1
|
Butburee T, Prasert A, Rungtaweevoranit B, Khemthong P, Mano P, Youngjan S, Phanthasri J, Namuangruk S, Faungnawakij K, Zhang L, Jin P, Liu H, Wang F. Engineering Lewis-Acid Defects on ZnO Quantum Dots by Trace Transition-Metal Single Atoms for High Glycerol-to-Glycerol Carbonate Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403661. [PMID: 38994824 DOI: 10.1002/smll.202403661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/02/2024] [Indexed: 07/13/2024]
Abstract
Efficient conversion of biomass wastes into valuable chemicals has been regarded as a sustainable approach for green and circular economy. Herein, a highly efficient catalytic conversion of glycerol (Gly) into glycerol carbonate (GlyC) by carbonylation with the commercially available urea is presented using low-cost transition metal single atoms supported on zinc oxide quantum dots (M1-ZnO QDs) as a catalyst without using any solvent. A facile one-step wet chemical synthesis allows various types of metal single atoms to simultaneously dope and introduce Lewis-acid defects in the ZnO QD structure. It is found that doping with a trace amount of isolated metal atoms greatly boosts the catalytic activity with Gly conversion of 90.7%, GlyC selectivity of 100.0%, and GlyC yield of 90.6%. Congruential results from both Density Functional Theory (DFT) and in situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (in situ DRIFTS) studies reveal that the superior catalytic performance can be attributed to the enriched Lewis acid sites that endow optimal adsorption, formation of the intermediate for coupling between urea and Gly, and desorption of GlyC. Moreover, the tiny size of ZnO QDs efficiently promotes the accessibility of these active sites to the reactants.
Collapse
Affiliation(s)
- Teera Butburee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathum Thani, 12120, Thailand
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), 239 Zhangheng Rd., New Pudong District, Shanghai, 201204, P. R. China
- State Key Laboratory of Catalysis (SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences (CAS), 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Ampawan Prasert
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Bunyarat Rungtaweevoranit
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Pongtanawat Khemthong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Poobodin Mano
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Saran Youngjan
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Jakkapop Phanthasri
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Supawadee Namuangruk
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Kajornsak Faungnawakij
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Lijuan Zhang
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), 239 Zhangheng Rd., New Pudong District, Shanghai, 201204, P. R. China
| | - Ping Jin
- State Key Laboratory of Catalysis (SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences (CAS), 457 Zhongshan Road, Dalian, 116023, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Huifang Liu
- State Key Laboratory of Catalysis (SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences (CAS), 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Feng Wang
- State Key Laboratory of Catalysis (SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences (CAS), 457 Zhongshan Road, Dalian, 116023, P. R. China
| |
Collapse
|
2
|
Praikaew W, Chuseang J, Prameswari J, Ratchahat S, Chaiwat W, Koo-Amornpattana W, Assabumrungrat S, Lin YC, Srifa A. Direct Production of Sustainable Aviation Fuel by Deoxygenation and Isomerization of Triglycerides Over Bifunctional Ir-ReO x/SAPO-11 Catalyst. Chempluschem 2024; 89:e202400075. [PMID: 38828489 DOI: 10.1002/cplu.202400075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/07/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
Catalytic thermochemical conversion offers a sustainable method to upgrade oil-based feedstocks into highly valuable biofuel, aligning with the modern biorefinery concept. Herein, a series of IrRe/SAPO-11 catalysts with different Ir to Re molar ratios compared to reference Ir/SAPO-11 and Re/SAPO-11 catalysts was prepared using a wetness impregnation method. These catalysts were used for the direct production of sustainable aviation fuels (SAFs) via efficient hydrodeoxygenation and hydroisomerization of triglycerides. The catalyst screening confirmed that the optimum IrRe/SAPO-11 catalyst, with an equivalent Ir to Re molar ratio, exhibited the highest hydrodeoxygenation activity under milder operation conditions than the conditions used in previous studies. Increasing the reaction temperature up to 330 °C enhanced the formation of iso-alkanes in the liquid product, achieving a freezing point of -31.4 °C without additional cold flow improvers. Furthermore, a long-term stability experiment demonstrated that the developed Ir-Re system exhibited exceptional performance over 150 h. This excellent catalytic activity and stability of the bifunctional IrRe/SAPO-11 catalyst was owing to its suitable interface between metallic and oxide sites, mixed mesoporous structures, reduced catalyst size, and increased Lewis acid ratio, as confirmed by our comprehensive characterizations.
