1
|
Rydel-Ciszek K. DFT Studies of the Activity and Reactivity of Limonene in Comparison with Selected Monoterpenes. Molecules 2024; 29:1579. [PMID: 38611858 PMCID: PMC11013946 DOI: 10.3390/molecules29071579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
Nowadays, the effective processing of natural monoterpenes that constitute renewable biomass found in post-production waste into products that are starting materials for the synthesis of valuable compounds is a way to ensure independence from non-renewable fossil fuels and can contribute to reducing global carbon dioxide emissions. The presented research aims to determine, based on DFT calculations, the activity and reactivity of limonene, an organic substrate used in previous preparative analyses, in comparison to selected monoterpenes such as cymene, pinene, thymol, and menthol. The influence of the solvent model was also checked, and the bonds most susceptible to reaction were determined in the examined compounds. With regard to EHOMO, it was found that limonene reacts more easily than cymene or menthol but with more difficultly than thymol and pienene. The analysis of the global chemical reactivity descriptors "locates" the reactivity of limonene in the middle of the studied monoterpenes. It was observed that, among the tested compounds, the most reactive compound is thymol, while the least reactive is menthol. The demonstrated results can be a reference point for experimental work carried out using the discussed compounds, to focus research on those with the highest reactivity.
Collapse
Affiliation(s)
- Katarzyna Rydel-Ciszek
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszów University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland
| |
Collapse
|
2
|
Efficient Epoxidation of Olefins by Silica Supported Dioxidomolybdenum(VI) Coordination Compounds. Catal Letters 2023. [DOI: 10.1007/s10562-023-04300-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
3
|
Feng M, Yan Q, Yang L, Ye Y, Liu G, Wang W. Selective synthesis of 2‐substituted 2,3‐dihydroquinazolin‐4(1
H
)‐ones and quinazolin‐4(3
H
)‐ones catalyzed by Schiff base dioxomolybdenum(VI) complex. INT J CHEM KINET 2022. [DOI: 10.1002/kin.21622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Mengmeng Feng
- School of Chemistry and Material Science Ludong University Yantai China
| | - Qingmin Yan
- School of Chemistry and Material Science Ludong University Yantai China
| | - Lan Yang
- School of Chemistry and Material Science Ludong University Yantai China
| | - Yanan Ye
- School of Chemistry and Material Science Ludong University Yantai China
| | - Gang Liu
- School of Chemistry and Material Science Ludong University Yantai China
| | - Weili Wang
- School of Chemistry and Material Science Ludong University Yantai China
| |
Collapse
|
4
|
Pisk J, Agustin D. Molybdenum, Vanadium, and Tungsten-Based Catalysts for Sustainable (ep)Oxidation. Molecules 2022; 27:6011. [PMID: 36144747 PMCID: PMC9504910 DOI: 10.3390/molecules27186011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/26/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
This article gives an overview of the research activity of the LAC2 team at LCC developed at Castres in the field of sustainable chemistry with an emphasis on the collaboration with a research team from the University of Zagreb, Faculty of Science, Croatia. The work is situated within the context of sustainable chemistry for the development of catalytic processes. Those processes imply molecular complexes containing oxido-molybdenum, -vanadium, -tungsten or simple polyoxometalates (POMs) as catalysts for organic solvent-free epoxidation. The studies considered first the influence of the nature of complexes (and related ligands) on the reactivity (assessing mechanisms through DFT calculations) with model substrates. From those model processes, the work has been enlarged to the valorization of biomass resources. A part concerns the activity on vanadium chemistry and the final part concerns the use of POMs as catalysts, from molecular to grafted catalysts, (ep)oxidizing substrates from fossil and biomass resources.
