1
|
Soares De Oliveira L, Ritter MJ. Thyroid hormone and the Liver. Hepatol Commun 2025; 9:e0596. [PMID: 39699315 PMCID: PMC11661762 DOI: 10.1097/hc9.0000000000000596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 12/20/2024] Open
Abstract
It is known that thyroid hormone can regulate hepatic metabolic pathways including cholesterol, de novo lipogenesis, fatty acid oxidation, lipophagy, and carbohydrate metabolism. Thyroid hormone action is mediated by the thyroid hormone receptor (THR) isoforms and their coregulators, and THRβ is the main isoform expressed in the liver. Dysregulation of thyroid hormone levels, as seen in hypothyroidism, has been associated with dyslipidemia and metabolic dysfunction-associated fatty liver disease. Given the beneficial effects of thyroid hormone in liver metabolism and the advances illuminating the use of thyroid hormone analogs such as resmetirom as therapeutic agents in the treatment of metabolic dysfunction-associated fatty liver disease, this review aims to further explore the relationship between TH, the liver, and metabolic dysfunction-associated fatty liver disease. Herein, we summarize the current clinical therapies and highlight future areas of research.
Collapse
|
2
|
Abstract
The present review traces the road leading to discovery of L-thyroxine, thyroid hormone (3,5,3´-triiodo-L-thyronine, T3) and its cognate nuclear receptors. Thyroid hormone is a pleio-tropic regulator of growth, differentiation, and tissue homeostasis in higher organisms. The major site of the thyroid hormone action is predominantly a cell nucleus. T3 specific binding sites in the cell nuclei have opened a new era in the field of the thyroid hormone receptors (TRs) discovery. T3 actions are mediated by high affinity nuclear TRs, TRalpha and TRbeta, which function as T3-activated transcription factors playing an essential role as transcription-modulating proteins affecting the transcriptional responses in target genes. Discovery and characterization of nuclear retinoid X receptors (RXRs), which form with TRs a heterodimer RXR/TR, positioned RXRs at the epicenter of molecular endocrinology. Transcriptional control via nuclear RXR/TR heterodimer represents a direct action of thyroid hormone. T3 plays a crucial role in the development of brain, it exerts significant effects on the cardiovascular system, skeletal muscle contractile function, bone development and growth, both female and male reproductive systems, and skin. It plays an important role in maintaining the hepatic, kidney and intestine homeostasis and in pancreas, it stimulates the beta-cell proliferation and survival. The TRs cross-talk with other signaling pathways intensifies the T3 action at cellular level. The role of thyroid hormone in human cancers, acting via its cognate nuclear receptors, has not been fully elucidated yet. This review is aimed to describe the history of T3 receptors, starting from discovery of T3 binding sites in the cell nuclei to revelation of T3 receptors as T3-inducible transcription factors in relation to T3 action at cellular level. It also focuses on milestones of investigation, comprising RXR/TR dimerization, cross-talk between T3 receptors, and other regulatory pathways within the cell and mainly on genomic action of T3. This review also focuses on novel directions of investigation on relationships between T3 receptors and cancer. Based on the update of available literature and the author's experimental experience, it is devoted to clinicians and medical students.
Collapse
|
3
|
Ritter MJ, Amano I, Hollenberg AN. Thyroid Hormone Signaling and the Liver. Hepatology 2020; 72:742-752. [PMID: 32343421 DOI: 10.1002/hep.31296] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/30/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022]
Abstract
Thyroid hormone (TH) plays a critical role in maintaining metabolic homeostasis throughout life. It is well known that the liver and thyroid are intimately linked, with TH playing important roles in de novo lipogenesis, beta-oxidation (fatty acid oxidation), cholesterol metabolism, and carbohydrate metabolism. Indeed, patients with hypothyroidism have abnormal lipid panels with higher levels of low-density lipoprotein levels, triglycerides (triacylglycerol; TAG), and apolipoprotein B levels. Even in euthyroid patients, lower serum-free thyroxine levels are associated with higher total cholesterol levels, LDL, and TAG levels. In addition to abnormal serum lipids, the risk of nonalcoholic fatty liver disease (NAFLD) increases with lower free thyroxine levels. As free thyroxine rises, the risk of NAFLD is reduced. This has led to numerous animal studies and clinical trials investigating TH analogs and TH receptor agonists as potential therapies for NAFLD and hyperlipidemia. Thus, TH plays an important role in maintaining hepatic homeostasis, and this continues to be an important area of study. A review of TH action and TH actions on the liver will be presented here.
