1
|
Venturi V, Presini F, Trapella C, Bortolini O, Giovannini PP, Lerin LA. Microwave-assisted enzymatic synthesis of geraniol esters in solvent-free systems: optimization of the reaction parameters, purification and characterization of the products, and biocatalyst reuse. Mol Divers 2024; 28:1665-1679. [PMID: 37368203 PMCID: PMC11269508 DOI: 10.1007/s11030-023-10682-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/17/2023] [Indexed: 06/28/2023]
Abstract
Various geraniol esters act as insect pheromones and display pharmacological activities, especially as neuroprotective agents. Therefore, the search for synthetic strategies alternative to traditional chemical synthesis could help designing ecofriendly routes for the preparation of such bioactive compounds. Hence, this work aims at the microwave-assisted enzymatic synthesis of geranyl esters in solvent-free systems. The process variables were optimized for the synthesis of geranyl acetoacetate, achieving 85% conversion after 60 min using a 1:5 substrates molar ratio (ester to geraniol), 80 °C and 8.4% of Lipozyme 435 lipase without removal of the co-produced methanol. On the other hand, a 95% conversion was reached after 30 min using 1:6 substrates molar ratio, 70 °C and 7% lipase in the presence of 5Å molecular sieves for the methanol capture. In addition, the lipase showed good reusability, maintaining the same activity for five reaction cycles. Finally, under the above optimized conditions, other geraniol esters were successfully synthetized such as the geranyl butyrate (98%), geranyl hexanoate (99%), geranyl octanoate (98%), and geranyl (R)-3-hydroxybutyrate (56%). These results demonstrate the microwave-assisted lipase-catalyzed transesterification in a solvent-free system as an excellent and sustainable catalytic methodology to produce geraniol esters.
Collapse
Affiliation(s)
- Valentina Venturi
- Department of Environment and Prevention Sciences, University of Ferrara - UNIFE, Via Luigi Borsari, 46, Ferrara, 44121, Italy
| | - Francesco Presini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara - UNIFE, Via Luigi Borsari, 46, Ferrara, 44121, Italy
| | - Claudio Trapella
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara - UNIFE, Via Luigi Borsari, 46, Ferrara, 44121, Italy
| | - Olga Bortolini
- Department of Environment and Prevention Sciences, University of Ferrara - UNIFE, Via Luigi Borsari, 46, Ferrara, 44121, Italy
| | - Pier Paolo Giovannini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara - UNIFE, Via Luigi Borsari, 46, Ferrara, 44121, Italy
| | - Lindomar Alberto Lerin
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara - UNIFE, Via Luigi Borsari, 46, Ferrara, 44121, Italy.
| |
Collapse
|
2
|
Wu S, Wu Y, Sun B, Zhang P, Tang K. Experimental and optimization for kinetic resolution of 1-(4-(trifluoromethyl)phenyl)ethanol enantiomers by lipase-catalyzed transesterification in organic phase. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02339-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
3
|
Taşkor Önel G, Saygılı N. Synthesis and Cyclooxygenase Enzyme Inhibitory Activity of Flurbiprofen Analogues: Simple Methodology of Their Nanoemulsion Systems. ChemistrySelect 2022. [DOI: 10.1002/slct.202201654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Gülce Taşkor Önel
- Department of Analytical Chemistry Faculty of Pharmacy Erzincan Binali Yıldırım University Yalnızbağ 24100 Erzincan Turkey
| | - Nezire Saygılı
- Department of Basic Pharmaceutical Sciences Faculty of Pharmacy Hacettepe University Sıhhiye 06100 Ankara Turkey
| |
Collapse
|
4
|
Jawale PV, Bhanage BM. Kinetic and docking study of synthesis of glyceryl monostearate by immobilized lipase in non-aqueous media. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.2003343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Priyanka V. Jawale
- Department of Chemistry, Institute of Chemical Technology, Mumbai, India
| | | |
Collapse
|
5
|
Dual response to pH and chiral microenvironments for the release of a flurbiprofen-loaded chiral self-assembled mesoporous silica drug delivery system. Colloids Surf B Biointerfaces 2021; 199:111501. [DOI: 10.1016/j.colsurfb.2020.111501] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/16/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023]
|
6
|
