1
|
Roman C, Lucas J, Dorman JA, Dooley KM. Improved Performance of Catalysts Containing Pt, Pt-Sn, and V in the Dehydrogenation of n-Butane by Radio-Frequency Induction Heating. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2025; 13:2978-2997. [PMID: 40018295 PMCID: PMC11863546 DOI: 10.1021/acssuschemeng.4c10045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 03/01/2025]
Abstract
Due to an abundance of shale gas, manufacturers are interested in meeting increased demands for alkenes, especially n-alkenes, by the dehydrogenation of light alkanes. While the catalysts for these reactions have been studied for many years, alkene selectivity and deactivation remain challenging problems. This work addresses these problems by the substitution of a localized indirect heating method (radio-frequency induction heating, RF-IH) for more traditional process heating employing steam or burners (e.g., natural gas combustion). RF-IH has been applied to the dehydrogenation of n-butane to C4 alkenes by utilizing magnetically susceptible catalysts based on Fe/Fe3O4 susceptors. Magnetic core-shell catalysts with either Pt or V as active metals were synthesized to mimic typical n-butane dehydrogenation catalysts. For these catalysts, RF-IH operation resulted in significantly improved selectivity to alkenes and less deactivation when compared to conventional thermal heating, although the initial activities were not always as high as their thermally operated counterparts. These results provide motivation to continue investigating the effects of RF-IH and its benefits to certain heterogeneous catalytic processes.
Collapse
Affiliation(s)
- Cameron
L. Roman
- Department
of Chemical Engineering, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - Jonathan Lucas
- Department
of Chemical Engineering, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - James A. Dorman
- Department
of Chemical Engineering, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - Kerry M. Dooley
- Department
of Chemical Engineering, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| |
Collapse
|
2
|
Yang GQ, Niu Y, Kondratenko VA, Yi X, Liu C, Zhang B, Kondratenko EV, Liu ZW. Controlling Metal-Oxide Reducibility for Efficient C-H Bond Activation in Hydrocarbons. Angew Chem Int Ed Engl 2023; 62:e202310062. [PMID: 37702304 DOI: 10.1002/anie.202310062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/14/2023]
Abstract
Knowing the structure of catalytically active species/phases and providing methods for their purposeful generation are two prerequisites for the design of catalysts with desired performance. Herein, we introduce a simple method for precise preparation of supported/bulk catalysts. It utilizes the ability of metal oxides to dissolve and to simultaneously precipitate during their treatment in an aqueous ammonia solution. Applying this method for a conventional VOx -Al2 O3 catalyst, the concentration of coordinatively unsaturated Al sites was tuned simply by changing the pH value of the solution. These sites affect the strength of V-O-Al bonds of isolated VOx species and thus the reducibility of the latter. This method is also applicable for controlling the reducibility of bulk catalysts as demonstrated for a CeO2 -ZrO2 -Al2 O3 system. The application potential of the developed catalysts was confirmed in the oxidative dehydrogenation of ethylbenzene to styrene with CO2 and in the non-oxidative propane dehydrogenation to propene. Our approach is extendable to the preparation of any metal oxide catalysts dissolvable in an ammonia solution.
Collapse
Affiliation(s)
- Guo-Qing Yang
- Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
- Leibniz-Institut für Katalyse e.V, Albert-Einstein-Strasse 29 a, Rostock, 18059, Germany
| | - Yiming Niu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Vita A Kondratenko
- Leibniz-Institut für Katalyse e.V, Albert-Einstein-Strasse 29 a, Rostock, 18059, Germany
| | - Xianfeng Yi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Chang Liu
- Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Evgenii V Kondratenko
- Leibniz-Institut für Katalyse e.V, Albert-Einstein-Strasse 29 a, Rostock, 18059, Germany
| | - Zhong-Wen Liu
- Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
3
|
Facile Preparation and Promising Hydrothermal Stability of Spherical γ-Alumina Support with High Specific Surface Area. Catalysts 2022. [DOI: 10.3390/catal12111416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
It is of great importance to develop a spherical γ-alumina support with high hydrothermal stability to be used in platinum reforming catalyst processes. The porous pseudo-boehmite powder with a high surface area was first synthesized via a simple separate nucleation and aging steps method, and was then used as a precursor to produce a spherical γ-Al2O3 support via an oil–ammonia column method. The as-synthesized pseudo-boehmite has a substantially greater specific surface area of 336.0 m2·g−1 in comparison with the commercial Sasol boehmite powder (293.0 m2·g−1) from Sasol Chemicals. In addition, the as-prepared spherical γ-Al2O3 support derived from the as-synthesized pseudo-boehmite also possesses a higher specific surface area of 280.0 m2·g−1 compared to the corresponding Sasol sample. Moreover, the as-prepared spherical γ-Al2O3 balls demonstrate a much higher specific surface area of 185.0 m2·g−1 compared with the Sasol sample of 142.0 m2·g−1 after hydrothermal tests at 600 °C, suggesting its promising application in the chemical industry.