Collapse
Affiliation(s)
- Wanichaya Praikaew
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Jirawat Chuseang
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Jedy Prameswari
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Sakhon Ratchahat
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Weerawut Chaiwat
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Wanida Koo-Amornpattana
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Suttichai Assabumrungrat
- Center of Excellence in Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Bio-Circular-Green-Economy Technology & Engineering Center, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Yu-Chuan Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Atthapon Srifa
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, 73170, Thailand
| |
Collapse
|
3
|
Prangklang D, Tumnantong D, Yoosuk B, Ngamcharussrivichai C, Prasassarakich P. Selective Deoxygenation of Waste Cooking Oil to Diesel-Like Hydrocarbons Using Supported and Unsupported NiMoS 2 Catalysts. ACS OMEGA 2023; 8:40921-40933. [PMID: 37929158 PMCID: PMC10620879 DOI: 10.1021/acsomega.3c06188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023]
Abstract
This work aimed to study the deoxygenation of two different waste cooking oils (WCOs; palm oil and soybean oil) using alumina (γ-Al2O3)-supported and unsupported NiMoS2 catalysts prepared by the hydrothermal method. The variables evaluated in this study were the reactant concentration, reaction time, and nickel (Ni)/[Ni + molybdenum (Mo)] atomic ratio (0.2 and 0.3) affecting the yield and selectivity of alkane products. The supported NiMo sulfide (NiMoS2)/γ-Al2O3 catalyst prepared by impregnation had the drawback of a lack of layers and stacks, so combining the γ-Al2O3 with unsupported NiMoS2 catalysts using a hydrothermal method was evaluated. The main products obtained from the deoxygenation of the two WCOs were normal (n-)alkane compounds (C15, C16, C17, and C18). The catalyst efficiency was ranked as 0.2-NiMoS2/γ-Al2O3 ≈ 0.2-NiMoS2 > 0.3-NiMoS2/γ-Al2O3 ≈ 0.3-NiMoS2. The catalyst that gave the high n-C15-C18 yield was 0.2-NiMoS2/γ-Al2O3 under a reaction condition of 300 °C, 40 bar initial H2 pressure, and oil concentration of 5 wt %. For the hydrodeoxygenation (HDO) of waste palm oil, the n-C14-C18 yield was 56.4% (C14, C15, C16, C17, and C18 at 1.3, 6.7, 14.5, 11.8, and 22.1%, respectively), while that for the waste soybean oil was 58% (C14, C15, C16, C17, and C18 at 1.1, 3.8, 6.7, 17.2, and 29.2%, respectively). The n-C18/n-C17 and n-C16/n-C15 ratios were both greater than 1 for both types of WCO, revealing that the deoxygenation mainly proceeded via HDO rather than decarbonylation and decarboxylation. The 5-10% lower n-C14-C18 yield from the waste oil compared with the fresh oil was acceptable, implying the effective oil treatment and some impurity removal.