Collapse
Affiliation(s)
- Jana Pisk
- LCC-CNRS, Université de Toulouse, CNRS, UPS, CEDEX 4, F-31077 Toulouse, France
- Department of Chemistry, Institut Universitaire de Technologie Paul Sabatier, University of Toulouse, Av. G. Pompidou, BP20258, CEDEX, F-81104 Castres, France
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Dominique Agustin
- LCC-CNRS, Université de Toulouse, CNRS, UPS, CEDEX 4, F-31077 Toulouse, France
- Department of Chemistry, Institut Universitaire de Technologie Paul Sabatier, University of Toulouse, Av. G. Pompidou, BP20258, CEDEX, F-81104 Castres, France
| |
Collapse
|
5
|
El‐Sayed NMA, Elsawy H, Adam MSS. Polar and nonpolar iron (II) complexes of isatin hydrazone derivatives as effective catalysts in oxidation reactions and their antimicrobial and anticancer activities. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Hany Elsawy
- Department of Chemistry College of Science, King Faisal University Al‐Ahsa Saudi Arabia
- Department of Chemistry, Faculty of Science Tanta University Tanta Egypt
| | - Mohamed Shaker S. Adam
- Department of Chemistry College of Science, King Faisal University Al‐Ahsa Saudi Arabia
- Chemistry Department, Faculty of Science Sohag University Sohag Egypt
| |
Collapse
|
6
|
Nickel (II), copper (II), and vanadyl (II) complexes with tridentate nicotinoyl hydrazone derivative functionalized as effective catalysts for epoxidation processes and as biological reagents. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.104192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Effect of oxy-vanadium (IV) and oxy-zirconium (IV) ions in O,N-bidentate arylhydrazone complexes on their catalytic and biological potentials that supported via computerized usages. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.104168] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Molybdenum-, Vanadium-, and Tungsten-Containing Materials for Catalytic Applications. MATERIALS 2022; 15:ma15051720. [PMID: 35268950 PMCID: PMC8911054 DOI: 10.3390/ma15051720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023]
Abstract
As chemists, we are still fascinated by the magic of nature [...]
Collapse
|
9
|
Talukdar H, Gogoi SR, Saikia G, Sultana SY, Ahmed K, Islam NS. A sustainable approach towards solventless organic oxidations catalyzed by polymer immobilized Nb(V)-peroxido compounds with H2O2 as oxidant. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Kargar H, Fallah-Mehrjardi M, Behjatmanesh-Ardakani R, Munawar KS, Ashfaq M, Tahir MN. Synthesis, spectral characterization, SC-XRD, HSA, DFT and catalytic activity of novel dioxovanadium(V) complex with aminobenzohydrazone Schiff base ligand: An experimental and theoretical approach. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120535] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Wang Y, Gayet F, Daran JC, Guillo P, Agustin D. Replacement of Volatile Acetic Acid by Solid SiO 2@COOH Silica (Nano)Beads for (Ep)Oxidation Using Mn and Fe Complexes Containing BPMEN Ligand. Molecules 2021; 26:5435. [PMID: 34576906 PMCID: PMC8470966 DOI: 10.3390/molecules26185435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/30/2022] Open
Abstract
Mn and Fe BPMEN complexes showed excellent reactivity in catalytic oxidation with an excess of co-reagent (CH3COOH). In the straight line of a cleaner catalytic system, volatile acetic acid was replaced by SiO2 (nano)particles with two different sizes to which pending carboxylic functions were added (SiO2@COOH). The SiO2@COOH beads were obtained by the functionalization of SiO2 with pending nitrile functions (SiO2@CN) followed by CN hydrolysis. All complexes and silica beads were characterized by NMR, infrared, DLS, TEM, X-ray diffraction. The replacement of CH3COOH by SiO2@COOH (100 times less on molar ratio) has been evaluated for (ep)oxidation on several substrates (cyclooctene, cyclohexene, cyclohexanol) and discussed in terms of activity and green metrics.
Collapse
Affiliation(s)
- Yun Wang
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205, Route de Narbonne, F-31077 Toulouse, France; (Y.W.); (F.G.); (J.-C.D.)
- Département de Chimie, Institut Universitaire de Technologie Paul Sabatier, Université de Toulouse, Av. Georges Pompidou, BP 20258, CEDEX, F-81104 Castres, France
| | - Florence Gayet
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205, Route de Narbonne, F-31077 Toulouse, France; (Y.W.); (F.G.); (J.-C.D.)
- INPT, École Nationale Supérieure des Ingénieurs en Arts Chimiques et Technologiques, CS 44362, CEDEX 4, F-31030 Toulouse, France
| | - Jean-Claude Daran
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205, Route de Narbonne, F-31077 Toulouse, France; (Y.W.); (F.G.); (J.-C.D.)
| | - Pascal Guillo
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205, Route de Narbonne, F-31077 Toulouse, France; (Y.W.); (F.G.); (J.-C.D.)