Collapse
Affiliation(s)
- Megan J Ritter
- Division of Endocrinology, Weill Cornell Medicine, New York, NY
| | - Izuki Amano
- Division of Endocrinology, Weill Cornell Medicine, New York, NY.,Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | | |
Collapse
|
4
|
Identification of hepatic thyroid hormone-responsive genes in neonatal rats: Potential targets for thyroid hormone-disrupting chemicals. Toxicol Lett 2018; 286:48-53. [PMID: 29357290 DOI: 10.1016/j.toxlet.2018.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 12/11/2017] [Accepted: 01/03/2018] [Indexed: 12/22/2022]
Abstract
There have been many concerns about the possible adverse effects of thyroid hormone-disrupting chemicals in the environment. Because thyroid hormones are essential for regulating the growth and differentiation of many tissues, disruption of thyroid hormones during the neonatal period of an organism might lead to permanent effects on that organism. We postulated that there are target genes that are sensitive to thyroid hormones particularly during the neonatal period and that would thus be susceptible to thyroid hormone-disrupting chemicals. Global gene expression analysis was used to identify these genes in the liver of rat neonates. The changes in hepatic gene expression were examined 24 h after administering 1.0, 10, and 100 ng/g body weight (bw) triiodothyronine (T3) to male rats on postnatal day 3. Thirteen upregulated and four downregulated genes were identified in the neonatal liver. Among these, Pdp2 and Slc25a25 were found to be upregulated and more sensitive to T3 than the others, whereas Cyp7b1 and Hdc were found to be downregulated even at the lowest dose of 1.0 ng/g bw T3. Interestingly, when the responses of gene expression to T3 were examined in adult rats (8-week old), one-third of them did not respond to T3. The environmental chemicals with thyroid hormone-like activity, hydroxylated polybrominated diphenyl ethers, were then administered to neonatal rats to examine the effects on expression of the identified genes. The results showed that these chemicals were indeed capable of changing the expression of Slc25a25 and Hdc. Our results demonstrated a series of hepatic T3-responsive genes that are more sensitive to hormones during the neonatal period than during adulthood. These genes might be the potential targets of thyroid hormone-disrupting chemicals in newborns.
Collapse
|
5
|
Flees J, Rajaei-Sharifabadi H, Greene E, Beer L, Hargis BM, Ellestad L, Porter T, Donoghue A, Bottje WG, Dridi S. Effect of Morinda citrifolia (Noni)-Enriched Diet on Hepatic Heat Shock Protein and Lipid Metabolism-Related Genes in Heat Stressed Broiler Chickens. Front Physiol 2017; 8:919. [PMID: 29230177 PMCID: PMC5711822 DOI: 10.3389/fphys.2017.00919] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/30/2017] [Indexed: 12/31/2022] Open
Abstract
Heat stress (HS) has been reported to alter fat deposition in broilers, however the underlying molecular mechanisms are not well-defined. The objectives of the current study were, therefore: (1) to determine the effects of acute (2 h) and chronic (3 weeks) HS on the expression of key molecular signatures involved in hepatic lipogenic and lipolytic programs, and (2) to assess if diet supplementation with dried Noni medicinal plant (0.2% of the diet) modulates these effects. Broilers (480 males, 1 d) were randomly assigned to 12 environmental chambers, subjected to two environmental conditions (heat stress, HS, 35°C vs. thermoneutral condition, TN, 24°C) and fed two diets (control vs. Noni) in a 2 × 2 factorial design. Feed intake and body weights were recorded, and blood and liver samples were collected at 2 h and 3 weeks post-heat exposure. HS depressed feed intake, reduced body weight, and up regulated the hepatic expression of heat shock protein HSP60, HSP70, HSP90 as well as key lipogenic proteins (fatty acid synthase, FASN; acetyl co-A carboxylase alpha, ACCα and ATP citrate lyase, ACLY). HS down regulated the hepatic expression of lipoprotein lipase (LPL) and hepatic triacylglycerol lipase (LIPC), but up-regulated ATGL. Although it did not affect growth performance, Noni supplementation regulated the hepatic expression of lipogenic proteins in a time- and gene-specific manner. Prior to HS, Noni increased ACLY and FASN in the acute and chronic experimental conditions, respectively. During acute HS, Noni increased ACCα, but reduced FASN and ACLY expression. Under chronic HS, Noni up regulated ACCα and FASN but it down regulated ACLY. In vitro studies, using chicken hepatocyte cell lines, showed that HS down-regulated the expression of ACCα, FASN, and ACLY. Treatment with quercetin, one bioactive ingredient in Noni, up-regulated the expression of ACCα, FASN, and ACLY under TN conditions, but it appeared to down-regulate ACCα and increase ACLY levels under HS exposure. In conclusion, our findings indicate that HS induces hepatic lipogenesis in chickens and this effect is probably mediated via HSPs. The modulation of hepatic HSP expression suggest also that Noni might be involved in modulating the stress response in chicken liver.
