1
|
Hsiao JJ, Ng BH, Smits MM, Martinez HD, Jasavala RJ, Hinkson IV, Fermin D, Eng JK, Nesvizhskii AI, Wright ME. Research Resource: Androgen Receptor Activity Is Regulated Through the Mobilization of Cell Surface Receptor Networks. Mol Endocrinol 2015; 29:1195-218. [PMID: 26181434 DOI: 10.1210/me.2015-1021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The aberrant expression of androgen receptor (AR)-dependent transcriptional programs is a defining pathology of the development and progression of prostate cancers. Transcriptional cofactors that bind AR are critical determinants of prostate tumorigenesis. To gain a deeper understanding of the proteins linked to AR-dependent gene transcription, we performed a DNA-affinity chromatography-based proteomic screen designed to identify proteins involved in AR-mediated gene transcription in prostate tumor cells. Functional experiments validated the coregulator roles of known AR-binding proteins in AR-mediated transcription in prostate tumor cells. More importantly, novel coregulatory functions were detected in components of well-established cell surface receptor-dependent signal transduction pathways. Further experimentation demonstrated that components of the TNF, TGF-β, IL receptor, and epidermal growth factor signaling pathways modulated AR-dependent gene transcription and androgen-dependent proliferation in prostate tumor cells. Collectively, our proteomic dataset demonstrates that the cell surface receptor- and AR-dependent pathways are highly integrated, and provides a molecular framework for understanding how disparate signal-transduction pathways can influence AR-dependent transcriptional programs linked to the development and progression of human prostate cancers.
Collapse
Affiliation(s)
- Jordy J Hsiao
- Department of Molecular Physiology and Biophysics (J.J.H., B.H.N., M.M.S., H.D.M., M.E.W.), Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242; Department of Pharmacology (H.D.M., R.J.J., I.V.H., M.E.W.), School of Medicine and Genome Center, University of California, Davis, California 95616; Departments of Pathology and Computational Medicine and Bioinformatics (D.F., A.I.N.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Genome Sciences (J.K.E.), University of Washington, Seattle, Washington 98195
| | - Brandon H Ng
- Department of Molecular Physiology and Biophysics (J.J.H., B.H.N., M.M.S., H.D.M., M.E.W.), Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242; Department of Pharmacology (H.D.M., R.J.J., I.V.H., M.E.W.), School of Medicine and Genome Center, University of California, Davis, California 95616; Departments of Pathology and Computational Medicine and Bioinformatics (D.F., A.I.N.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Genome Sciences (J.K.E.), University of Washington, Seattle, Washington 98195
| | - Melinda M Smits
- Department of Molecular Physiology and Biophysics (J.J.H., B.H.N., M.M.S., H.D.M., M.E.W.), Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242; Department of Pharmacology (H.D.M., R.J.J., I.V.H., M.E.W.), School of Medicine and Genome Center, University of California, Davis, California 95616; Departments of Pathology and Computational Medicine and Bioinformatics (D.F., A.I.N.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Genome Sciences (J.K.E.), University of Washington, Seattle, Washington 98195
| | - Harryl D Martinez
- Department of Molecular Physiology and Biophysics (J.J.H., B.H.N., M.M.S., H.D.M., M.E.W.), Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242; Department of Pharmacology (H.D.M., R.J.J., I.V.H., M.E.W.), School of Medicine and Genome Center, University of California, Davis, California 95616; Departments of Pathology and Computational Medicine and Bioinformatics (D.F., A.I.N.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Genome Sciences (J.K.E.), University of Washington, Seattle, Washington 98195
| | - Rohini J Jasavala
- Department of Molecular Physiology and Biophysics (J.J.H., B.H.N., M.M.S., H.D.M., M.E.W.), Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242; Department of Pharmacology (H.D.M., R.J.J., I.V.H., M.E.W.), School of Medicine and Genome Center, University of California, Davis, California 95616; Departments of Pathology and Computational Medicine and Bioinformatics (D.F., A.I.N.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Genome Sciences (J.K.E.), University of Washington, Seattle, Washington 98195
| | - Izumi V Hinkson
