1
|
Xu HH, Xian YW, Zhao X, Xu LY, Wen CH, Zhao H, Tang C, Jia WZ, Luo MF, Chen J. Selective catalytic oxidation of DMF over Cu-Ce/H-MOR by modulating the surface active sites. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134829. [PMID: 38865924 DOI: 10.1016/j.jhazmat.2024.134829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
Selective catalytic oxidation of the hazardous DMF exhaust gas presents a significant challenge in balancing oxidation activity and products selectivity (CO, NOx, N2, etc.). It is found that Cu/H-MOR demonstrates superior performance for DMF oxidation compared to CuO on other supports (γ-Al2O3, HY, ZSM-5) in terms of product selectivity and stability. The geometric and electronic structures of CuO active sites in Cu/H-MOR have been regulated by CeO2 promoter, leading to an increase in the ratio of active CuO (highly dispersed CuO and Cu+ specie). As a result, the oxidation activity and stability of the Cu/H-MOR catalyst were enhanced for DMF selective catalytic oxidation. However, excessive CuO or CeO2 content led to decreased N2 selectivity due to over-high oxidation activity. It is also revealed that Ce3+ species, active CuO species, and surface acid sites play a critical role in internal selective catalytic reduction reaction during DMF oxidation. The 10Cu-Ce/H-MOR (1/4) catalyst exhibited both high oxidation activity and internal selective catalytic reduction activity due to its abundance of active CuO specie as well as Ce3+ species and surface acid sites. Consequently, the 10Cu-Ce/H-MOR (1/4) catalyst demonstrated the widest temperature window for DMF oxidation with high N2 selectivity. These findings emphasize the importance of surface active sites modification for DMF selective catalytic oxidation.
Collapse
Affiliation(s)
- Hua-Hui Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Yi-Wei Xian
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Xi Zhao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Lin-Ya Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Cai-Hao Wen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Han Zhao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Cen Tang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Wen-Zhi Jia
- Huzhou Key Laboratory of Environmental Functional Materials and Pollution Control, Department of Materials Engineering, Huzhou University, Huzhou 313000, China.
| | - Meng-Fei Luo
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Jian Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
2
|
Yan L, Zhu H, Liu X, Peng D, Zhang J, Cheng D, Chen A, Zhang D. Synergistic Catalytic Removal of NO x and n-Butylamine via Spatially Separated Cooperative Sites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11781-11790. [PMID: 38877971 DOI: 10.1021/acs.est.4c01840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Synergistic control of nitrogen oxides (NOx) and nitrogen-containing volatile organic compounds (NVOCs) from industrial furnaces is necessary. Generally, the elimination of n-butylamine (n-B), a typical pollutant of NVOCs, requires a catalyst with sufficient redox ability. This process induces the production of nitrogen-containing byproducts (NO, NO2, N2O), leading to lower N2 selectivity of NH3 selective catalytic reduction of NOx (NH3-SCR). Here, synergistic catalytic removal of NOx and n-B via spatially separated cooperative sites was originally demonstrated. Specifically, titania nanotubes supported CuOx-CeO2 (CuCe-TiO2 NTs) catalysts with spatially separated cooperative sites were creatively developed, which showed a broader active temperature window from 180 to 340 °C, with over 90% NOx conversion, 85% n-B conversion, and 90% N2 selectivity. A synergistic effect of the Cu and Ce sites was found. The catalytic oxidation of n-B mainly occurred at the Cu sites inside the tube, which ensured the regular occurrence of the NH3-SCR reaction on the outer Ce sites under the matching temperature window. In addition, the n-B oxidation would produce abundant intermediate NH2*, which could act as an extra reductant to promote NH3-SCR. Meanwhile, NH3-SCR could simultaneously remove the possible NOx byproducts of n-B decomposition. This novel strategy of constructing cooperative sites provides a distinct pathway for promoting the synergistic removal of n-B and NOx.