Collapse
Affiliation(s)
- Joshua Flees
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | | | - Elizabeth Greene
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Lesleigh Beer
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Billy M Hargis
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Laura Ellestad
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Tom Porter
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Annie Donoghue
- USDA, Agricultural Research Service, Fayetteville, AR, United States
| | - Walter G Bottje
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
6
|
Manea SA, Todirita A, Raicu M, Manea A. C/EBP transcription factors regulate NADPH oxidase in human aortic smooth muscle cells. J Cell Mol Med 2014; 18:1467-77. [PMID: 24797079 PMCID: PMC4124029 DOI: 10.1111/jcmm.12289] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 02/21/2014] [Indexed: 11/30/2022] Open
Abstract
In atherosclerosis, oxidative stress-induced vascular smooth muscle cells (SMCs) dysfunction is partially mediated by up-regulated NADPH oxidase (Nox); the mechanisms of enzyme regulation are not entirely defined. CCAAT/enhancer-binding proteins (C/EBP) regulate cellular proliferation and differentiation, and the expression of many inflammatory and immune genes. We aimed at elucidating the role of C/EBP in the regulation of Nox in SMCs exposed to pro-inflammatory conditions. Human aortic SMCs were treated with interferon-γ (IFN-γ) for up to 24 hrs. Lucigenin-enhanced chemiluminescence, real-time PCR, Western blot, promoter-luciferase reporter analysis and chromatin immunoprecipitation assays were employed to investigate Nox regulation. IFN-γ dose-dependently induced Nox activity and expression, nuclear translocation and up-regulation of C/EBPα, C/EBPβ and C/EBPδ protein expression levels. Silencing of C/EBPα, C/EBPβ or C/EBPδ reduced significantly but differentially the IFN-γ-induced up-regulation of Nox activity, gene and protein expression. In silico analysis indicated the existence of typical C/EBP sites within Nox1, Nox4 and Nox5 promoters. Transient overexpression of C/EBPα, C/EBPβ or C/EBPδ enhanced the luciferase level directed by the promoters of the Nox subtypes. Chromatin immunoprecipitation demonstrated the physical interaction of C/EBPα, C/EBPβ and C/EBPδ proteins with the Nox1/4/5 promoters. C/EBP transcription factors are important regulators of Nox enzymes in IFN-γ-exposed SMCs. Activation of C/EBP may induce excessive Nox-derived reactive oxygen species formation, further contributing to SMCs dysfunction and atherosclerotic plaque development. Pharmacological targeting of C/EBP-related signalling pathways may be used to counteract the adverse effects of oxidative stress.
Collapse
Affiliation(s)
- Simona-Adriana Manea
- Molecular and Cellular Pharmacology - Functional Genomics Laboratory, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | | | | | | |
Collapse
|
7
|
High glucose-induced increased expression of endothelin-1 in human endothelial cells is mediated by activated CCAAT/enhancer-binding proteins. PLoS One 2013; 8:e84170. [PMID: 24376792 PMCID: PMC3871648 DOI: 10.1371/journal.pone.0084170] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 11/20/2013] [Indexed: 12/30/2022] Open
Abstract
High glucose-induced endothelial dysfunction is partially mediated by the down-stream pathophysiological effects triggered by increased expression of endothelin-1 (ET-1). The molecular control mechanisms of ET-1 synthesis are yet to be discovered. Members of the CCAAT/enhancer-binding proteins (C/EBP) family are important regulators of key metabolic processes, cellular differentiation and proinflammatory genes. In this study, we aimed at elucidating the role of C/EBP in mediating the high glucose effect on ET-1 expression in human endothelial cells (EC). Human umbilical vein cells (EAhy926) and primary cultures of human aortic EC were exposed to high levels of glucose (16.5-25 mM). Real-time PCR, Western blot, enzyme-linked immunosorbent assay, ET-1 promoter-luciferase reporter analysis, and chromatin immunoprecipitation assays were employed to investigate ET-1 regulation. High glucose activated C/EBPα, C/EBPβ, and C/EBPδ in a dose-dependent manner. It also promoted significant increases in ET-1 gene and peptide expression. Chemical inhibition of JNK, p38MAPK and ERK1/2 diminished significantly the high glucose-induced nuclear translocation of C/EBP and ET-1 expression. Silencing of C/EBPα, C/EBPβ or C/EBPδ greatly reduced the high glucose-induced upregulation of ET-1 mRNA, pre-pro-ET-1, and ET-1 secretion. The expression of various C/EBP isoforms was selectively downregulated by siRNA-mediated gene silencing. In silico analysis indicated the existence of typical C/EBP elements within human ET-1 gene promoter. Transient overexpression of C/EBPα, C/EBPβ or C/EBPδ upregulated the luciferase level controlled by the ET-1 gene promoter. The direct interaction of C/EBPα, C/EBPβ or C/EBPδ proteins with the ET-1 promoter in high glucose-exposed EC was confirmed by chromatin immunoprecipitation assay. High glucose-induced ET-1 expression is mediated through multiple mechanisms. We present evidence that members of the C/EBP proinflammatory transcription factors are important regulators of ET-1 in high glucose-exposed human endothelial cells. High glucose-induced activation of C/EBP-related signaling pathways may induce excessive ET-1 synthesis, thus promoting vasoconstriction and dysfunction of the vascular wall cells in diabetes.