- Department of Molecular Physiology and Biophysics (J.J.H., B.H.N., M.M.S., H.D.M., M.E.W.), Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242; Department of Pharmacology (H.D.M., R.J.J., I.V.H., M.E.W.), School of Medicine and Genome Center, University of California, Davis, California 95616; Departments of Pathology and Computational Medicine and Bioinformatics (D.F., A.I.N.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Genome Sciences (J.K.E.), University of Washington, Seattle, Washington 98195
| | - Damian Fermin
- Department of Molecular Physiology and Biophysics (J.J.H., B.H.N., M.M.S., H.D.M., M.E.W.), Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242; Department of Pharmacology (H.D.M., R.J.J., I.V.H., M.E.W.), School of Medicine and Genome Center, University of California, Davis, California 95616; Departments of Pathology and Computational Medicine and Bioinformatics (D.F., A.I.N.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Genome Sciences (J.K.E.), University of Washington, Seattle, Washington 98195
| | - Jimmy K Eng
- Department of Molecular Physiology and Biophysics (J.J.H., B.H.N., M.M.S., H.D.M., M.E.W.), Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242; Department of Pharmacology (H.D.M., R.J.J., I.V.H., M.E.W.), School of Medicine and Genome Center, University of California, Davis, California 95616; Departments of Pathology and Computational Medicine and Bioinformatics (D.F., A.I.N.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Genome Sciences (J.K.E.), University of Washington, Seattle, Washington 98195
| | - Alexey I Nesvizhskii
- Department of Molecular Physiology and Biophysics (J.J.H., B.H.N., M.M.S., H.D.M., M.E.W.), Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242; Department of Pharmacology (H.D.M., R.J.J., I.V.H., M.E.W.), School of Medicine and Genome Center, University of California, Davis, California 95616; Departments of Pathology and Computational Medicine and Bioinformatics (D.F., A.I.N.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Genome Sciences (J.K.E.), University of Washington, Seattle, Washington 98195
| | - Michael E Wright
- Department of Molecular Physiology and Biophysics (J.J.H., B.H.N., M.M.S., H.D.M., M.E.W.), Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242; Department of Pharmacology (H.D.M., R.J.J., I.V.H., M.E.W.), School of Medicine and Genome Center, University of California, Davis, California 95616; Departments of Pathology and Computational Medicine and Bioinformatics (D.F., A.I.N.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Genome Sciences (J.K.E.), University of Washington, Seattle, Washington 98195
| |
Collapse
|
2
|
Xie X, Kong Y, Tang H, Yang L, Hsu JL, Hung MC. Targeted BikDD expression kills androgen-dependent and castration-resistant prostate cancer cells. Mol Cancer Ther 2014; 13:1813-25. [PMID: 24785255 DOI: 10.1158/1535-7163.mct-13-1004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Targeted gene therapy is a promising approach for treating prostate cancer after the discovery of prostate cancer-specific promoters such as prostate-specific antigen, rat probasin, and human glandular kallikrein. However, these promoters are androgen dependent, and after castration or androgen ablation therapy, they become much less active or sometimes inactive. Importantly, the disease will inevitably progress from androgen-dependent (ADPC) to castration-resistant prostate cancer (CRPC), at which treatments fail and high mortality ensues. Therefore, it is critical to develop a targeted gene therapy strategy that is effective in both ADPC and CRPC to eradicate recurrent prostate tumors. The human telomerase reverse transcriptase-VP16-Gal4-WPRE integrated systemic amplifier composite (T-VISA) vector we previously developed, which targets transgene expression in ovarian and breast cancer, is also active in prostate cancer. To further improve its effectiveness based on androgen response in ADPC progression, the ARR2 element (two copies of androgen response region from rat probasin promoter) was incorporated into T-VISA to produce AT-VISA. Under androgen analog (R1881) stimulation, the activity of AT-VISA was increased to a level greater than or comparable to the cytomegalovirus promoter in ADPC and CRPC cells, respectively. Importantly, AT-VISA demonstrated little or no expression in normal cells. Systemic administration of AT-VISA-BikDD encapsulated in liposomes repressed prostate tumor growth and prolonged mouse survival in orthotopic animal models as well as in the transgenic adenocarcinoma mouse prostate model, indicating that AT-VISA-BikDD has therapeutic potential to treat ADPC and CRPC safely and effectively in preclinical setting.