Collapse
Affiliation(s)
- Lijun Yan
- School of Environmental and Chemical Engineering, State Key Laboratory of Advanced Special Steel, International Joint Laboratory of Catalytic Chemistry, Innovation Institute of Carbon Neutrality, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Huifang Zhu
- School of Environmental and Chemical Engineering, State Key Laboratory of Advanced Special Steel, International Joint Laboratory of Catalytic Chemistry, Innovation Institute of Carbon Neutrality, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiangyu Liu
- School of Environmental and Chemical Engineering, State Key Laboratory of Advanced Special Steel, International Joint Laboratory of Catalytic Chemistry, Innovation Institute of Carbon Neutrality, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dengchao Peng
- School of Environmental and Chemical Engineering, State Key Laboratory of Advanced Special Steel, International Joint Laboratory of Catalytic Chemistry, Innovation Institute of Carbon Neutrality, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jin Zhang
- School of Environmental and Chemical Engineering, State Key Laboratory of Advanced Special Steel, International Joint Laboratory of Catalytic Chemistry, Innovation Institute of Carbon Neutrality, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Danhong Cheng
- School of Environmental and Chemical Engineering, State Key Laboratory of Advanced Special Steel, International Joint Laboratory of Catalytic Chemistry, Innovation Institute of Carbon Neutrality, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Aling Chen
- School of Environmental and Chemical Engineering, State Key Laboratory of Advanced Special Steel, International Joint Laboratory of Catalytic Chemistry, Innovation Institute of Carbon Neutrality, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dengsong Zhang
- School of Environmental and Chemical Engineering, State Key Laboratory of Advanced Special Steel, International Joint Laboratory of Catalytic Chemistry, Innovation Institute of Carbon Neutrality, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
3
|
Zhao Z, Ma S, Gao B, Bi F, Qiao R, Yang Y, Wu M, Zhang X. A systematic review of intermediates and their characterization methods in VOCs degradation by different catalytic technologies. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
4
|
Fonzeu Monguen CK, Ding EJ, Daniel S, Jia JY, Gui XH, Tian ZY. Tailored Synthesis of Catalytically Active Cerium Oxide for N, N-Dimethylformamide Oxidation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:865. [PMID: 36676602 PMCID: PMC9867243 DOI: 10.3390/ma16020865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Cerium oxide nanopowder (CeOx) was prepared using the sol-gel method for the catalytic oxidation of N, N-dimethylformamide (DMF). The phase, specific surface area, morphology, ionic states, and redox properties of the obtained nanocatalyst were systematically characterized using XRD, BET, TEM, EDS, XPS, H2-TPR, and O2-TPO techniques. The results showed that the catalyst had a good crystal structure and spherelike morphology with the aggregation of uniform small grain size. The catalyst showed the presence of more adsorbed oxygen on the catalyst surface. XPS and H2-TPR have confirmed the reduction of Ce4+ species to Ce3+ species. O2-TPR proved the reoxidability of CeOx, playing a key role during DMF oxidation. The catalyst had a reaction rate of 1.44 mol g-1cat s-1 and apparent activation energy of 33.30 ± 3 kJ mol-1. The catalytic performance showed ~82 ± 2% DMF oxidation at 400 °C. This work's overall results demonstrated that reducing Ce4+ to Ce3+ and increasing the amount of adsorbed oxygen provided more suitable active sites for DMF oxidation. Additionally, the catalyst was thermally stable (~86%) after 100 h time-on-stream DMF conversion, which could be a potential catalyst for industrial applications.
Collapse
Affiliation(s)
- Cedric Karel Fonzeu Monguen
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - En-Jie Ding
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
- School of Emergency Management and Safety Engineering, China University of Mining and Technology, Beijing 100083, China
| | - Samuel Daniel
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing-Yang Jia
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
- School of Emergency Management and Safety Engineering, China University of Mining and Technology, Beijing 100083, China
| | - Xiao-Hong Gui
- School of Emergency Management and Safety Engineering, China University of Mining and Technology, Beijing 100083, China
| | - Zhen-Yu Tian
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Kim S, Jung M, Han S, Jeon HS, Han Y. Effect of Poly(vinyl alcohol) Concentration on the Micro/Mesopore Structure of SBA15 Silica. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8900. [PMID: 36556706 PMCID: PMC9784548 DOI: 10.3390/ma15248900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
In this work, a series of micro/mesoporous SBA15 silica materials were synthesized using P123 and poly(vinyl alcohol) (PVA) as co-templates. The pore structure of the prepared SBA15 was observed to be a function of the PVA concentration. When the amount of PVA was relatively small, the specific surface area, micropore volume, and pore wall thickness of the synthesized SBA15 were considerably large. By contrast, when a large amount of PVA was added, the pore wall thickness was greatly reduced, but the mesopore volume and size increased. This is because the added PVA interacted with the polyethylene oxide (PEO) in the shells of the P123 micelles. Furthermore, when the amount of PVA was increased, the core polypropylene oxide (PPO) block also increased, owing to the enhanced aggregation of the P123/PVA mixed micelles. This research contributes to a basic comprehension of the cooperative interactions and formation process underlying porous silica materials, assisting in the rational design and synthesis of micro/mesoporous materials.