Collapse
Affiliation(s)
- Dechpol Prangklang
- Department
of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center
of Excellence on Petrochemical and Materials Technology (PETROMAT), Chulalongkorn University, Bangkok 10330, Thailand
| | - Dusadee Tumnantong
- Department
of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Boonyawan Yoosuk
- Clean
Fuel Technology and Advanced Chemistry Research Team, National Energy
Technology Center, National Science and
Technology Development Agency, Pathum, Thani 12120, Thailand
| | - Chawalit Ngamcharussrivichai
- Department
of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center
of Excellence on Petrochemical and Materials Technology (PETROMAT), Chulalongkorn University, Bangkok 10330, Thailand
- Center
of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC),
Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pattarapan Prasassarakich
- Department
of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center
of Excellence on Petrochemical and Materials Technology (PETROMAT), Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
4
|
Ma H, Zheng X, Zhang H, Ma G, Zhang W, Jiang Z, Chen D. Atomic Cu-N-P-C Active Complex with Integrated Oxidation and Chlorination for Improved Ethylene Oxychlorination. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205635. [PMID: 36658766 PMCID: PMC10015856 DOI: 10.1002/advs.202205635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Fine constructing the chemical environment of the central metal is vital in developing efficient single-atom catalysts (SACs). Herein, the atomically dispersed Cu on the N-doped carbon is modulated by introducing CuP moiety to CuNC SAC. Through fine-tuning with another heteroatom P, the Cu SAC shows the superior performance of ethylene oxychlorination. The Cu site activity of Cu-NPC is four times higher than the P-free Cu-NC catalyst and 25 times higher than the Ce-promoted CuCl2 /Al2 O3 catalyst in the long-term test (>200 h). The selectivity of ethylene dichloride can be splendidly kept at ≈99%. Combined experimental and simulation studies provide a theoretical framework for the coordination of Cu, N, and P in the complex active center and its role in effectively catalyzing ethylene oxychlorination. It integrates the oxidation and chlorination reactions with superior catalytic performance and unrivaled ability of corrosive-HCl resistance. The concept of fine constructing with another heteroatom is anticipated to provide with inspiration for rational catalyst design and expand the applications of carbon-based SACs in heterogeneous catalysis.
Collapse
Affiliation(s)
- Hongfei Ma
- Department of Chemical EngineeringNorwegian University of Science and TechnologySem sælands vei 4Trondheim7034Norway
| | - Xiuhui Zheng
- State Key Laboratory of Heavy Oil ProcessingChina University of PetroleumQingdaoShandong266580P. R. China
| | - Hao Zhang
- Institute of Functional Nano & Soft Materials Laboratory(FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesJoint International Research Laboratory of Carbon‐Based Functional Materials and DevicesSoochow UniversitySuzhou215123P. R. China
- Shanghai Synchrotron Radiation FacilityZhangjiang LabShanghai Advanced Research InstituteChinese Academy of SciencesShanghai201210P. R. China
| | - Guoyan Ma
- College of Chemistry and Chemical EngineeringXi'an Shiyou UniversityXi'anShaanxi710065P. R. China
| | - Wei Zhang
- Department of Chemical EngineeringNorwegian University of Science and TechnologySem sælands vei 4Trondheim7034Norway
| | - Zheng Jiang
- Shanghai Synchrotron Radiation FacilityZhangjiang LabShanghai Advanced Research InstituteChinese Academy of SciencesShanghai201210P. R. China
| | - De Chen
- Department of Chemical EngineeringNorwegian University of Science and TechnologySem sælands vei 4Trondheim7034Norway
| |
Collapse
|
5
|
Catalytic dehydration of 2-propanol over nickel phosphide immobilized on natural bentonite. REACTION KINETICS MECHANISMS AND CATALYSIS 2023. [DOI: 10.1007/s11144-023-02373-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
6
|
Hasanudin H, Asri WR, Zulaikha IS, Ayu C, Rachmat A, Riyanti F, Hadiah F, Zainul R, Maryana R. Hydrocracking of crude palm oil to a biofuel using zirconium nitride and zirconium phosphide-modified bentonite. RSC Adv 2022; 12:21916-21925. [PMID: 36043093 PMCID: PMC9361004 DOI: 10.1039/d2ra03941a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022] Open
Abstract