Collapse
Affiliation(s)
- Xiaoming Xie
- Authors' Affiliations: Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, People's Republic of China; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas;
| | - Yanan Kong
- Authors' Affiliations: Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China
| | - Hailin Tang
- Authors' Affiliations: Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China
| | - Lu Yang
- Authors' Affiliations: Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China
| | - Jennifer L Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University; and Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University; and Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
3
|
Clinckemalie L, Spans L, Dubois V, Laurent M, Helsen C, Joniau S, Claessens F. Androgen regulation of the TMPRSS2 gene and the effect of a SNP in an androgen response element. Mol Endocrinol 2013; 27:2028-40. [PMID: 24109594 DOI: 10.1210/me.2013-1098] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
More than 50% of prostate cancers have undergone a genomic reorganization that juxtaposes the androgen-regulated promoter of TMPRSS2 and the protein coding parts of several ETS oncogenes. These gene fusions lead to prostate-specific and androgen-induced ETS expression and are associated with aggressive lesions, poor prognosis, and early-onset prostate cancer. In this study, we showed that an enhancer at 13 kb upstream of the TMPRSS2 transcription start site is crucial for the androgen regulation of the TMPRSS2 gene when tested in bacterial artificial chromosomal vectors. Within this enhancer, we identified the exact androgen receptor binding sequence. This newly identified androgen response element is situated next to two binding sites for the pioneer factor GATA2, which were identified by DNase I footprinting. Both the androgen response element and the GATA-2 binding sites are involved in the enhancer activity. Importantly, a single nucleotide polymorphism (rs8134378) within this androgen response element reduces binding and transactivation by the androgen receptor. The presence of this SNP might have implications on the expression and/or formation levels of TMPRSS2 fusions, because both have been shown to be influenced by androgens.
Collapse
Affiliation(s)
- Liesbeth Clinckemalie
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine KU Leuven, Campus Gasthuisberg O&N1, PO Box 901, Herestraat 49, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
4
|
Swamy KBS, Chu WY, Wang CY, Tsai HK, Wang D. Evidence of association between nucleosome occupancy and the evolution of transcription factor binding sites in yeast. BMC Evol Biol 2011; 11:150. [PMID: 21627806 PMCID: PMC3124427 DOI: 10.1186/1471-2148-11-150] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 05/31/2011] [Indexed: 11/14/2022] Open
Abstract
Background Divergence of transcription factor binding sites is considered to be an important source of regulatory evolution. The associations between transcription factor binding sites and phenotypic diversity have been investigated in many model organisms. However, the understanding of other factors that contribute to it is still limited. Recent studies have elucidated the effect of chromatin structure on molecular evolution of genomic DNA. Though the profound impact of nucleosome positions on gene regulation has been reported, their influence on transcriptional evolution is still less explored. With the availability of genome-wide nucleosome map in yeast species, it is thus desirable to investigate their impact on transcription factor binding site evolution. Here, we present a comprehensive analysis of the role of nucleosome positioning in the evolution of transcription factor binding sites. Results We compared the transcription factor binding site frequency in nucleosome occupied regions and nucleosome depleted regions in promoters of old (orthologs among Saccharomycetaceae) and young (Saccharomyces specific) genes; and in duplicate gene pairs. We demonstrated that nucleosome occupied regions accommodate greater binding site variations than nucleosome depleted regions in young genes and in duplicate genes. This finding was confirmed by measuring the difference in evolutionary rates of binding sites in sensu stricto yeasts at nucleosome occupied regions and nucleosome depleted regions. The binding sites at nucleosome occupied regions exhibited a consistently higher evolution rate than those at nucleosome depleted regions, corroborating the difference in the selection constraints at the two regions. Finally, through site-directed mutagenesis experiment, we found that binding site gain or loss events at nucleosome depleted regions may cause more expression differences than those in nucleosome occupied regions. Conclusions Our study indicates the existence of different selection constraint on binding sites at nucleosome occupied regions than at the nucleosome depleted regions. We found that the binding sites have a different rate of evolution at nucleosome occupied and depleted regions. Finally, using transcription factor binding site-directed mutagenesis experiment, we confirmed the difference in the impact of binding site changes on expression at these regions. Thus, our work demonstrates the importance of composite analysis of chromatin and transcriptional evolution.
