support the advancement of sustainable animal production. Animal 2023; 17 Suppl 5:100813. [PMID: 37169649 DOI: 10.1016/j.animal.2023.100813] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/02/2023] [Accepted: 04/06/2023] [Indexed: 05/13/2023] Open
Abstract
Mathematical modeling is typically framed as the art of reductionism of scientific knowledge into an arithmetical layout. However, most untrained people get the art of modeling wrong and end up neglecting it because modeling is not simply about writing equations and generating numbers through simulations. Models tell not only about a story; they are spoken to by the circumstances under which they are envisioned. They guide apprentice and experienced modelers to build better models by preventing known pitfalls and invalid assumptions in the virtual world and, most importantly, learn from them through simulation and identify gaps in pushing scientific knowledge further. The power of the human mind is well-documented for idealizing concepts and creating virtual reality models, and as our hypotheses grow more complicated and more complex data become available, modeling earns more noticeable footing in biological sciences. The fundamental modeling paradigms include discrete-events, dynamic systems, agent-based (AB), and system dynamics (SD). The source of knowledge is the most critical step in the model-building process regardless of the paradigm, and the necessary expertise includes (a) clear and concise mental concepts acquired through different ways that provide the fundamental structure and expected behaviors of the model and (b) numerical data necessary for statistical analysis, not for building the model. The unreasonable effectiveness of models to grow scientific learning and knowledge in sciences arise because different researchers would model the same problem differently, given their knowledge and experiential background, leading to choosing different variables and model structures. Secondly, different researchers might use different paradigms and even unalike mathematics to resolve the same problem; thus, model needs are intrinsic to their perceived assumptions and structures. Thirdly, models evolve as the scientific community knowledge accumulates and matures over time, hopefully resulting in improved modeling efforts; thus, the perfect model is fictional. Some paradigms are most appropriate for macro, high abstraction with less detailed-oriented scenarios, while others are most suitable for micro, low abstraction with higher detailed-oriented strategies. Modern hybridization aggregating artificial intelligence (AI) to mathematical models can become the next technological wave in modeling. AI can be an integral part of the SD/AB models and, before long, write the model code by itself. Success and failures in model building are more related to the ability of the researcher to interpret the data and understand the underlying principles and mechanisms to formulate the correct relationship among variables rather than profound mathematical knowledge.
Collapse
Affiliation(s)
- L O Tedeschi
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, United States.
| |
Collapse
|
6
|
Massonis G, Villaverde AF, Banga JR. Distilling identifiable and interpretable dynamic models from biological data. PLoS Comput Biol 2023; 19:e1011014. [PMID: 37851682 PMCID: PMC10615316 DOI: 10.1371/journal.pcbi.1011014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 10/30/2023] [Accepted: 10/03/2023] [Indexed: 10/20/2023] Open
Abstract
Mechanistic dynamical models allow us to study the behavior of complex biological systems. They can provide an objective and quantitative understanding that would be difficult to achieve through other means. However, the systematic development of these models is a non-trivial exercise and an open problem in computational biology. Currently, many research efforts are focused on model discovery, i.e. automating the development of interpretable models from data. One of the main frameworks is sparse regression, where the sparse identification of nonlinear dynamics (SINDy) algorithm and its variants have enjoyed great success. SINDy-PI is an extension which allows the discovery of rational nonlinear terms, thus enabling the identification of kinetic functions common in biochemical networks, such as Michaelis-Menten. SINDy-PI also pays special attention to the recovery of parsimonious models (Occam's razor). Here we focus on biological models composed of sets of deterministic nonlinear ordinary differential equations. We present a methodology that, combined with SINDy-PI, allows the automatic discovery of structurally identifiable and observable models which are also mechanistically interpretable. The lack of structural identifiability and observability makes it impossible to uniquely infer parameter and state variables, which can compromise the usefulness of a model by distorting its mechanistic significance and hampering its ability to produce biological insights. We illustrate the performance of our method with six case studies. We find that, despite enforcing sparsity, SINDy-PI sometimes yields models that are unidentifiable. In these cases we show how our method transforms their equations in order to obtain a structurally identifiable and observable model which is also interpretable.
Collapse
Affiliation(s)
- Gemma Massonis
- Computational Biology Lab, MBG-CSIC (Spanish National Research Council), Pontevedra, Galicia, Spain
| | - Alejandro F. Villaverde
- CITMAga, Santiago de Compostela, Galicia, Spain
- Universidade de Vigo, Department of Systems and Control Engineering, Vigo, Galicia, Spain
| | - Julio R. Banga
- Computational Biology Lab, MBG-CSIC (Spanish National Research Council), Pontevedra, Galicia, Spain
| |
Collapse
|
7
|
On the Analytical Solution of Fractional SIR Epidemic Model. APPLIED COMPUTATIONAL INTELLIGENCE AND SOFT COMPUTING 2023. [DOI: 10.1155/2023/6973734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This article presents the solution of the fractional SIR epidemic model using the Laplace residual power series method. We introduce the fractional SIR model in the sense of Caputo’s derivative; it is presented by three fractional differential equations, in which the third one depends on the first coupled equations. The Laplace residual power series method (LRPSM) is implemented in this research to solve the proposed model, in which we present the solution in a form of convergent series expansion that converges rapidly to the exact one. We analyze the results and compare the obtained approximate solutions to those obtained from other methods. Figures and tables are illustrated to show the efficiency of the LRPSM in handling the proposed SIR model.
Collapse
|
8
|
Linden NJ, Kramer B, Rangamani P. Bayesian parameter estimation for dynamical models in systems biology. PLoS Comput Biol 2022; 18:e1010651. [PMID: 36269772 PMCID: PMC9629650 DOI: 10.1371/journal.pcbi.1010651] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/02/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
Abstract
Dynamical systems modeling, particularly via systems of ordinary differential equations, has been used to effectively capture the temporal behavior of different biochemical components in signal transduction networks. Despite the recent advances in experimental measurements, including sensor development and '-omics' studies that have helped populate protein-protein interaction networks in great detail, modeling in systems biology lacks systematic methods to estimate kinetic parameters and quantify associated uncertainties. This is because of multiple reasons, including sparse and noisy experimental measurements, lack of detailed molecular mechanisms underlying the reactions, and missing biochemical interactions. Additionally, the inherent nonlinearities with respect to the states and parameters associated with the system of differential equations further compound the challenges of parameter estimation. In this study, we propose a comprehensive framework for Bayesian parameter estimation and complete quantification of the effects of uncertainties in the data and models. We apply these methods to a series of signaling models of increasing mathematical complexity. Systematic analysis of these dynamical systems showed that parameter estimation depends on data sparsity, noise level, and model structure, including the existence of multiple steady states. These results highlight how focused uncertainty quantification can enrich systems biology modeling and enable additional quantitative analyses for parameter estimation.
Collapse
Affiliation(s)
- Nathaniel J. Linden
- Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, California, United States of America
| | - Boris Kramer
- Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, California, United States of America
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, California, United States of America
| |
Collapse
|