Collapse
|
8
|
Walsh CM, Suchanek AL, Cyphert TJ, Kohan AB, Szeszel-Fedorowicz W, Salati LM. Serine arginine splicing factor 3 is involved in enhanced splicing of glucose-6-phosphate dehydrogenase RNA in response to nutrients and hormones in liver. J Biol Chem 2012; 288:2816-28. [PMID: 23233666 DOI: 10.1074/jbc.m112.410803] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of G6PD is controlled by changes in the degree of splicing of the G6PD mRNA in response to nutrients in the diet. This regulation involves an exonic splicing enhancer (ESE) in exon 12 of the mRNA. Using the G6PD model, we demonstrate that nutrients and hormones control the activity of serine-arginine-rich (SR) proteins, a family of splicing co-activators, and thereby regulate the splicing of G6PD mRNA. In primary rat hepatocyte cultures, insulin increased the amount of phosphorylated SR proteins, and this effect was counteracted by arachidonic acid. The results of RNA affinity analysis with nuclear extracts from intact liver demonstrated that the SR splicing factor proteins SRSF3 and SRSF4 bound to the G6PD ESE. Consequently, siRNA-mediated depletion of SRSF3, but not SRSF4, in liver cells inhibited accumulation of both mRNA expressed from a minigene containing exon 12 and the endogenous G6PD mRNA. Consistent with the functional role of SRSF3 in regulating splicing, SRSF3 was observed to bind to the ESE in both intact cells and in animals using RNA immunoprecipitation analysis. Furthermore, refeeding significantly increased the binding of SRSF3 coincident with increased splicing and expression of G6PD. Together, these data establish that nutritional regulation of SRSF3 activity is involved in the differential splicing of the G6PD transcript in response to nutrients. Nutritional regulation of other SR proteins presents a regulatory mechanism that could cause widespread changes in mRNA splicing. Nutrients are therefore novel regulators of mRNA splicing.
Collapse
Affiliation(s)
- Callee M Walsh
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, USA
| | | | | | | | | | | |
Collapse
|
9
|
Santana-Farré R, Mirecki-Garrido M, Bocos C, Henríquez-Hernández LA, Kahlon N, Herrera E, Norstedt G, Parini P, Flores-Morales A, Fernández-Pérez L. Influence of neonatal hypothyroidism on hepatic gene expression and lipid metabolism in adulthood. PLoS One 2012; 7:e37386. [PMID: 22666351 PMCID: PMC3354003 DOI: 10.1371/journal.pone.0037386] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 04/19/2012] [Indexed: 11/30/2022] Open
Abstract
Thyroid hormones are required for normal growth and development in mammals. Congenital-neonatal hypothyroidism (CH) has a profound impact on physiology, but its specific influence in liver is less understood. Here, we studied how CH influences the liver gene expression program in adulthood. Pregnant rats were given the antithyroid drug methimazole (MMI) from GD12 until PND30 to induce CH in male offspring. Growth defects due to CH were evident as reductions in body weight and tail length from the second week of life. Once the MMI treatment was discontinued, the feed efficiency increased in CH, and this was accompanied by significant catch-up growth. On PND80, significant reductions in body mass, tail length, and circulating IGF-I levels remained in CH rats. Conversely, the mRNA levels of known GH target genes were significantly upregulated. The serum levels of thyroid hormones, cholesterol, and triglycerides showed no significant differences. In contrast, CH rats showed significant changes in the expression of hepatic genes involved in lipid metabolism, including an increased transcription of PPARα and a reduced expression of genes involved in fatty acid and cholesterol uptake, cellular sterol efflux, triglyceride assembly, bile acid synthesis, and lipogenesis. These changes were associated with a decrease of intrahepatic lipids. Finally, CH rats responded to the onset of hypothyroidism in adulthood with a reduction of serum fatty acids and hepatic cholesteryl esters and to T3 replacement with an enhanced activation of malic enzyme. In summary, we provide in vivo evidence that neonatal hypothyroidism influences the hepatic transcriptional program and tissue sensitivity to hormone treatment in adulthood. This highlights the critical role that a euthyroid state during development plays on normal liver physiology in adulthood.