Collapse
Affiliation(s)
- Krishna B S Swamy
- Institute of Information Science, Academia Sinica, Taipei, 115, Taiwan
| | | | | | | | | |
Collapse
|
5
|
Li J, Li G. Cell cycle regulator ING4 is a suppressor of melanoma angiogenesis that is regulated by the metastasis suppressor BRMS1. Cancer Res 2010; 70:10445-53. [PMID: 21056991 DOI: 10.1158/0008-5472.can-10-3040] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
ING4 has been previously shown to play important roles in regulating apoptosis, cell cycle progress, cell migration, and invasion. In this study, we investigated the impact of ING4 on melanoma angiogenesis. ING4 overexpression strongly suppressed the growth of human umbilical vein endothelial cells (HUVEC) and their ability to form tubular structure in vitro. We also found that ING4 inhibits interleukin-6 (IL-6) at both mRNA and protein levels through suppressing NF-κB activity. Knockdown of endogenous ING4 resulted in enhanced HUVEC growth and IL-6 expression. Our in vivo studies using nude mice confirmed that ING4 inhibited blood vessel formation and the recruitment of CD31-positive cells in matrigel plugs. Furthermore, we found that expression of ING4 was induced by BRMS1, a metastasis suppressor that inhibits melanoma angiogenesis through inhibiting NF-κB activity and IL-6 level as well. Further experiments showed that ING4 knockdown abrogated the suppressive effect of BRMS1 on HUVEC growth, whereas ING4 overexpression inhibited BRMS1 knockdown-induced angiogenesis, indicating that ING4 is a downstream target of BRMS1 in regulating tumor angiogenesis. Collectively, our findings indicate that ING4 is induced by BRMS1 and that it inhibits melanoma angiogenesis by suppressing NF-κB activity and IL-6 expression. Restoration of ING4 function offers a potential new strategy for the treatment of human melanoma.
Collapse
Affiliation(s)
- Jun Li
- Department of Dermatology and Skin Science, Jack Bell Research Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
6
|
Prognostic significance of BRMS1 expression in human melanoma and its role in tumor angiogenesis. Oncogene 2010; 30:896-906. [PMID: 20935672 DOI: 10.1038/onc.2010.470] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Breast cancer metastasis suppressor 1 (BRMS1) has been reported to suppress metastasis without significantly affecting tumorigenicity in breast cancer and ovarian cancer. To investigate the role of BRMS1 in human melanoma progression and prognosis, we established tissue microarray and BRMS1 expression was evaluated by immunohistochemistry in 41 dysplastic nevi, 90 primary melanomas and 47 melanoma metastases. We found that BRMS1 expression was significantly decreased in metastatic melanoma compared with primary melanoma or dysplastic nevi (P=0.021 and 0.001, respectively, χ(2) test). In addition, reduced BRMS1 staining was significantly correlated with American Joint Committee on Cancer stages (P=0.011, χ(2) test), but not associated with tumor thickness, tumor ulceration and other clinicopathological parameters. Furthermore, BRMS1 expression was significantly correlated with disease-specific 5-year survival of melanoma patients (P=0.007, log-rank test). Multivariate Cox regression analysis revealed that BRMS1 staining was an independent prognostic factor for melanoma patients (relative risk=0.51; confidence interval=0.29-0.91; P=0.022). Moreover, we demonstrated that BRMS1 overexpression inhibited endothelial cell growth and tube formation ability by suppressing NF-κB activity and IL-6 expression in vitro. We also showed that knockdown of BRMS1 increased IL-6 expression and promoted endothelial cell growth and tube formation. In addition, our data revealed that the BRMS1-mediated IL-6 expression is dependent on NF-κB. Strikingly, our in vivo studies using nude mice confirmed that BRMS1 inhibited blood vessel formation and the recruitment of CD31-positive cells in matrigel plugs. Taken together, BRMS1 expression was decreased in metastatic melanomas, which resulted in deficient suppression of angiogenesis and contributed to melanoma progression. BRMS1 may serve an important prognostic marker and therapeutic target for melanoma patients.