Zhang C, Liang X, Abdo AAA, Kaddour B, Li X, Teng C, Wan C. Ultrasound-assisted lipase-catalyzed synthesis of ethyl acetate: process optimization and kinetic study. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2020.1868331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Chengnan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, PR China
- School of Food and Health, Beijing Technology and Business University, Beijing, PR China
| | - Xin Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, PR China
- School of Food and Health, Beijing Technology and Business University, Beijing, PR China
| | - Abdullah Abdulaziz Abbod Abdo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, PR China
- School of Food and Health, Beijing Technology and Business University, Beijing, PR China
- Department of Food Science and Technology, IBB University, Ibb, Yemen
| | - Benariba Kaddour
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, PR China
- School of Food and Health, Beijing Technology and Business University, Beijing, PR China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, PR China
- School of Food and Health, Beijing Technology and Business University, Beijing, PR China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing, PR China
| | - Chao Teng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, PR China
- School of Food and Health, Beijing Technology and Business University, Beijing, PR China
| | - Chengyin Wan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, PR China
- School of Food and Health, Beijing Technology and Business University, Beijing, PR China
| |
Collapse
|
7
|
Salvi HM, Yadav GD. Process intensification using immobilized enzymes for the development of white biotechnology. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00020a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Process intensification of biocatalysed reactions using different techniques such as microwaves, ultrasound, hydrodynamic cavitation, ionic liquids, microreactors and flow chemistry in various industries is critically analysed and future directions provided.
Collapse
Affiliation(s)
- Harshada M. Salvi
- Department of Chemical Engineering
- Institute of Chemical Technology
- Mumbai-400019
- India
| | - Ganapati D. Yadav
- Department of Chemical Engineering
- Institute of Chemical Technology
- Mumbai-400019
- India
| |
Collapse
|
8
|
Salvi H, Yadav GD. Chemoenzymatic Epoxidation of Limonene Using a Novel Surface-Functionalized Silica Catalyst Derived from Agricultural Waste. ACS OMEGA 2020; 5:22940-22950. [PMID: 32954143 PMCID: PMC7495740 DOI: 10.1021/acsomega.0c02462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/12/2020] [Indexed: 05/13/2023]
Abstract
Limonene is one of the most important terpenes having wide applications in food and fragrance industries. The epoxide of limonene, limonene oxide, finds important applications as a versatile synthetic intermediate in the chemical industry. Therefore, attempts have been made to synthesize limonene oxide using eco-friendly processes because of stringent regulations on its production. In this regard, we have attempted to synthesize it using a cost-effective and eco-friendly process. Chemoenzymatic epoxidation of limonene to limonene oxide was carried out using in situ generation of peroxy octanoic acid from octanoic acid and H2O2. In this study, agricultural-waste rice husk ash (RHA)-derived silica was surface-functionalized using (3-aminopropyl) triethoxysilane (APTS), which was cross-linked using glutaraldehyde for immobilization of Candida antarctica lipase B. Furthermore, the immobilized enzyme was entrapped in calcium alginate beads to avoid enzyme leaching. Thus, limonene oxide was prepared using this catalyst under conventional and microwave heating. The microwave irradiation intensifies the process, reducing the reaction time under the same conditions. Maximum conversion of limonene to limonene oxide of 75.35 ± 0.98% was obtained in 2 h at 50 °C using a microwave power of 50 W. In the absence of microwave irradiation, the conventional heating gave 44.6 ± 1.14% conversion in 12 h. The reaction mechanism was studied using the Lineweaver-Burk plot, which follows a ternary complex mechanism with inhibition due to peroxyoctanoic acid (in other words H2O2). The prepared catalyst shows high reusability and operational stability up to four cycles.