Collapse
Affiliation(s)
- Ruymán Santana-Farré
- Department of Clinical Sciences, Molecular and Translational Endocrinology Group, University of Las Palmas de GC - Cancer Research Institute of The Canary Islands, Las Palmas de Gran Canaria, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Matsubara K, Sanoh S, Ohta S, Kitamura S, Sugihara K, Fujimoto N. An improved thyroid hormone reporter assay to determine the thyroid hormone-like activity of amiodarone, bithionol, closantel and rafoxanide. Toxicol Lett 2012; 208:30-5. [DOI: 10.1016/j.toxlet.2011.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/05/2011] [Accepted: 10/06/2011] [Indexed: 10/16/2022]
|
11
|
Attia RR, Sharma P, Janssen RC, Friedman JE, Deng X, Lee JS, Elam MB, Cook GA, Park EA. Regulation of pyruvate dehydrogenase kinase 4 (PDK4) by CCAAT/enhancer-binding protein beta (C/EBPbeta). J Biol Chem 2011; 286:23799-807. [PMID: 21586575 DOI: 10.1074/jbc.m111.246389] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The conversion of pyruvate to acetyl-CoA in mitochondria is catalyzed by the pyruvate dehydrogenase complex (PDC). Activity of PDC is inhibited by phosphorylation via the pyruvate dehydrogenase kinases (PDKs). Here, we examined the regulation of Pdk4 gene expression by the CCAAT/enhancer-binding protein β (C/EBPβ). C/EBPβ modulates the expression of multiple hepatic genes including those involved in metabolism, development, and inflammation. We found that C/EBPβ induced Pdk4 gene expression and decreased PDC activity. This transcriptional induction was mediated through two C/EBPβ binding sites in the Pdk4 promoter. C/EBPβ participates in the hormonal regulation of gluconeogenic genes. Previously, we reported that Pdk4 was induced by thyroid hormone (T(3)). Therefore, we investigated the role of C/EBPβ in the T(3) regulation of Pdk4. T(3) increased C/EBPβ abundance in primary rat hepatocytes. Knockdown of C/EBPβ with siRNA diminished the T(3) induction of the Pdk4 and carnitine palmitoyltransferase (Cpt1a) genes. CPT1a is an initiating step in the mitochondrial oxidation of long chain fatty acids. Our results indicate that C/EBPβ stimulates Pdk4 expression and participates in the T(3) induction of the Cpt1a and Pdk4 genes.
Collapse
Affiliation(s)
- Ramy R Attia
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Qin L, Chen X, Wu Y, Feng Z, He T, Wang L, Liao L, Xu J. Steroid receptor coactivator-1 upregulates integrin α₅ expression to promote breast cancer cell adhesion and migration. Cancer Res 2011; 71:1742-51. [PMID: 21343398 DOI: 10.1158/0008-5472.can-10-3453] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Metastatic breast cancer remains a lethal disease with poorly understood molecular mechanisms. Steroid receptor coactivator-1 (SRC-1 or NCOA1) is overexpressed in a subset of breast cancers with poor prognosis. It potentiates gene expression by serving as a coactivator for nuclear receptors and other transcription factors. We previously reported that SRC-1 promotes breast cancer metastasis without affecting primary mammary tumor formation. Herein, we found that SRC-1 deficiency in mouse and human breast cancer cells substantially reduced cell adhesion and migration capabilities on fibronectin and significantly extended the time of focal adhesion disassembly and reassembly. In agreement with this phenotype, SRC-1 expression positively correlated with integrin α(5) (ITGA5) expression in estrogen receptor-negative breast tumors whereas SRC-1 deficiency decreased ITGA5 expression. Furthermore, ITGA5 reduction in SRC-1-deficient/insufficient breast cancer cells or knockdown of ITGA5 in SRC-1-expressing breast cancer cells was associated with a disturbed integrin-mediated signaling. Critical downstream changes included reduced phosphorylation and/or dampened activation of focal adhesion kinase, paxillin, Rac1, and Erk1/2 during cell adhesion. Finally, we found that SRC-1 enhanced ITGA5 promoter activity through an AP-1 (activator protein)-binding site proximal to the transcriptional initiation site; both SRC-1 and c-Jun were recruited to this promoter region in breast cancer cells. These results show that SRC-1 can promote breast cancer metastasis by directly enhancing ITGA5 expression and thus promoting ITGA5-mediated cell adhesion and migration. Therefore, targeting ITGA5 in SRC-1-positive breast cancers may result in inhibition of SRC-1-promoted breast cancer metastasis.
