1
|
Luo J, Xu S, Xu H, Zhang Z, Chen X, Li M, Tie Y, Zhang H, Chen G, Jiang C. Overview of mechanisms of Fe-based catalysts for the selective catalytic reduction of NO x with NH 3 at low temperature. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:14424-14465. [PMID: 38291211 DOI: 10.1007/s11356-024-32113-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
With the increasingly stringent control of NOx emissions, NH3-SCR, one of the most effective de-NOx technologies for removing NOx, has been widely employed to eliminate NOx from automobile exhaust and industrial production. Researchers have favored iron-based catalysts for their low cost, high activity, and excellent de-NOx performance. This paper takes a new perspective to review the research progress of iron-based catalysts. The influence of the chemical form of single iron-based catalysts on their performance was investigated. In the section on composite iron-based catalysts, detailed reviews were conducted on the effects of synergistic interactions between iron and other elements on catalytic performance. Regarding loaded iron-based catalysts, the catalytic performance of iron-based catalysts on different carriers was systematically examined. In the section on iron-based catalysts with novel structures, the effects of the morphology and crystallinity of nanomaterials on catalytic performance were analyzed. Additionally, the reaction mechanism and poisoning mechanism of iron-based catalysts were elucidated. In conclusion, the paper delved into the prospects and future directions of iron-based catalysts, aiming to provide ideas for the development of iron-based catalysts with better application prospects. The comprehensive review underscores the significance of iron-based catalysts in the realm of de-NOx technologies, shedding light on their diverse forms and applications. The hope is that this paper will serve as a valuable resource, guiding future endeavors in the development of advanced iron-based catalysts.
Collapse
Affiliation(s)
- Jianbin Luo
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Institute of the New Energy and Energy-Saving & Emission-Reduction, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Song Xu
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Institute of the New Energy and Energy-Saving & Emission-Reduction, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Hongxiang Xu
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Institute of the New Energy and Energy-Saving & Emission-Reduction, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Zhiqing Zhang
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China.
- Institute of the New Energy and Energy-Saving & Emission-Reduction, Guangxi University of Science and Technology, Liuzhou, 545006, China.
| | - Xiaofeng Chen
- Guangxi Automobile Group Co., Ltd, Liuzhou, 545007, China
| | - Mingsen Li
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Institute of the New Energy and Energy-Saving & Emission-Reduction, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Yuanhao Tie
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Institute of the New Energy and Energy-Saving & Emission-Reduction, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Haiguo Zhang
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Institute of the New Energy and Energy-Saving & Emission-Reduction, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Guiguang Chen
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Institute of the New Energy and Energy-Saving & Emission-Reduction, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Chunmei Jiang
- Institute of the New Energy and Energy-Saving & Emission-Reduction, Guangxi University of Science and Technology, Liuzhou, 545006, China
| |
Collapse
|
2
|
Ting-ting X, Gang-gang L, Kai-hua Z, Xin-yan Z, Xin Z, Shao-qing Z. Effective reduction of nitric oxide over a core-shell Cu-SAPO-34@Fe-MOR zeolite catalyst. RSC Adv 2022; 13:638-651. [PMID: 36605656 PMCID: PMC9780741 DOI: 10.1039/d2ra06708k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
In this study, a core-shell catalyst of Cu-SAPO-34@Fe-MOR was successfully prepared through a silica-sol adhesion method, and its performance for selective catalytic reduction of nitric oxide by NH3 (NH3-SCR) was evaluated in detail. The Fe-MOR coating has not only increased the high-temperature activity and broadened the reaction temperature window of Cu-SAPO-34 to a large extent, but also increased the hydrothermal stability of Cu-SAPO-34 markedly. It is demonstrated that a strong synergistic interaction effect exists between Cu2+ and Fe3+ ions and promotes the redox cycle and oxidation-reduction ability of copper ions, which greatly accelerates the catalytic performance of the core-shell Cu-SAPO-34@Fe-MOR catalyst. Abundant isolated Cu2+ ions and Fe3+ ions on the ion exchange sites performing NO x reduction at low and high temperature region lead to the broad reaction temperature window of Cu-SAPO-34@Fe-MOR. In addition, more weakly adsorbed NO x species formed and the increased number of Lewis acid sites may also contribute to the higher catalytic performance of Cu-SAPO-34@Fe-MOR. On the other hand, the better hydrothermal ageing stability of Cu-SAPO-34@Fe-MOR is related to its lighter structural collapse, fewer acidic sites lost, more active components (Cu2+ and Fe3+) maintained, and more monodentate nitrate species formed in the core-shell catalyst after hydrothermal ageing. Last, the mechanism study has found that both Langmuir-Hinshelwood ("L-H") and Eley-Rideal ("E-R") mechanisms play an essential role in the catalytic process of Cu-SAPO-34@Fe-MOR, and constitute another reason for its higher activity compared with that of Cu-SAPO-34 (only "L-H" mechanism).