Collapse
|
7
|
Babbitt GA, Tolstorukov MY, Kim Y. The molecular evolution of nucleosome positioning through sequence-dependent deformation of the DNA polymer. J Biomol Struct Dyn 2010; 27:765-80. [PMID: 20232932 DOI: 10.1080/07391102.2010.10508584] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The computational prediction of nucleosome positioning from DNA sequence now allows for in silico investigation of the molecular evolution of biophysical properties of the DNA molecule responsible for primary chromatin organization in the genome. To discern what signal components driving nucleosome positioning in the yeast genome are potentially targeted by natural selection, we compare the performance of various models predictive of nucleosome positioning within the context of a simple statistical test, the repositioned mutation test. We demonstrate that while nucleosome occupancy is driven largely by translational exclusion in response to AT content, there is also a strong signature of evolutionary conservation of regular patterns within nucleosomal DNA sequence related to the structural organization of the nucleosome core (e.g., 10-bp dinucleotide periodicity). We also use computer simulations to investigate hypothetical coding and regulatory constraints on the ability of sequence properties affecting nucleosome formation to adaptively evolve. Our results demonstrate that natural selection may act independently on different DNA sequence properties responsible for local chromatin organization. Furthermore, at least with respect to the deformation energy of the DNA molecule in the nucleosome, the presence of the genetic code has greatly restricted the ability of sequences to evolve the dynamic nucleosome organization typically observed in promoter regions.
Collapse
Affiliation(s)
- G A Babbitt
- School of Biological and Medical Sciences, Rochester Institute of Technology, Rochester, NY, USA.
| | | | | |
Collapse
|
8
|
Babbitt GA. Relaxed selection against accidental binding of transcription factors with conserved chromatin contexts. Gene 2010; 466:43-8. [PMID: 20637845 DOI: 10.1016/j.gene.2010.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 06/30/2010] [Accepted: 07/07/2010] [Indexed: 02/03/2023]
Abstract
The spurious (or nonfunctional) binding of transcription factors (TF) to the wrong locations on DNA presents a formidable challenge to genomes given the relatively low ceiling for sequence complexity within the short lengths of most binding motifs. The high potential for the occurrence of random motifs and subsequent nonfunctional binding of many transcription factors should theoretically lead to natural selection against the occurrence of spurious motif throughout the genome. However, because of the active role that chromatin can influence over eukaryotic gene regulation, it may also be expected that many supposed spurious binding sites could escape purifying selection if (A) they simply occur in regions of high nucleosome occupancy or (B) their surrounding chromatin was dynamically involved in their identity and function. We compared nucleosome occupancy and the presence/absence of functionally conserved chromatin context to the strength of selection against spurious binding of various TF binding motifs in Saccharomyces yeast. While we find no direct relationship with nucleosome occupancy, we find strong evidence that transcription factors spatially associated with evolutionarily conserved chromatin states are under relaxed selection against accidental binding. Transcription factors (with/without) a conserved chromatin context were found to occur on average, (87.7%/49.3%) of their expected frequencies. Functional binding motifs with conserved chromatin contexts were also significantly shorter in length and more often clustered. These results indicate a role of chromatin context dependency in relaxing selection against spurious binding in nearly half of all TF binding motifs throughout the yeast genome.