Collapse
Affiliation(s)
- Seongmin Kim
- Mineral Processing & Metallurgy Research Center, Resources Utilization Division, Korea Institute of Geoscience & Mineral Resources (KIGAM), 124, Gwahak-ro, Yuseong-gu, Daejeon 34132, Republic of Korea
| | - Minuk Jung
- Mineral Processing & Metallurgy Research Center, Resources Utilization Division, Korea Institute of Geoscience & Mineral Resources (KIGAM), 124, Gwahak-ro, Yuseong-gu, Daejeon 34132, Republic of Korea
| | - Seongsoo Han
- Mineral Processing & Metallurgy Research Center, Resources Utilization Division, Korea Institute of Geoscience & Mineral Resources (KIGAM), 124, Gwahak-ro, Yuseong-gu, Daejeon 34132, Republic of Korea
| | - Ho-Seok Jeon
- Mineral Processing & Metallurgy Research Center, Resources Utilization Division, Korea Institute of Geoscience & Mineral Resources (KIGAM), 124, Gwahak-ro, Yuseong-gu, Daejeon 34132, Republic of Korea
- Department of Resources Recycling, University of Science and Technology (UST), 217, Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Yosep Han
- Mineral Processing & Metallurgy Research Center, Resources Utilization Division, Korea Institute of Geoscience & Mineral Resources (KIGAM), 124, Gwahak-ro, Yuseong-gu, Daejeon 34132, Republic of Korea
- Department of Resources Recycling, University of Science and Technology (UST), 217, Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| |
Collapse
|
6
|
Ma M, Xu S, Liu Q, Xu J, Li Y, Sun Y, Yu Y, Chen C, Chen Z, Li L, Zheng C, He C. Rationally Engineering a CuO/Pd@SiO 2 Core-Shell Catalyst with Isolated Bifunctional Pd and Cu Active Sites for n-Butylamine Controllable Decomposition. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16189-16199. [PMID: 36214785 DOI: 10.1021/acs.est.2c04256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Volatile organic amines are a category of typical volatile organic compounds (VOCs) extensively presented in industrial exhausts causing serious harm to the atmospheric environment and human health. Monometallic Pd and Cu-based catalysts are commonly adopted for catalytic destruction of hazardous organic amines, but their applications are greatly limited by the inevitable production of toxic amide and NOx byproducts and inferior low-temperature activity. Here, a CuO/Pd@SiO2 core-shell-structured catalyst with diverse functionalized active sites was creatively developed, which realized the total decomposition of n-butylamine at 260 °C with a CO2 yield and N2 selectivity reaching up to 100% and 98.3%, respectively (obviously better than those of Pd@SiO2 and CuO/SiO2), owing to the synergy of isolated Pd and Cu sites in independent mineralization of n-butylamine and generation of N2, respectively. The formation of amide and short-chain aliphatic hydrocarbon intermediates via C-C bond cleavage tended to occur over Pd sites, while the C-N bond was prone to breakage over Cu sites, generating NH2· species and long free-N chain intermediates at low temperatures, avoiding the production of hazardous amide and NOx. The SiO2 channel collapse and H+ site production resulted in the formation of N2O via suppressing NH2· diffusion. This work provides critical guidance for a rational fabrication of catalysts with high activity and N2 selectivity for environmentally friendly destruction of nitrogen-containing VOCs.