- Département de Chimie, Institut Universitaire de Technologie Paul Sabatier, Université de Toulouse, Av. Georges Pompidou, BP 20258, CEDEX, F-81104 Castres, France
| | - Dominique Agustin
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205, Route de Narbonne, F-31077 Toulouse, France; (Y.W.); (F.G.); (J.-C.D.)
- Département de Chimie, Institut Universitaire de Technologie Paul Sabatier, Université de Toulouse, Av. Georges Pompidou, BP 20258, CEDEX, F-81104 Castres, France
| |
Collapse
|
12
|
Liu H, Zhuo Z, Zhang Y, Wei H, Zhang W, Li T, Mao Z, Wang W. Ligand coordination sphere effect of Schiff base
cis
‐dioxomolybdenum(VI) complexes in selective catalytic oxidation of alcohols. INT J CHEM KINET 2021. [DOI: 10.1002/kin.21530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Haiwen Liu
- School of Chemistry and Material Science Ludong University Yantai China
| | - Zihan Zhuo
- School of Chemistry and Material Science Ludong University Yantai China
| | - Yan Zhang
- School of Chemistry and Material Science Ludong University Yantai China
| | - Hang Wei
- School of Chemistry and Material Science Ludong University Yantai China
| | - Wenxin Zhang
- School of Chemistry and Material Science Ludong University Yantai China
| | - Tong Li
- School of Chemistry and Material Science Ludong University Yantai China
| | - Zuodong Mao
- School of Chemistry and Material Science Ludong University Yantai China
| | - Weili Wang
- School of Chemistry and Material Science Ludong University Yantai China
| |
Collapse
|
13
|
New Cu(II) and VO(II)-O,N,O-aroylhydrazone complexes: Biological evaluation, catalytic performance, ctDNA interaction, DFT, pharmacophore, and docking simulation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116554] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Adam MSS, Abdel-Rahman LH, Ahmed HES, Makhlouf M, Alhasani M, El-Metwaly NM. Enhanced catalytic (ep)oxidation of olefins by VO(II), ZrO(II) and Zn(II)-imine complexes; extensive characterization supported by DFT studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Adam MSS, Makhlouf M, Ullah F, El-Hady OM. Mononucleating nicotinohydazone complexes with VO2+, Cu2+, and Ni2+ ions. Characteristic, catalytic, and biological assessments. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
16
|
Adam MSS, Makhlouf M, Ullah F, Mohamad ADM. Catalytic and biological reactivities of mononuclear copper (II) and vanadyl (II) complexes of naphthalenylimino-phenolate sodium sulfonate. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Adam MSS, Al‐Omair MA. Nanocomposite‐based inorganic‐organocatalyst Cu(II) complex and SiO
2
‐ and Fe
3
O
4
nanoparticles as low‐cost and efficient catalysts for aniline and 2‐aminopyridine oxidation. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5999] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mohamed Shaker S. Adam
- Department of Chemistry, College of Science King Faisal University PO Box 400 Al‐Ahsa 31982 Saudi Arabia
- Chemistry Department, Faculty of Science Sohag University 82534 Sohag Egypt
| | - Mohammed A. Al‐Omair
- Department of Chemistry, College of Science King Faisal University PO Box 400 Al‐Ahsa 31982 Saudi Arabia
| |
Collapse
|
18
|
Runeberg PA, Agustin D, Eklund PC. Formation of Tetrahydrofurano-, Aryltetralin, and Butyrolactone Norlignans through the Epoxidation of 9-Norlignans. Molecules 2020; 25:molecules25051160. [PMID: 32150924 PMCID: PMC7179189 DOI: 10.3390/molecules25051160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 02/24/2020] [Accepted: 03/02/2020] [Indexed: 11/25/2022] Open
Abstract
Epoxidation of the C=C double bond in unsaturated norlignans derived from hydroxymatairesinol was studied. The intermediate epoxides were formed in up to quantitative conversions and were readily further transformed into tetrahydrofuran, aryltetralin, and butyrolactone products—in diastereomeric mixtures—through ring-closing reactions and intramolecular couplings. For epoxidation, the classical Prilezhaev reaction, using stoichiometric amounts of meta-chloroperbenzoic acid (mCPBA), was used. As an alternative method, a catalytic system using dimeric molybdenum-complexes [MoO2L]2 with ONO- or ONS-tridentate Schiff base ligands and aqueous tert-butyl hydroperoxide (TBHP) as oxidant was used on the same substrates. Although the epoxidation was quantitative when using the Mo-catalysts, the higher temperatures led to more side-products and lower yields. Kinetic studies were also performed on the Mo-catalyzed reactions.