Collapse
Affiliation(s)
- Li Qin
- Department of Molecular and Cellular Biology and Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Cha HC, Oak NR, Kang S, Tran TA, Kobayashi S, Chiang SH, Tenen DG, MacDougald OA. Phosphorylation of CCAAT/enhancer-binding protein alpha regulates GLUT4 expression and glucose transport in adipocytes. J Biol Chem 2008; 283:18002-11. [PMID: 18408001 DOI: 10.1074/jbc.m800419200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The transcription factor CCAAT/enhancer-binding protein alpha (C/EBPalpha) is required during adipogenesis for development of insulin-stimulated glucose uptake. Modes for regulating this function of C/EBPalpha have yet to be determined. Phosphorylation of C/EBPalpha on Ser-21 has been implicated in the regulation of granulopoiesis and hepatic gene expression. To explore the role of Ser-21 phosphorylation on C/EBPalpha function during adipogenesis, we developed constructs in which Ser-21 was mutated to alanine (S21A) to model dephosphorylation. In two cell culture models deficient in endogenous C/EBPalpha, enforced expression of S21A-C/EBPalpha resulted in normal lipid accumulation and expression of many adipogenic markers. However, S21A-C/EBPalpha had impaired ability to activate the Glut4 promoter specifically, and S21A-C/EBPalpha expression resulted in diminished GLUT4 and adiponectin expression, as well as reduced insulin-stimulated glucose uptake. No defects in insulin signaling or GLUT4 vesicle trafficking were identified with S21A-C/EBPalpha expression, and when exogenous GLUT4 expression was enforced to normalize expression in S21A-C/EBPalpha cells, insulin-responsive glucose transport was reconstituted, suggesting that the primary defect was a deficit in GLUT4 levels. Mice in which endogenous C/EBPalpha was replaced with S21A-C/EBPalpha displayed reduced GLUT4 and adiponectin protein expression in epididymal adipose tissue and increased blood glucose compared with wild-type littermates. These results suggest that phosphorylation of C/EBPalpha on Ser-21 may regulate adipocyte gene expression and whole body glucose homeostasis.
Collapse
Affiliation(s)
- Hyuk C Cha
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109-0622, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Gauger KJ, Giera S, Sharlin DS, Bansal R, Iannacone E, Zoeller RT. Polychlorinated biphenyls 105 and 118 form thyroid hormone receptor agonists after cytochrome P4501A1 activation in rat pituitary GH3 cells. ENVIRONMENTAL HEALTH PERSPECTIVES 2007; 115:1623-30. [PMID: 18007995 PMCID: PMC2072832 DOI: 10.1289/ehp.10328] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 08/15/2007] [Indexed: 05/17/2023]
Abstract
BACKGROUND Polychlorinated biphenyls (PCBs) may interfere with thyroid hormone (TH) signaling by reducing TH levels in blood, by exerting direct effects on TH receptors (TRs), or both. OBJECTIVE Our objective was to identify individual PCBs that directly affect TH signaling by acting on the TR. METHODS We administered a mixture of six PCB congeners based on their ortho substitution pattern, including PCBs 77 and 126 (non-ortho), PCBs 105 and 118 (mono-ortho), and PCBs 138 and 153 (di-ortho), to pregnant Sprague-Dawley rats from gestational days (G) 6 to 16. This mixture, or various combinations of the components, was also evaluated in a transient transfection system using GH3 cells. RESULTS The mixture reduced serum TH levels in pregnant rats on G16 but simultaneously up-regulated the expression of malic enzyme in liver. It also functioned as a TR agonist in vitro; however, none of the individual PCB congeners comprising this mixture were active in this system. Using the aryl hydrocarbon receptor (AhR) antagonist alpha-naphthoflavone, and the cytochrome P450 (CYP)1A1 antagonist ellipticine, we show that the effect of the mixture on the thyroid hormone response element required AhR and CYP1A1. CONCLUSIONS We propose that PCB 126 induces CYP1A1 through the AhR in GH3 cells, and that CYP1A1 activates PCB 105 and/or 118 to a form a compound that acts as a TR agonist. These data suggest that some tissues may be especially vulnerable to PCBs interfering directly with TH signaling due to their capacity to express CYP1A1 in response to coplanar PCBs (or other dioxin-like molecules) if sufficient mono-ortho PCBs are present.