Collapse
Affiliation(s)
- Mudi Ma
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an710049, Shaanxi, P.R. China
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459Singapore
| | - Shuai Xu
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment, Chang'an University, Xi'an710064, P.R. China
| | - Qiyuan Liu
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an710049, Shaanxi, P.R. China
| | - Junwei Xu
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an710049, Shaanxi, P.R. China
| | - Yuliang Li
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment, Chang'an University, Xi'an710064, P.R. China
| | - Yukun Sun
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, School of Water and Environment, Chang'an University, Xi'an710064, P.R. China
| | - Yanke Yu
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an710049, Shaanxi, P.R. China
| | - Changwei Chen
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an710049, Shaanxi, P.R. China
| | - Zhaohui Chen
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an710049, Shaanxi, P.R. China
| | - Lu Li
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an710049, Shaanxi, P.R. China
| | - Chunli Zheng
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an710049, Shaanxi, P.R. China
| | - Chi He
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an710049, Shaanxi, P.R. China
- National Engineering Laboratory for VOCs Pollution Control Material and Technology, University of Chinese Academy of Sciences, Beijing101408, P.R. China
| |
Collapse
|
7
|
Lv M, Song S, Verma P, Wen M. Hollow mesoporous aluminosilicate spheres imbedded with Pd nanoparticles for high performance toluene combustion. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Xing X, Zhao T, Cheng J, Duan X, Li W, Li G, Zhang Z, Hao Z. Promotional effect of Cu additive for the selective catalytic oxidation of n-butylamine over CeZrO catalyst. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Achieving acetone efficient deep decomposition by strengthening reactants adsorption and activation over difunctional Au(OH)K x/hierarchical MFI catalyst. J Colloid Interface Sci 2022; 612:504-515. [PMID: 35007876 DOI: 10.1016/j.jcis.2021.12.184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 11/23/2022]
Abstract
Realizing the simultaneous adsorption and activation of O2 and reactants over supported noble metal catalysts is crucial for the oxidation of organic hydrocarbons. Herein, we report a facile one-step ethylene glycol reduction method to synthesize difunctional Au(OH)Kx sites, which were anchored on a hierarchical hollow MFI support and adopted for acetone decomposition. The alkali ion-associated adjacent surface hydroxyl groups were coordinated with Au nanoparticles, resulting in partially oxidized Au1+ sites with improved dispersion. The results obtained from exclusive ex situ and in situ experiments illustrated that the proper content of K and hydroxyl groups significantly enhanced the adsorption of surface O2 and acetone molecules around the Au sites simultaneously, whereas the excess K species inhibited the catalytic performance by blocking the pore structure and decreasing the acidity of catalysts. The Au(OH)K0.7/h-MFI catalyst exhibited the highest efficiency for acetone oxidation, over which 1500 ppm acetone can be completely oxidized at just 280 °C with an extremely low activation energy of 32.5 kJ mol-1. The carbonate species were detected as the main intermediates during acetone decomposition over the difunctional Au(OH)Kx sites through a Langmuir - Hinshelwood (L - H) mechanism. This finding paves the way for designing and constructing efficient functional active sites for the complete oxidation of hydrocarbons.
Collapse
|
10
|
Magnesium-Modified Co3O4 Catalyst with Remarkable Performance for Toluene Low Temperature Deep Oxidation. Catalysts 2022. [DOI: 10.3390/catal12040411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Co3O4, MgCo2O4 and MgO materials have been synthesized using a simple co-precipitation approach and systematically characterized. The total conversion of toluene to CO2 and H2O over spinel MgCo2O4 with wormlike morphology has been investigated. Compared with single metal oxides (Co3O4 and MgO), MgCo2O4 with the highest activity has exhibited almost 100% oxidation of toluene at 255 °C. The obtained results are analogous to typical precious metal supported catalysts. The activation energy of toluene over MgCo2O4 (38.5 kJ/mol) is found to be much lower than that of Co3O4 (68.9 kJ/mol) and MgO ((87.8 kJ/mol)). Compared with the single Co and Mg metal oxide, the as-prepared spinel MgCo2O4 exhibits a larger surface area, highest absorbed oxygen and more oxygen vacancies, thus highest mobility of oxygen species due to its good redox capability. Furthermore, the samples specific surface area, low-temperature reducibility and surface adsorbed oxygenated species ratio decreased as follows: MgCo2O4 > Co3O4 > MgO; which is completely in line with the catalytic performance trends and constitute the reasons for MgCo2O4 high excellent activity towards toluene total oxidation. The overall finding supported by ab initio molecular dynamics simulations of toluene oxidation on the Co3O4 and MgCo2O4 suggest that the catalytic process follows a Mars–van Krevelen mechanism.
Collapse
|
11
|
Wang J, Wang P, Wu Z, Yu T, Abudula A, Sun M, Ma X, Guan G. Mesoporous catalysts for catalytic oxidation of volatile organic compounds: preparations, mechanisms and applications. REV CHEM ENG 2022. [DOI: 10.1515/revce-2021-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Volatile organic compounds (VOCs) are mainly derived from human activities, but they are harmful to the environment and our health. Catalytic oxidation is the most economical and efficient method to convert VOCs into harmless substances of water and carbon dioxide at relatively low temperatures among the existing techniques. Supporting noble metal and/or transition metal oxide catalysts on the porous materials and direct preparation of mesoporous catalysts are two efficient ways to obtain effective catalysts for the catalytic oxidation of VOCs. This review focuses on the preparation methods for noble-metal-based and transition-metal-oxide-based mesoporous catalysts, the reaction mechanisms of the catalytic oxidations of VOCs over them, the catalyst deactivation/regeneration, and the applications of such catalysts for VOCs removal. It is expected to provide guidance for the design, preparation and application of effective mesoporous catalysts with superior activity, high stability and low cost for the VOCs removal at lower temperatures.