Collapse
|
4
|
Yang F, Zhang J, Shi Z, Chen J, Wang G, He J, Zhao J, Zhuo R, Wang R. Advanced design and development of catalysts in propane dehydrogenation. NANOSCALE 2022; 14:9963-9988. [PMID: 35815671 DOI: 10.1039/d2nr02208g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Propane dehydrogenation (PDH) is an industrial technology for direct propylene production, which has received extensive attention and realized large-scale application. At present, the commercial Pt/Cr-based catalysts suffer from fast deactivation and inferior stability resulting from active species sintering and coke depositing. To overcome the above problems, several strategies such as the modification of the support and the introduction of additives have been proposed to strengthen the catalytic performance and prolong the robust stability of Pt/Cr-based catalysts. This review firstly gives a brief description of the development of PDH and PDH catalysts. Then, the advanced research progress of supported noble metals and non-noble metals together with metal-free materials for PDH is systematically summarized along with the material design and active origin as well as the existing problems in the development of PDH catalysts. Furthermore, the review also emphasizes advanced synthetic strategies based on novel design of PDH catalysts with improved dehydrogenation activity and stability. Finally, the future challenges and directions of PDH catalysts are provided for the development of their further industrial application.
Collapse
Affiliation(s)
- Fuwen Yang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Zongbo Shi
- REZEL Catalysts Corporation, Shanghai 200120, China
| | - Jinwei Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Gang Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Junjie He
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Junyu Zhao
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | | | - Ruilin Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu 610065, China
| |
Collapse
|
5
|
Dispersion and Stabilization of Supported Layered Double Hydroxide-Based Nanocomposites on V-Based Catalysts for Nonoxidative Dehydrogenation of Isobutane to Isobutene. Catalysts 2022. [DOI: 10.3390/catal12040382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Nonoxidative dehydrogenation of isobutane is one of the sustainable strategies for producing high value added isobutene. As alternatives for the commercial Pt- and Cr-based dehydrogenation catalysts, supported V-based catalysts are worthy of study. In this work, a series of VOx/mMgAlO-R catalysts (m = 10, 15, 20, 25 and 30) were designed and prepared by loading VOx on mMgAlO composite oxide supports derived from mesoporous Al2O3-supported layered double hydroxide (LDH) nanocomposites. The calcined and reduced catalysts were characterized by X-ray diffraction (XRD), Raman spectra, Ultraviolet-visible diffuse reflectance (UV-Vis) spectra, NH3 temperature-programmed desorption (NH3-TPD), Temperature-programmed reduction (H2-TPR), X-Ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TG) and low temperature N2 adsorption–desorption isotherms. The as-synthesized VOx/20MgAlO-R with appropriate Mg addition exhibits superior activity (43–56% conversion and 77–81% selectivity), excellent stability and coking-resistance for the isobutane dehydrogenation. The structure–performance relationship reveals that the formation of VOx species confined in the reconstructed LDH interlayer and porous MgO facilitates dispersing and stabilizing the VOx species. The low polymerization degree and higher proportion of V4+ ion for VOx species, strong acidity of medium acid sites and low concentration of strong acid sites are responsible for the excellent anti-coking and catalytic performance. The strong VOx–support interaction is beneficial for enhancing the stability of the catalysts.
Collapse
|
6
|
Zhang H, Jiang Y, Wang G, Tang N, Zhu X, Li C, Shan H. In-depth study on propane dehydrogenation over Al2O3-based unconventional catalysts with different crystal phases. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|