Collapse
Affiliation(s)
- Kelly J. Gauger
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Massachusetts, USA
- Pioneer Valley Life Science Institute, Baystate Medical Center, Spingfield, Massachusetts, USA
| | - Stefanie Giera
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Massachusetts, USA
- Institute of Pharmacology and Toxicology, Department of Toxicology, University of Tübingen, Tübingen, Germany
| | - David S. Sharlin
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Massachusetts, USA
| | - Ruby Bansal
- Department of Biology, Morrill Science Center, University of Massachusetts, Amherst, Massachusetts, USA
| | - Eric Iannacone
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Massachusetts, USA
- Fairleigh Dickinson University, Madison, New Jersey, USA
| | - R. Thomas Zoeller
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Massachusetts, USA
- Department of Biology, Morrill Science Center, University of Massachusetts, Amherst, Massachusetts, USA
- Address correspondence to R.T. Zoeller, Biology Department, University of Massachusetts, 611 North Pleasant St., Amherst, MA 01003 USA. Telephone: (413) 545-2088. Fax: (413) 545-3243. E-mail:
| |
Collapse
|
15
|
Talukdar S, Bhatnagar S, Dridi S, Hillgartner FB. Chenodeoxycholic acid suppresses the activation of acetyl-coenzyme A carboxylase-alpha gene transcription by the liver X receptor agonist T0-901317. J Lipid Res 2007; 48:2647-63. [PMID: 17823458 DOI: 10.1194/jlr.m700189-jlr200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The therapeutic utility of liver X receptor (LXR) agonists in treating atherosclerosis is limited by an undesired accumulation of triglycerides in the blood and liver. This effect is caused by an increase in the transcription of genes involved in fatty acid synthesis. Here, we show that the primary bile acid, chenodeoxycholic acid (CDCA), antagonizes the stimulatory effect of the synthetic LXR agonist, T0-901317, on the expression of acetyl-coenzyme A carboxylase-alpha (ACCalpha) and other lipogenic enzymes in chick embryo hepatocyte cultures. CDCA inhibits T0-901317-induced ACCalpha transcription by suppressing the enhancer activity of a LXR response unit (-101 to -71 bp) that binds LXR and sterol-regulatory element binding protein-1 (SREBP-1). We also demonstrate that CDCA decreases the expression of SREBP-1 in the nucleus and the acetylation of histone H3 and H4 at the ACCalpha LXR response unit. The CDCA-mediated reduction in ACCalpha expression is associated with a decrease in the expression of peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) and small heterodimer partner and an increase in the expression of fibroblast growth factor-19 (FGF-19). Ectopic expression of FGF-19 decreases T0-901317-induced ACCalpha expression. Inhibition of p38 mitogen-activated protein kinase (MAPK) and/or extracellular signal-regulated kinase (ERK) suppresses the effects of CDCA on the expression of ACCalpha, SREBP-1, PGC-1alpha, and FGF-19. These results demonstrate that CDCA inhibits T0-901317-induced ACCalpha transcription by suppressing the activity of LXR and SREBP-1. We postulate that p38 MAPK, ERK, PGC-1alpha, and FGF-19 are components of the signaling pathway(s) mediating the regulation of ACCalpha gene transcription by CDCA.
Collapse
Affiliation(s)
- Saswata Talukdar
- Department of Biochemistry, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | | | | | | |
Collapse
|
16
|
Wang X, Carré W, Saxton AM, Cogburn LA. Manipulation of thyroid status and/or GH injection alters hepatic gene expression in the juvenile chicken. Cytogenet Genome Res 2007; 117:174-88. [PMID: 17675858 DOI: 10.1159/000103178] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Accepted: 01/19/2007] [Indexed: 11/19/2022] Open
Abstract
Both thyroid hormone (T3) and growth hormone (GH) are important regulators of somatic growth in birds and mammals. Although T3-mediated gene transcription is well known, the molecular basis of T3 interaction with GH on growth and development of birds remains unknown. In earlier studies, we discovered that exogenous GH alone increased accumulation of visceral fat in young chickens, while the combination of GH injections and dietary T3 worked synergistically to deplete body fat. In the present study, cDNA microarray and quantitative RT-PCR analyses enabled us to examine hepatic gene expression in young chickens after chronic manipulation of thyroid status and GH injection alone or in combination with T3. Thyroid status modulates expression of common and unique sets of genes involved in a wide range of molecular functions (i.e., energy metabolism, storage and transport, signal transduction, protein turnover and drug detoxification). Hepatic expression of 35 genes was altered by hypothyroidism (e.g., ADFP, ANGPTL3, GSTalpha, CAT, PPARG, HMGCL, GHR, IGF1, STAT3, THRSPalpha), whereas hyperthyroidism affected expression of another cluster of 13 genes (e.g., IGFBP1, KHK, LDHB, BAIA2L1, SULT1B, TRIAD3). Several genes were identified which have not been previously ascribed as T3 responsive (e.g., DEFB9, EPS8L2, ARHGAP1, LASS2, INHBC). Exogenous GH altered expression of 17 genes (e.g., CCAR1, CYP2C45, GYS2, ENOB, HK1, FABP1, SQLE, SOCS2, UPG2). The T3+GH treatment depleted the greatest amount of body fat, where 34 differentially expressed genes were unique to this group (e.g., C/EBP, CDC42EP1, SYDE2, PCK2, PIK4CA, TH1L, GPT2, BHMT). The marked reduction in body fat brought about by the T3+GH synergism could involve modulation of hormone signaling via altered activity of the Ras superfamily of molecular switches, which control diverse biological processes. In conclusion, this study provides the first global analysis of endocrine (T3 and GH) regulation of hepatic gene transcription in the chicken.