Collapse
Affiliation(s)
- Jing Wang
- School of Chemical Engineering , Northwest University, International Science & Technology Cooperation Base of MOST for Clean Utilization of Hydrocarbon Resources; Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy; Shaanxi Research Center of Engineering Technology for Clean Coal Conversion; and Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern Shaanxi , Xi’an 710069 , Shaanxi , China
| | - Peifen Wang
- Graduate School of Science and Technology , Hirosaki University , 1-Bunkyocho , Hirosaki 036-8560 , Aomori , Japan
| | - Zhijun Wu
- Graduate School of Science and Technology , Hirosaki University , 1-Bunkyocho , Hirosaki 036-8560 , Aomori , Japan
| | - Tao Yu
- Graduate School of Science and Technology , Hirosaki University , 1-Bunkyocho , Hirosaki 036-8560 , Aomori , Japan
| | - Abuliti Abudula
- Graduate School of Science and Technology , Hirosaki University , 1-Bunkyocho , Hirosaki 036-8560 , Aomori , Japan
| | - Ming Sun
- School of Chemical Engineering , Northwest University, International Science & Technology Cooperation Base of MOST for Clean Utilization of Hydrocarbon Resources; Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy; Shaanxi Research Center of Engineering Technology for Clean Coal Conversion; and Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern Shaanxi , Xi’an 710069 , Shaanxi , China
| | - Xiaoxun Ma
- School of Chemical Engineering , Northwest University, International Science & Technology Cooperation Base of MOST for Clean Utilization of Hydrocarbon Resources; Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy; Shaanxi Research Center of Engineering Technology for Clean Coal Conversion; and Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern Shaanxi , Xi’an 710069 , Shaanxi , China
| | - Guoqing Guan
- Graduate School of Science and Technology , Hirosaki University , 1-Bunkyocho , Hirosaki 036-8560 , Aomori , Japan
- Energy Conversion Engineering Laboratory , Institute of Regional Innovation (IRI), Hirosaki University , 2-1-3 Matsubara , Aomori 030-0813 , Japan
| |
Collapse
|
12
|
Novel insights into diethylamine catalytic combustion over CuO catalysts supported by SSZ-13: Undesirable product NOx as a crucial intermediate for N2 generation. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Ma M, Yang R, He C, Jiang Z, Shi JW, Albilali R, Fayaz K, Liu B. Pd-based catalysts promoted by hierarchical porous Al 2O 3 and ZnO microsphere supports/coatings for ethyl acetate highly active and stable destruction. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123281. [PMID: 32629352 DOI: 10.1016/j.jhazmat.2020.123281] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/02/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
Developing economical and active materials is of great significance for VOC purification. Here, hierarchical porous Al2O3 and ZnO microspheres (Al2O3-pm and ZnO-pm) were synthesized by a facile hydrothermal strategy. The urchin-like Al2O3-pm and flower-like ZnO-pm possess high specific surface area (especially; external surface area) obviously boost the dispersion of Pd with 29.3 % and 30.1 % over Pd/Al2O3-pm and Pd/ZnO-pm, respectively, over 3.4 times higher than those of commercial Al2O3- and ZnO-supported counterparts. Pd/Al2O3-pm possesses excellent activity and CO2 yield in ethyl acetate (EA) degradation, with TOF reaches 7.76 × 10-3 s-1 at 160 °C under GHSV of 50,000 h-1. Moreover, Pd/Al2O3-pm exhibits satisfied performance in EA-contained binary VOCs oxidation and has high long-term stability under both dry and humid conditions. Both Pd sites and Brønsted acid sites participated in reaction process and initially react with EA to form ethylene and ethanol, respectively. Larger amount Brønsted acid sites over Pd/Al2O3-pm promote ethanol formation and C-C cleavage, resulting in different CO2 yields and EA activation mechanisms. The coating greatly enhances Pd dispersion over Pd supported monolithic catalyst, endowing its desired activity and stability even with a much lower Pd loading. This work promotes the potential application of noble-metal-based monolithic materials in VOC degradation.