In this study, bentonite modified by zirconium nitride (ZrN) and zirconium phosphide (ZrP) catalysts was studied in the hydrocracking of crude palm oil to biofuels. The study demonstrated that bentonite was propitiously modified by ZrN and ZrP, as assessed by XRD, FTIR spectroscopy, and SEM-EDX analysis. The acidity of the bentonite catalyst was remarkably enhanced by ZrN and ZrP, and it showed an increased intensity in the Lewis acid and Brønsted acid sites, as presented by pyridine FTIR. In the hydrocracking application, the highest conversion was achieved by bentonite-ZrN at 8 mEq g−1 catalyst loading of 87.93%, whereas bentonite-ZrP at 10 mEq g−1 showed 86.04% conversion, which suggested that there was a strong positive correlation between the catalyst acidity and the conversion under a particular condition. The biofuel distribution fraction showed that both the catalysts produced a high bio-kerosene fraction, followed by bio-gasoline and oil fuel fractions. The reusability study revealed that both the catalysts had sufficient conversion stability of CPO through the hydrocracking reaction up to four consecutive runs with a low decrease in the catalyst activity. Overall, bentonite-ZrN dominantly favored the hydrocracking of CPO than bentonite-ZrP. In this study, bentonite modified by zirconium nitride (ZrN) and zirconium phosphide (ZrP) catalysts was studied in the hydrocracking of crude palm oil to biofuels.![]()
Collapse
Affiliation(s)
- Hasanudin Hasanudin
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Sriwijaya Indralaya 30662 Indonesia .,Biofuel Research Group, Faculty of Mathematics and Natural Science, Universitas Sriwijaya Indralaya 30662 Indonesia
| | - Wan Ryan Asri
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Sriwijaya Indralaya 30662 Indonesia .,Biofuel Research Group, Faculty of Mathematics and Natural Science, Universitas Sriwijaya Indralaya 30662 Indonesia
| | - Indah Sari Zulaikha
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Sriwijaya Indralaya 30662 Indonesia .,Biofuel Research Group, Faculty of Mathematics and Natural Science, Universitas Sriwijaya Indralaya 30662 Indonesia
| | - Cik Ayu
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Sriwijaya Indralaya 30662 Indonesia .,Biofuel Research Group, Faculty of Mathematics and Natural Science, Universitas Sriwijaya Indralaya 30662 Indonesia
| | - Addy Rachmat
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Sriwijaya Indralaya 30662 Indonesia .,Biofuel Research Group, Faculty of Mathematics and Natural Science, Universitas Sriwijaya Indralaya 30662 Indonesia
| | - Fahma Riyanti
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Sriwijaya Indralaya 30662 Indonesia .,Biofuel Research Group, Faculty of Mathematics and Natural Science, Universitas Sriwijaya Indralaya 30662 Indonesia
| | - Fitri Hadiah
- Department of Chemical Engineering, Faculty of Engineering, Universitas Sriwijaya Indralaya 30662 Indonesia
| | - Rahadian Zainul
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Negeri Padang Padang Indonesia
| | - Roni Maryana
- Research Center for Chemistry, Indonesian Institute of Sciences Building 452 Kawasan PUSPIPTEK, Serpong Tangerang Selatan Banten Indonesia
| |
Collapse
|
7
|
Chia SR, Nomanbhay S, Ong MY, Shamsuddin AHB, Chew KW, Show PL. Renewable diesel as fossil fuel substitution in Malaysia: A review. FUEL 2022; 314:123137. [DOI: 10.1016/j.fuel.2022.123137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
8
|
Towards sustainable catalysts in hydrodeoxygenation of algae-derived oils: A critical review. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
9
|
Theoretical Investigation of the Deactivation of Ni Supported Catalysts for the Catalytic Deoxygenation of Palm Oil for Green Diesel Production. Catalysts 2021. [DOI: 10.3390/catal11060747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
For the first time, a fully comprehensive heterogeneous computational fluid dynamic (CFD) model has been developed to predict the selective catalytic deoxygenation of palm oil to produce green diesel over an Ni/ZrO2 catalyst. The modelling results were compared to experimental data, and a very good validation was obtained. It was found that for the Ni/ZrO2 catalyst, the paraffin conversion increased with temperature, reaching a maximum value (>95%) at 300 °C. However, temperatures greater than 300 °C resulted in a loss of conversion due to the fact of catalyst deactivation. In addition, at longer times, the model predicted that the catalyst activity would decline faster at temperatures higher than 250 °C. The CFD model was able to predict this deactivation by relating the catalytic activity with the reaction temperature.
Collapse
|