Collapse
Affiliation(s)
- Xu Ting-ting
- School of Chemistry and Environmental Engineering, Changchun University of Science and TechnologyChangchun 130022P. R. China+86-431-8558-3152+86-431-8558-3152
| | - Li Gang-gang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of SciencesBeijing 101408P. R. China
| | - Zheng Kai-hua
- School of Chemistry and Environmental Engineering, Changchun University of Science and TechnologyChangchun 130022P. R. China+86-431-8558-3152+86-431-8558-3152
| | - Zhang Xin-yan
- School of Chemistry and Environmental Engineering, Changchun University of Science and TechnologyChangchun 130022P. R. China+86-431-8558-3152+86-431-8558-3152,Chongqing Research Institute, Changchun University of Science and TechnologyChongqing 401135P. R. China
| | - Zhang Xin
- School of Chemistry and Environmental Engineering, Changchun University of Science and TechnologyChangchun 130022P. R. China+86-431-8558-3152+86-431-8558-3152
| | - Zhang Shao-qing
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences4888 Shengbei Street, North District of Changchun High, ChangchunJilin 130102China
| |
Collapse
|
3
|
Jia Y, Zheng R, Jiang J, Yuan J, Guo L, Wang R, Gu M, Zhao R, Zhang S. Excellently Remove NOx Over V-Modified Heteropolyacid Catalyst (V-HPMo/TiO2): Activity, Characterization and Mechanism. Catal Letters 2022. [DOI: 10.1007/s10562-022-04061-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Liu W, Long Y, Liu S, Zhou Y, Tong X, Yin Y, Li X, Hu K, Hu J. Promotional effect of Ce in NH3-SCO and NH3-SCR reactions over Cu-Ce/SCR catalysts. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.11.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
5
|
Tailor the crystal planes of MIL-101(Fe) derivatives to enhance the activity of SCR reaction at medium and low temperature. J Colloid Interface Sci 2022; 615:432-444. [PMID: 35149355 DOI: 10.1016/j.jcis.2022.01.147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/17/2022] [Accepted: 01/23/2022] [Indexed: 11/23/2022]
Abstract
Mainly exposed crystal facets and controllable morphology play a key role in the final performance of the preparation of specific nanomaterials. In the present study, a metal-organic framework pyrolysis method without adding solvent modifiers was developed. By adding CO in the calcination atmosphere to change atmosphere ratio, Fe3O4 nanostructures are exposed with different crystal planes and evaluated their performance in NH3-SCR reaction. This study proves that SCR catalytic activity of Fe3O4 nanocrystals is dependent on morphology and crystal facet. Compared with materials exposed (100), catalysts with more (111) show stronger deNOx performance. The preferential exposure of Fe3O4 (111) crystal facets increases the concentration of adsorbed oxygen on the catalyst, showing higher surface acidity, and enhances the interaction among NO, O2 and catalyst, which is conducive to SCR reaction. This is supported by DFT calculations. The results present a great application prospect in preparing nanomaterials with specific crystal structures to effectively treat pollutants.
Collapse
|
6
|
Wang L, Ren Y, Yu X, Yu D, Peng C, Zhou Q, Hou J, Zhong C, Yin C, Fan X, Zhao Z, Cheng K, Chen Y, Sojka Z, Kotarba A, Wei Y, Liu J. Facile preparation, catalytic performance and reaction mechanism of MnxCo1-xOδ/3DOM-m Ti0.7Si0.2W0.1Oy catalysts for the simultaneous removal of soot and NOx. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00077f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, three-dimensionally ordered macroporous-mesoporous Ti0.7Si0.2W0.1Oy (3DOM-m TiSiWO) supported MnxCo1-xOδ catalysts with different x values were prepared using the colloidal crystal template method and incipient wetness impregnation method. The...
Collapse
|