Collapse
Affiliation(s)
- G A Babbitt
- School of Biological and Medical Sciences, Rochester Institute of Technology, USA.
| |
Collapse
|
9
|
Colak D, Chishti MA, Al-Bakheet AB, Al-Qahtani A, Shoukri MM, Goyns MH, Ozand PT, Quackenbush J, Park BH, Kaya N. Integrative and comparative genomics analysis of early hepatocellular carcinoma differentiated from liver regeneration in young and old. Mol Cancer 2010; 9:146. [PMID: 20540791 PMCID: PMC2898705 DOI: 10.1186/1476-4598-9-146] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 06/12/2010] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the third-leading cause of cancer-related deaths worldwide. It is often diagnosed at an advanced stage, and hence typically has a poor prognosis. To identify distinct molecular mechanisms for early HCC we developed a rat model of liver regeneration post-hepatectomy, as well as liver cells undergoing malignant transformation and compared them to normal liver using a microarray approach. Subsequently, we performed cross-species comparative analysis coupled with copy number alterations (CNA) of independent early human HCC microarray studies to facilitate the identification of critical regulatory modules conserved across species. RESULTS We identified 35 signature genes conserved across species, and shared among different types of early human HCCs. Over 70% of signature genes were cancer-related, and more than 50% of the conserved genes were mapped to human genomic CNA regions. Functional annotation revealed genes already implicated in HCC, as well as novel genes which were not previously reported in liver tumors. A subset of differentially expressed genes was validated using quantitative RT-PCR. Concordance was also confirmed for a significant number of genes and pathways in five independent validation microarray datasets. Our results indicated alterations in a number of cancer related pathways, including p53, p38 MAPK, ERK/MAPK, PI3K/AKT, and TGF-beta signaling pathways, and potential critical regulatory role of MYC, ERBB2, HNF4A, and SMAD3 for early HCC transformation. CONCLUSIONS The integrative analysis of transcriptional deregulation, genomic CNA and comparative cross species analysis brings new insights into the molecular profile of early hepatoma formation. This approach may lead to robust biomarkers for the detection of early human HCC.
Collapse
Affiliation(s)
- Dilek Colak
- Department of Biostatistics, Epidemiology and Scientific Computing, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Li A, Yu Y, Lee SC, Ishibashi T, Lees-Miller SP, Ausió J. Phosphorylation of histone H2A.X by DNA-dependent protein kinase is not affected by core histone acetylation, but it alters nucleosome stability and histone H1 binding. J Biol Chem 2010; 285:17778-88. [PMID: 20356835 DOI: 10.1074/jbc.m110.116426] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphorylation of the C-terminal end of histone H2A.X is the most characterized histone post-translational modification in DNA double-stranded breaks (DSB). DNA-dependent protein kinase (DNA-PK) is one of the three phosphatidylinositol 3 kinase-like family of kinase members that is known to phosphorylate histone H2A.X during DNA DSB repair. There is a growing body of evidence supporting a role for histone acetylation in DNA DSB repair, but the mechanism or the causative relation remains largely unknown. Using bacterially expressed recombinant mutants and stably and transiently transfected cell lines, we find that DNA-PK can phosphorylate Thr-136 in addition to Ser-139 both in vitro and in vivo. Furthermore, the phosphorylation reaction is not inhibited by the presence of H1, which in itself is a substrate of the reaction. We also show that, in contrast to previous reports, the ability of the enzyme to phosphorylate these residues is not affected by the extent of acetylation of the core histones. In vitro assembled nucleosomes and HeLa S3 native oligonucleosomes consisting of non-acetylated and acetylated histones are equally phosphorylated by DNA-PK. We demonstrate that the apparent differences in the extent of phosphorylation previously observed can be accounted for by the differential chromatin solubility under the MgCl(2) concentrations required for the phosphorylation reaction in vitro. Finally, we show that although H2A.X does not affect nucleosome conformation, it has a de-stabilizing effect that is enhanced by the DNA-PK-mediated phosphorylation and results in an impaired histone H1 binding.