Collapse
Affiliation(s)
- X Wang
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19717, USA
| | | | | | | |
Collapse
|
17
|
Dong H, Yauk CL, Williams A, Lee A, Douglas GR, Wade MG. Hepatic gene expression changes in hypothyroid juvenile mice: characterization of a novel negative thyroid-responsive element. Endocrinology 2007; 148:3932-40. [PMID: 17463053 DOI: 10.1210/en.2007-0452] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The molecular mechanisms involved in the response of developing mice to disruptions in maternal thyroid hormone (TH) homeostasis are poorly characterized. We used DNA microarrays to examine a broad spectrum of genes from the livers of mice rendered hypothyroid by treating pregnant mice from gestational d 13 to postnatal d 15 with 6-propyl-2-thiouracil in drinking water. Twenty-four individuals (one male and one female pup from six litters of control or 6-propyl-2-thiouracil treatment groups, respectively) were profiled using Agilent oligonucleotide microarrays. MAANOVA identified 96 differentially expressed genes (false discovery rate adjusted P < 0.1 and fold change > 2 in at least one gender). Of these, 72 genes encode proteins of known function, 15 of which had previously been identified as regulated by TH. Pathway analysis revealed these genes are involved in metabolism, development, cell proliferation, apoptosis, and signal transduction. An immediate-early response gene, Nr4a1 (nuclear receptor subfamily 4, group A, member 1), was up-regulated by 3-fold in hypothyroid juvenile mouse liver; treatment of HepG2 cells with T(3) resulted in down-regulation of Nr4a1. A potential thyroid response element -1218 to -1188 bp upstream of the promoter region of Nr4a1 was identified and demonstrated to bind TH receptor (TR)-alpha and TRbeta. Point mutation or deletion of the sequence containing the potential Nr4a1-thyroid response element in transient gene expression studies resulted in both higher basal expression and loss of T(3) regulatory capacity, suggesting that this site is responsible for the negative regulation of gene expression by TR and TH.
Collapse
Affiliation(s)
- Hongyan Dong
- Environmental and Occupational Toxicology Division, Healthy Environments and Consumer Safety Branch, Health Canada, 50 Columbine Driveway, Ottawa, Ontario, Canada K1A 0L2
| | | | | | | | | | | |
Collapse
|
18
|
Talukdar S, Hillgartner FB. The mechanism mediating the activation of acetyl-coenzyme A carboxylase-alpha gene transcription by the liver X receptor agonist T0-901317. J Lipid Res 2006; 47:2451-61. [PMID: 16931873 DOI: 10.1194/jlr.m600276-jlr200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In birds and mammals, agonists of the liver X receptor (LXR) increase the expression of enzymes that make up the fatty acid synthesis pathway. Here, we investigate the mechanism by which the synthetic LXR agonist, T0-901317, increases the transcription of the acetyl-coenzyme A carboxylase-alpha (ACC alpha) gene in chick embryo hepatocyte cultures. Transfection analyses demonstrate that activation of ACC alpha transcription by T0-901317 is mediated by a cis-acting regulatory unit (-101 to -71 bp) that is composed of a liver X receptor response element (LXRE) and a sterol-regulatory element (SRE). The SRE enhances the ability of the LXRE to activate ACC alpha transcription in the presence of T0-901317. Treating hepatocytes with T0-901317 increases the concentration of mature sterol-regulatory element binding protein-1 (SREBP-1) in the nucleus and the acetylation of histone H3 and histone H4 at the ACC alpha LXR response unit. These results indicate that T0-901317 increases hepatic ACC alpha transcription by directly activating LXR*retinoid X receptor (RXR) heterodimers and by increasing the activity of an accessory transcription factor (SREBP-1) that enhances ligand induced-LXR*RXR activity.
Collapse
Affiliation(s)
- Saswata Talukdar
- Department of Biochemistry and Molecular Pharmacology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | | |
Collapse
|