Collapse
Affiliation(s)
- Mudi Ma
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Rui Yang
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Chi He
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, PR China.
| | - Zeyu Jiang
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Jian-Wen Shi
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Reem Albilali
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Khaled Fayaz
- Department of Criminal Justice and Forensic Science, King Fahd Security College, P.O. Box 2511, Riyadh 11461, Saudi Arabia
| | - Baojun Liu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, PR China.
| |
Collapse
|
14
|
Xing X, Li N, Cheng J, Sun Y, Zhang Z, Zhang X, Hao Z. Synergistic effects of Cu species and acidity of Cu-ZSM-5 on catalytic performance for selective catalytic oxidation of n-butylamine. J Environ Sci (China) 2020; 96:55-63. [PMID: 32819699 DOI: 10.1016/j.jes.2020.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/14/2020] [Accepted: 03/15/2020] [Indexed: 06/11/2023]
Abstract
In this work, a series of Cu-ZSM-5 catalysts with different SiO2/Al2O3 ratios (25, 50, 100 and 200) were synthesized and investigated in n-butylamine catalytic degradation. The n-butylamine can be completely catalytic degradation at 350°C over all Cu-ZSM-5 catalysts. Moreover, Cu-ZSM-5 (25) exhibited the highest selectivity to N2, exceeding 90% at 350°C. These samples were investigated in detail by several characterizations to illuminate the dependence of the catalytic performance on redox properties, Cu species, and acidity. The characterization results proved that the redox properties and chemisorption oxygen primarily affect n-butylamine conversion. N2 selectivity was impacted by the Brønsted acidity and the isolated Cu2+ species. Meanwhile, the surface acid sites over Cu-ZSM-5 catalysts could influence the formation of Cu species. Furthermore, in situ diffuse reflectance infrared Fourier transform spectra was adopted to explore the reaction mechanism. The Cu-ZSM-5 catalysts are the most prospective catalysts for nitrogen-containing volatile organic compounds removal, and the results in this study could provide new insights into catalysts design for VOC catalytic oxidation.
Collapse
Affiliation(s)
- Xin Xing
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Na Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jie Cheng
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Yonggang Sun
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zhongshen Zhang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xin Zhang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zhengping Hao
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
15
|
Wisniewska J, Grzelak K, Huang SP, Sobczak I, Yang CM, Ziolek M. The influence of Zr presence in short channel SBA-15 on state and activity of metallic modifiers (Ag, Au, Cu, Fe). Catal Today 2020. [DOI: 10.1016/j.cattod.2019.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Lv L, Wang S, Ding Y, Zhang L, Gao Y, Wang S. Deactivation mechanism and anti-deactivation modification of Ru/TiO 2 catalysts for CH 3Br oxidation. CHEMOSPHERE 2020; 257:127249. [PMID: 32526463 DOI: 10.1016/j.chemosphere.2020.127249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/19/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Lirong Lv
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Sheng Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China.
| | - Ya Ding
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Lei Zhang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yang Gao
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Shudong Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| |
Collapse
|
17
|
Cui W, Chen H, Liu Q, Cui M, Chen X, Fei Z, Huang J, Tao Z, Wang M, Qiao X. Mn/Co Redox Cycle Promoted Catalytic Performance of Mesoporous SiO
2
‐Confined Highly Dispersed LaMn
x
Co
1‐x
O
3
Perovskite Oxides in n‐Butylamine Combustion. ChemistrySelect 2020. [DOI: 10.1002/slct.202002076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Wei Cui
- College of Chemical EngineeringNanjing Tech University Nanjing 211816 PR China State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816 PR China
| | - Huawei Chen
- College of Chemical EngineeringNanjing Tech University Nanjing 211816 PR China State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816 PR China
| | - Qing Liu
- College of Chemical EngineeringNanjing Tech University Nanjing 211816 PR China State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816 PR China
| | - Mifen Cui
- College of Chemical EngineeringNanjing Tech University Nanjing 211816 PR China State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816 PR China
| | - Xian Chen
- College of Chemical EngineeringNanjing Tech University Nanjing 211816 PR China State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816 PR China
| | - Zhaoyang Fei
- College of Chemical EngineeringNanjing Tech University Nanjing 211816 PR China State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816 PR China
| | - Jincan Huang
- College of Chemical EngineeringNanjing Tech University Nanjing 211816 PR China State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816 PR China
| | - Zuliang Tao
- College of Chemical EngineeringNanjing Tech University Nanjing 211816 PR China State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816 PR China
| | - Minghong Wang
- College of Chemical EngineeringNanjing Tech University Nanjing 211816 PR China State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816 PR China
| | - Xu Qiao
- College of Chemical EngineeringNanjing Tech University Nanjing 211816 PR China State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816 PR China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing 211816 PR China
| |
Collapse
|