Collapse
|
9
|
Evaluation of Designed Immobilized Catalytic Systems: Activity Enhancement of Lipase B from Candida antarctica. Catalysts 2020. [DOI: 10.3390/catal10080876] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Immobilized enzymatic catalysts are widely used in the chemical and pharmaceutical industries. As Candida antarctica lipase B (CALB) is one of the more commonly used biocatalysts, we attempted to design an optimal lipase-catalytic system. In order to do that, we investigated the enantioselectivity and lipolytic activity of CALB immobilized on 12 different supports. Immobilization of lipase on IB-D152 allowed us to achieve hyperactivation (178%) in lipolytic activity tests. Moreover, the conversion in enantioselective esterification increased 43-fold, when proceeding with lipase-immobilized on IB-S861. The immobilized form exhibited a constant high catalytic activity in the temperature range of 25 to 55 °C. Additionally, the lipase immobilized on IB-D152 exhibited a higher lipolytic activity in the pH range of 6 to 9 compared with the native form. Interestingly, our investigations showed that IB-S500 and IB-S60S offered a possibility of application in catalysis in both organic and aqueous solvents. A significant link between the reaction media, the substrates, the supports and the lipase was confirmed. In our enzymatic investigations, high-performance liquid chromatography (HPLC) and the titrimetric method, as well as the Bradford method were employed.
Collapse
|
10
|
Ortiz C, Ferreira ML, Barbosa O, dos Santos JCS, Rodrigues RC, Berenguer-Murcia Á, Briand LE, Fernandez-Lafuente R. Novozym 435: the “perfect” lipase immobilized biocatalyst? Catal Sci Technol 2019. [DOI: 10.1039/c9cy00415g] [Citation(s) in RCA: 263] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Novozym 435 (N435) is a commercially available immobilized lipase produced by Novozymes with its advantages and drawbacks.
Collapse
Affiliation(s)
- Claudia Ortiz
- Escuela de Microbiología
- Universidad Industrial de Santander
- Bucaramanga
- Colombia
| | - María Luján Ferreira
- Planta Piloto de Ingeniería Química – PLAPIQUI
- CONICET
- Universidad Nacional del Sur
- 8000 Bahía Blanca
- Argentina
| | - Oveimar Barbosa
- Departamento de Química
- Facultad de Ciencias
- Universidad del Tolima
- Ibagué
- Colombia
| | - José C. S. dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável
- Universidade da Integração Internacional da Lusofonia Afro-Brasileira
- Redenção
- Brazil
| | - Rafael C. Rodrigues
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute
- Federal University of Rio Grande do Sul
- Porto Alegre
- Brazil
| | - Ángel Berenguer-Murcia
- Instituto Universitario de Materiales
- Departamento de Química Inorgánica
- Universidad de Alicante
- Alicante
- Spain
| | - Laura E. Briand
- Centro de Investigación y Desarrollo en Ciencias Aplicadas-Dr. Jorge J. Ronco
- Universidad Nacional de La Plata
- CONICET
- Buenos Aires
- Argentina
| | | |
Collapse
|
11
|
Cebrián-García S, Balu AM, García A, Luque R. Sol-Gel Immobilisation of Lipases: Towards Active and Stable Biocatalysts for the Esterification of Valeric Acid. Molecules 2018; 23:molecules23092283. [PMID: 30200657 PMCID: PMC6225346 DOI: 10.3390/molecules23092283] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/01/2018] [Accepted: 09/04/2018] [Indexed: 12/20/2022] Open
Abstract
Alkyl esters are high added value products useful in a wide range of industrial sectors. A methodology based on a simple sol-gel approach (biosilicification) is herein proposed to encapsulate enzymes in order to design highly active and stable biocatalysts. Their performance was assessed through the optimization of valeric acid esterification evaluating the effect of different parameters (biocatalyst load, presence of water, reaction temperature and stirring rate) in different alcoholic media, and comparing two different methodologies: conventional heating and microwave irradiation. Ethyl valerate yields were in the 80–85% range under optimum conditions (15 min, 12% m/v biocatalyst, molar ratio 1:2 of valeric acid to alcohol). Comparatively, the biocatalysts were slightly deactivated under microwave irradiation due to enzyme denaturalisation. Biocatalyst reuse was attempted to prove that good reusability of these sol-gel immobilised enzymes could be achieved under conventional heating.