Collapse
Affiliation(s)
- Patrik A. Runeberg
- Laboratory of Molecular Science and Engineering, Åbo Akademi University, Biskopsgatan 8, 20500 Åbo, Finland;
| | - Dominique Agustin
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France;
- Institut Universitaire de Technologie Paul Sabatier, Département de Chimie, Av. G. Pompidou, CS20258, F-81104 Castres, France
| | - Patrik C. Eklund
- Laboratory of Molecular Science and Engineering, Åbo Akademi University, Biskopsgatan 8, 20500 Åbo, Finland;
- Correspondence: ; Tel.: + 358-2-215 4720
| |
Collapse
|
19
|
Wang Y, Gayet F, Guillo P, Agustin D. Organic Solvent-Free Olefins and Alcohols (ep)oxidation Using Recoverable Catalysts Based on [PM 12O 40] 3- (M = Mo or W) Ionically Grafted on Amino Functionalized Silica Nanobeads. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3278. [PMID: 31600903 PMCID: PMC6829895 DOI: 10.3390/ma12203278] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 12/18/2022]
Abstract
Catalyzed organic solvent-free (ep)oxidation were achieved using H3PM12O40 (M = Mo or W) complexes ionically grafted on APTES-functionalized nano-silica beads obtained from straightforward method (APTES = aminopropyltriethoxysilane). Those catalysts have been extensively analyzed through morphological studies (Dynamic Light Scattering (DLS), TEM) and several spectroscopic qualitative (IR, multinuclear solid-state NMR) and quantitative (1H and 31P solution NMR) methods. Interesting catalytic results were obtained for the epoxidation of cyclooctene, cyclohexene, limonene and oxidation of cyclohexanol with a lower [POM]/olefin ratio. The catalysts were found to be recyclable and reused during three runs with similar catalytic performances.
Collapse
Affiliation(s)
- Yun Wang
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205, route de Narbonne, F-31077 Toulouse, France.
- Université de Toulouse, Institut Universitaire de Technologie Paul Sabatier-Département de Chimie, Av. Georges Pompidou, BP 20258, F-81104 Castres, CEDEX, France.
| | - Florence Gayet
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205, route de Narbonne, F-31077 Toulouse, France.
- INPT, ENSIACET 4, allée Emile Monso-CS 44362, F-31030 Toulouse, CEDEX 4, France.
| | - Pascal Guillo
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205, route de Narbonne, F-31077 Toulouse, France.
- Université de Toulouse, Institut Universitaire de Technologie Paul Sabatier-Département de Chimie, Av. Georges Pompidou, BP 20258, F-81104 Castres, CEDEX, France.
| | - Dominique Agustin
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205, route de Narbonne, F-31077 Toulouse, France.
- Université de Toulouse, Institut Universitaire de Technologie Paul Sabatier-Département de Chimie, Av. Georges Pompidou, BP 20258, F-81104 Castres, CEDEX, France.
| |
Collapse
|
20
|
Copper(II) Schiff base complex immobilized on graphene nanosheets: a heterogeneous catalyst for epoxidation of olefins. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-018-1552-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Abstract
Epoxides are important industrial intermediates applied in a variety of industrial processes. During the production of epoxides, catalysts have played an irreplaceable and unique role. In this review, the historic progress of molybdenum-based catalysts in alkene epoxidation are covered and an outlook on future challenge discussed. Efficient catalysts are demonstrated including soluble molybdenum complexes, polyoxometalates catalysts, molybdenum-containing metal organic frameworks, silica supported molybdenum-based catalysts, polymer supported molybdenum-based catalysts, magnetic molybdenum-based catalysts, hierarchical molybdenum-based catalysts, graphene-based molybdenum containing catalysts, photocatalyzed epoxidation catalysts, and some other systems. The effects of different solvents and oxidants are discussed and the mechanisms of epoxidation are summarized. The challenges and perspectives to further enhance the catalytic performances in alkenes epoxidation are presented.
Collapse
|
22
|
Catalytic (ep)oxidation and corrosion inhibition potentials of CuII and CoII pyridinylimino phenolate complexes. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.05.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|