1
|
Kattula B, Munakala A, Kashyap R, Nallamilli T, Nagendla NK, Naza S, Mudiam MKR, Chegondi R, Addlagatta A. Strategic enzymatic enantioselective desymmetrization of prochiral cyclohexa-2,5-dienones. Chem Commun (Camb) 2024; 60:6647-6650. [PMID: 38856301 DOI: 10.1039/d4cc02181a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Asymmetric desymmetrization through the selective reduction of one double bond of prochiral 2,5-cyclohexadienones is highly challenging. A novel method has been developed for synthesizing chiral cyclohexenones by employing an ene-reductase (Bacillus subtilis YqjM) enzyme that belongs to the OYE family. Our strategy demonstrates high substrate scope and enantioselectivity towards substrates containing all-carbon as well as heteroatom (O, N)-containing quaternary centers. The mechanistic studies (kH/D = ∼1.8) indicate that hydride transfer is probably the rate-limiting step. Mutation of several active site residues did not affect the stereochemical outcomes. This work provides a convenient way of synthesizing various enantioselective γ,γ-disubstituted cyclohexanones using enzymes.
Collapse
Affiliation(s)
- Bhavita Kattula
- Department of Applied Biology, Hyderabad, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Anandarao Munakala
- Department of Organic Synthesis and Process Chemistry, Hyderabad, Telangana, India.
| | | | - Tarun Nallamilli
- Department of Organic Synthesis and Process Chemistry, Hyderabad, Telangana, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Narendra Kumar Nagendla
- Department of Analytical and Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Surabhi Naza
- Department of Applied Biology, Hyderabad, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Mohana Krishna Reddy Mudiam
- Department of Analytical and Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Rambabu Chegondi
- Department of Organic Synthesis and Process Chemistry, Hyderabad, Telangana, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Anthony Addlagatta
- Department of Applied Biology, Hyderabad, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
2
|
Somsri S, Suwankaisorn B, Yomthong K, Srisuwanno W, Klinyod S, Kuhn A, Wattanakit C. Highly Enantioselective Synthesis of Pharmaceuticals at Chiral-Encoded Metal Surfaces. Chemistry 2023; 29:e202302054. [PMID: 37555292 DOI: 10.1002/chem.202302054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 08/10/2023]
Abstract
Enantioselective catalysis is of crucial importance in modern chemistry and pharmaceutical science. Although various concepts have been used for the development of enantioselective catalysts to obtain highly pure chiral compounds, most of them are based on homogeneous catalytic systems. Recently, we successfully developed nanostructured metal layers imprinted with chiral information, which were applied as electrocatalysts for the enantioselective synthesis of chiral model compounds. However, so far such materials have not been employed as heterogeneous catalysts for the enantioselective synthesis of real pharmaceutical products. In this contribution, we report the asymmetric synthesis of chiral pharmaceuticals (CPs) with chiral imprinted Pt-Ir surfaces as a simple hydrogenation catalyst. By fine-tuning the experimental parameters, a very high enantioselectivity (up to 95 % enantiomeric excess) with good catalyst stability can be achieved. The designed materials were also successfully used as catalytically active stationary phases for the continuous asymmetric flow synthesis of pharmaceutical compounds. This illustrates the possibility of producing real chiral pharmaceuticals at such nanostructured metal surfaces for the first time.
Collapse
Affiliation(s)
- Supattra Somsri
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Banyong Suwankaisorn
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 16 Avenue Pey Berland, 33607, Pessac, France
| | - Krissanapat Yomthong
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Wanmai Srisuwanno
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 16 Avenue Pey Berland, 33607, Pessac, France
| | - Sorasak Klinyod
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Alexander Kuhn
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
- University of Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 16 Avenue Pey Berland, 33607, Pessac, France
| | - Chularat Wattanakit
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| |
Collapse
|
3
|
Zhang B, Du H, Zheng Y, Sun J, Shen Y, Lin J, Wei D. Design and engineering of whole-cell biocatalyst for efficient synthesis of (R)-citronellal. Microb Biotechnol 2021; 15:1486-1498. [PMID: 34729922 PMCID: PMC9049607 DOI: 10.1111/1751-7915.13958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/12/2021] [Indexed: 11/15/2022] Open
Abstract
Bioproduction of optical pure (R)‐citronellal from (E/Z)‐citral at high substrate loading remains challenging. Low catalytic efficiency of (R)‐stereoselective ene reductases towards crude citral mixture is one of the major bottlenecks. Herein, a structure‐based engineering strategy was adopted to enhance the catalytic efficiency and stereoselectivity of an ene reductase (OYE2p) from Saccharomyces cerevisiae YJM1341 towards (E/Z)‐citral. On basis of homologous modelling, molecular docking analysis and alanine scanning at the binding pocket of OYE2p, a mutant Y84A was obtained with simultaneous increase in catalytic efficiency and stereoselectivity. Furthermore, site‐saturation mutagenesis of Y84 yielded seven mutants with improved activity and stereoselectivity in the (E/Z)‐citral reduction. Among them, the variant Y84V exhibited an 18.3% and 71.3% rise in catalytic efficiency (kcat/Km) for (Z)‐citral and (E)‐citral respectively. Meanwhile, the stereoselectivity of Y84V was improved from 89.2% to 98.0% in the reduction in (E/Z)‐citral. The docking analysis and molecular dynamics simulation of OYE2p and its variants revealed that the substitution Y84V enabled (E)‐citral and (Z)‐citral to bind with a smaller distance to the key hydrogen donors at a modified (R)‐selective binding mode. The variant Y84V was then co‐expressed with glucose dehydrogenase from Bacillus megaterium in E. coli D4, in which competing prim‐alcohol dehydrogenase genes were deleted to prevent the undesired reduction in the aldehyde moiety of citral and citronellal. Employing this biocatalyst, 106 g l−1 (E/Z)‐citral was completely converted into (R)‐citronellal with 95.4% ee value and a high space‐time yield of 121.6 g l−1 day−1. The work highlights the synthetic potential of Y84V, which enabled the highest productivity of (R)‐citronellal from (E/Z)‐citral in high enantiopurity so far.
Collapse
Affiliation(s)
- Baoqi Zhang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Han Du
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Yanqiu Zheng
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiale Sun
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Yu Shen
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Jinping Lin
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|