18
|
Wang J, Wang P, Zhao Q, Yu T, Du X, Hao X, Abudula A, Guan G. Highly dispersed Ag nanoparticles embedded on the surface of CeO2/CF nanowires derived from three-dimensional structured Cu foam for toluene catalytic oxidation. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Huang Q, Si H, Yu S, Wang J, Tao T, Yang B, Zhao Y, Chen M. Fabrication of MnO x-CeO 2/cordierite catalysts doped with FeO x and CuO for preferable catalytic oxidation of chlorobenzene. ENVIRONMENTAL TECHNOLOGY 2020; 41:1664-1676. [PMID: 30379618 DOI: 10.1080/09593330.2018.1543359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/28/2018] [Indexed: 06/08/2023]
Abstract
A series of MnOx-CeO2 catalysts with MOx doping (M = Cu, Fe, Co and La) supported on cordierite were synthesized by the citric acid complex method, showing preferable catalytic oxidation of chlorobenzene. The distribution of active oxides, surface areas, as well as the structural morphology of M-MnOx-CeO2 catalysts varied with the different Mn/Ce and M/Mn molar ratios. Meanwhile, physicochemical properties of these catalysts were characterized by XRD, BET, SEM, TEM, H2-TPR and IR. More importantly, the catalytic oxidation routes were also investigated where the process was from chlorobenzene to CO2, H2O, HCl and other by-products for the FeOx-MnOx-CeO2 and CuO-MnOx-CeO2 catalysts. The CuO-MnOx-CeO2 catalysts showed a higher chlorobenzene conversion, and the measured light-off temperature T90 was approximately 400°C. However, a large amount of chloropropane as main by-products was observed. For the FeOx-MnOx-CeO2 catalysts, more carbon monoxide could be found with inadequate oxidation. Comparative analyses of two catalysts indicated that the main cause of the oxidation activities and mechanisms were different in the oxidation capacity and water absorbability of FeOx and CuO. Nevertheless, all of these catalysts did not exhibit any deactivation due to chloride with a high reaction temperature, with chloride transformed to form HCl in the off-gas stream.
Collapse
Affiliation(s)
- Qiong Huang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technologies, Jiangsu Key Laboratory of Atmospheric Environmental Monitoring & Pollution Control, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing, People's Republic of China
| | - Han Si
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technologies, Jiangsu Key Laboratory of Atmospheric Environmental Monitoring & Pollution Control, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing, People's Republic of China
| | - Shukun Yu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technologies, Jiangsu Key Laboratory of Atmospheric Environmental Monitoring & Pollution Control, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing, People's Republic of China
| | - Jiaxiao Wang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technologies, Jiangsu Key Laboratory of Atmospheric Environmental Monitoring & Pollution Control, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing, People's Republic of China
| | - Tao Tao
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technologies, Jiangsu Key Laboratory of Atmospheric Environmental Monitoring & Pollution Control, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing, People's Republic of China
| | - Bo Yang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technologies, Jiangsu Key Laboratory of Atmospheric Environmental Monitoring & Pollution Control, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing, People's Republic of China
| | - Yunxia Zhao
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technologies, Jiangsu Key Laboratory of Atmospheric Environmental Monitoring & Pollution Control, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing, People's Republic of China
| | - Mindong Chen
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technologies, Jiangsu Key Laboratory of Atmospheric Environmental Monitoring & Pollution Control, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing, People's Republic of China
| |
Collapse
|
20
|
Hu C, Fang C, Lu Y, Wang Y, Chen J, Luo M. Selective Oxidation of Diethylamine on CuO/ZSM-5 Catalysts: The Role of Cooperative Catalysis of CuO and Surface Acid Sites. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Caihong Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Chentao Fang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Ying Lu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Yuejuan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Jian Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Mengfei Luo
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
21
|
Peng M, Hong C, Cai N, Hu Y, Yuan H. Effect of metal doping on multi-step electron transfer and oxygen species of silicon-based nanocomposite aerogel supported Pd catalysts in oxidative carbonylation of phenol. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2019.110684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
22
|
Spherical-like Pd/SiO2 catalysts for n-butylamine efficient combustion: Effect of support property and preparation method. Catal Today 2020. [DOI: 10.1016/j.cattod.2018.11.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Xing X, Li N, Sun Y, Wang G, Cheng J, Hao Z. Selective catalytic oxidation of n-butylamine over Cu-zeolite catalysts. Catal Today 2020. [DOI: 10.1016/j.cattod.2018.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Zhu Q, Jiang Z, Ma M, He C, Yu Y, Liu X, Albilali R. Revealing the unexpected promotion effect of diverse potassium precursors on α-MnO2 for the catalytic destruction of toluene. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02347j] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The alkali metal potassium has the functions of structure promotion and electronic modulation in metal oxides.