Collapse
Affiliation(s)
- Soledad Cebrián-García
- Organic Chemistry Department, University of Cordoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra. Nacional IV-A, Km 396, E14014 Cordoba, Spain.
| | - Alina M Balu
- Organic Chemistry Department, University of Cordoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra. Nacional IV-A, Km 396, E14014 Cordoba, Spain.
| | - Araceli García
- Organic Chemistry Department, University of Cordoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra. Nacional IV-A, Km 396, E14014 Cordoba, Spain.
| | - Rafael Luque
- Organic Chemistry Department, University of Cordoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra. Nacional IV-A, Km 396, E14014 Cordoba, Spain.
- Scientific Centre for Molecular Design and Synthesis of Innovative Compounds for Medicine, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya str., 117198 Moscow, Russia.
| |
Collapse
|
12
|
Yadav GD, Kamble MP. A Green Process for Synthesis of Geraniol Esters by Immobilized Lipase from Candida Antarctica B Fraction in Non-Aqueous Reaction Media: Optimization and Kinetic Modeling. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2018. [DOI: 10.1515/ijcre-2017-0179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Enzymatic synthesis of molecules such as flavors, perfumes and fragrances has a great commercial advantage of being marketed as “natural” and also it offers exquisite selectivity of enzymes that can be superior over chemical catalysis. The current work focuses on the enzymatic synthesis of geranyl acetate as model compound, including optimization of reaction conditions such as nature of catalyst, reaction media, speed of agitation, mole ratio and temperature. A variety of esters were also synthesized. Geraniol was esterified with various acids, aromatic esters and vinyl esters in 1:4 molar ratio. Among all vinyl ester was the best giving in good yield (77–100 %) as compared to aromatic esters (5–82 %) and acids (7–31 %). Novozym 435 was found to be most active catalyst with ~96 % conversion and 100 % selectivity in 60 min at 55 °C in n-heptane as solvent for geranyl acetate. The maximum reaction rate was estimated (Vmax = 0.2712 mol L−1 min-1) by using the double reciprocal plot. It is a ternary complex (ordered bi-bi) mechanism with inhibition by geraniol.
Collapse
|
13
|
Cebrián-García S, Balu AM, Luque R. Ultrasound-Assisted Esterification of Valeric Acid to Alkyl Valerates Promoted by Biosilicified Lipases. Front Chem 2018; 6:197. [PMID: 29930937 PMCID: PMC5999784 DOI: 10.3389/fchem.2018.00197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/15/2018] [Indexed: 11/13/2022] Open
Abstract
A novel, environmentally friendly, and sustainable ultrasound-assisted methodology in the valorization of valeric acid to alkyl valerate using a biosilicified lipase from Candida antarctica is reported. This one-pot room temperature methodology of enzyme biosilicification leads to biosilicified lipases with improved activity and reaction efficiency as compared to free enzymes. Yields in the ultrasound-promoted esterification of valeric acid was ca. 90% in 2 h with 15% m/v of biosilicified lipase (Bio-lipase; 616 U/g biocatalyst enzymatic activity) and a molar ratio 1:2 (valeric acid:ethanol), slightly superior to that observed by the free enzyme (75% conversion, 583U/g biocatalyst enzymatic activity). The reuse of enzymes in these conditions was tested and the results show a relatively good reusability of these biosilicified enzymes under the investigated conditions, particularly preserving fairly stable specific activities (616 vs. 430 U/g biocatalyst after four reuses).
Collapse
Affiliation(s)
| | - Alina M Balu
- Departamento de Quimica Organica, Universidad de Cordoba, Cordoba, Spain
| | - Rafael Luque
- Departamento de Quimica Organica, Universidad de Cordoba, Cordoba, Spain.,Scientific Center for Molecular Design and Synthesis of Innovative Compounds for the Medical Industry, Peoples Friendship University of Russia (RUDN), Moscow, Russia
| |
Collapse
|
14
|
Kamble MP, Yadav GD. Kinetic resolution of ( R,S ) phenyl glycidyl ether by red mung beans ( Vigna angularis ) epoxide hydrolases. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|