Collapse
Affiliation(s)
- Qing Zhu
- Department of Environmental Science and Engineering
- State Key Laboratory of Multiphase Flow in Power Engineering
- School of Energy and Power Engineering
- Xi'an Jiaotong University
- Xi'an 710049
| | - Zeyu Jiang
- Department of Environmental Science and Engineering
- State Key Laboratory of Multiphase Flow in Power Engineering
- School of Energy and Power Engineering
- Xi'an Jiaotong University
- Xi'an 710049
| | - Mudi Ma
- Department of Environmental Science and Engineering
- State Key Laboratory of Multiphase Flow in Power Engineering
- School of Energy and Power Engineering
- Xi'an Jiaotong University
- Xi'an 710049
| | - Chi He
- Department of Environmental Science and Engineering
- State Key Laboratory of Multiphase Flow in Power Engineering
- School of Energy and Power Engineering
- Xi'an Jiaotong University
- Xi'an 710049
| | - Yanke Yu
- Department of Chemical Engineering
- Columbia University
- New York 10027
- USA
| | - Xiaohe Liu
- Department of Environmental Science and Engineering
- State Key Laboratory of Multiphase Flow in Power Engineering
- School of Energy and Power Engineering
- Xi'an Jiaotong University
- Xi'an 710049
| | - Reem Albilali
- Department of Chemistry
- College of Science
- Imam Abdulrahman Bin Faisal University
- Dammam 31441
- Saudi Arabia
| |
Collapse
|
25
|
Odoom-Wubah T, Li Q, Adilov I, Huang J, Li Q. Towards efficient Pd/Mn3O4 catalyst with enhanced acidic sites and low temperature reducibility for Benzene abatement. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.110558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Xing X, Li N, Cheng J, Sun Y, Wang G, Zhang Z, Xu H, He C, Hao Z. Hydrotalcite-Derived CuxMg3–xAlO Oxides for Catalytic Degradation of n-Butylamine with Low Concentration NO and Pollutant-Destruction Mechanism. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xin Xing
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, P. R. China
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Na Li
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, P. R. China
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Jie Cheng
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, P. R. China
| | - Yonggang Sun
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, P. R. China
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Gang Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Zhongshen Zhang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, P. R. China
| | - Hao Xu
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, P. R. China
| | - Chi He
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, P. R. China
- Department of Environmental Science and Engineering, State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, P. R. China
| | - Zhengping Hao
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, P. R. China
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| |
Collapse
|
27
|
Zhao B, Jian Y, Jiang Z, Albilali R, He C. Revealing the unexpected promotion effect of EuO on Pt/CeO2 catalysts for catalytic combustion of toluene. CHINESE JOURNAL OF CATALYSIS 2019. [DOI: 10.1016/s1872-2067(19)63292-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
He C, Cheng J, Zhang X, Douthwaite M, Pattisson S, Hao Z. Recent Advances in the Catalytic Oxidation of Volatile Organic Compounds: A Review Based on Pollutant Sorts and Sources. Chem Rev 2019; 119:4471-4568. [DOI: 10.1021/acs.chemrev.8b00408] [Citation(s) in RCA: 708] [Impact Index Per Article: 118.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chi He
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
- Department of Environmental Science and Engineering, State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, P.R. China
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Jie Cheng
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Xin Zhang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| | - Mark Douthwaite
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Samuel Pattisson
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Zhengping Hao
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, P.R. China
| |
Collapse
|
29
|
Chen H, Yang Y, Liu Q, Cui M, Chen X, Fei Z, Tao Z, Wang M, Qiao X. A citric acid-assisted deposition strategy to synthesize mesoporous SiO2-confined highly dispersed LaMnO3 perovskite nanoparticles for n-butylamine catalytic oxidation. RSC Adv 2019; 9:8454-8462. [PMID: 35518705 PMCID: PMC9061879 DOI: 10.1039/c8ra10636c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/05/2019] [Indexed: 11/21/2022] Open
Abstract
A citric acid-assisted deposition strategy was applied to synthesize mesoporous SiO2-confined highly dispersed LaMnO3 perovskite nanoparticles with optimum catalytic performance and N2 selectivity.
Collapse
Affiliation(s)
- Huawei Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- PR China
| | - Yanran Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- PR China
| | - Qing Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- PR China
| | - Mifen Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- PR China
| | - Xian Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- PR China
| | - Zhaoyang Fei
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- PR China
| | - Zuliang Tao
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- PR China
| | - Minghong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- PR China
| | - Xu Qiao
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- PR China
| |
Collapse
|