Collapse
Affiliation(s)
- Andra Li
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| | | | | | | | | | | |
Collapse
|
11
|
Kojima C, Zhang Y, Zimmer WE. Intronic DNA elements regulate androgen-dependent expression of the murine Nkx3.1 gene. Gene Expr 2010; 15:89-102. [PMID: 21526719 PMCID: PMC6043830 DOI: 10.3727/105221611x12973615737622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nkx3.1 is a well-conserved homeobox gene that is involved in development, differentiation and maintenance of prostate epithelial cells. Nkx3.1 expression is induced by androgen in prostate epithelia and, as such, our interest is to understand the mechanism(s) for this androgen-dependent expression in normal epithelial cells. In this report, we show that the region of DNA sequence 2.7 kilobases in front of the mouse Nkx3.1 gene drives enhanced transcription in prostate epithelia cells; however, this segment was not capable of androgen-directed regulation. Among the multiple, potential androgen response elements (AREs) identified by scanning sequences near and within the gene, two sequences within the intron of the murine Nkx3.1 gene were demonstrated to confer androgen-dependent transcription in reporter gene transfection experiments. Each of the elements, termed ARE A and ARE B, contained a 6-base pair core sequence, TGTTCT, that has been described as an androgen receptor half-site binding sequence, separated by 498 base pairs of DNA. Both of the intronic half-sites bind activated androgen receptor from a variety of sources, albeit with different apparent affinities. This region of the Nkx3.1 gene demonstrates a high degree of conservation among diverse species and mutagenesis experiments demonstrated that both elements are required for androgen stimulation. Taken together, our study shows that androgen-dependent transcription of the mouse Nkx3.1 gene is conferred through a noncanonical element within the intron of the gene.
Collapse
Affiliation(s)
- Chinatsu Kojima
- *Department of Systems Biology and Translational Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX, USA
| | - Yan Zhang
- *Department of Systems Biology and Translational Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX, USA
| | - Warren E. Zimmer
- *Department of Systems Biology and Translational Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX, USA
- †Interdisciplinary Faculty of Toxicology, Texas A&M University System, College Station, TX, USA
- ‡Faculty of Genetics, Texas A&M University System, College Station, TX, USA
| |
Collapse
|
12
|
Huo YX, Rosenthal AZ, Gralla JD. General stress response signalling: unwrapping transcription complexes by DNA relaxation via the sigma38 C-terminal domain. Mol Microbiol 2008; 70:369-78. [PMID: 18761624 DOI: 10.1111/j.1365-2958.2008.06412.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Escherichia coli responds to stress by a combination of specific and general transcription signalling pathways. The general pathways typically require the master stress regulator sigma38 (rpoS). Here we show that the signalling from multiple stresses that relax DNA is processed by a non-conserved eight-amino-acid tail of the sigma 38 C-terminal domain. By contrast, responses to two stresses that accumulate potassium glutamate do not rely on this short tail, but still require the overall C-terminal domain. In vitro transcription and footprinting studies suggest that multiple stresses can target a poised RNA polymerase and activate it by unwrapping DNA from a nucleosome-like state, allowing the RNA polymerase to escape into productive mode. This transition can be accomplished by either the DNA relaxation or potassium glutamate accumulation that characterizes many stresses.
Collapse
Affiliation(s)
- Yi-Xin Huo
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, PO Box 951569, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
13
|
MBD4-mediated glycosylase activity on a chromatin template is enhanced by acetylation. Mol Cell Biol 2008; 28:4734-44. [PMID: 18519584 DOI: 10.1128/mcb.00588-08] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability of the MBD4 glycosylase to excise a mismatched base from DNA has been assessed in vitro using DNA substrates with different extents of cytosine methylation, in the presence or absence of reconstituted nucleosomes. Despite the enhanced ability of MBD4 to bind to methylated cytosines, the efficiency of its glycosylase activity on T/G mismatches was slightly dependent on the extent of methylation of the DNA substrate. The reduction in activity caused by competitor DNA was likewise unaffected by the methylation status of the substrate or the competitor. Our results also show that MBD4 efficiently processed T/G mismatches within the nucleosome. Furthermore, the glycolytic activity of the enzyme was not affected by the positioning of the mismatch within the nucleosome. However, histone hyperacetylation facilitated the efficiency with which the bases were excised from the nucleosome templates, irrespective of the position of the mismatch relative to the pseudodyad axis of symmetry of the nucleosome.
Collapse
|
14
|
Matusik RJ, Jin RJ, Sun Q, Wang Y, Yu X, Gupta A, Nandana S, Case TC, Paul M, Mirosevich J, Oottamasathien S, Thomas J. Prostate epithelial cell fate. Differentiation 2008; 76:682-98. [PMID: 18462434 DOI: 10.1111/j.1432-0436.2008.00276.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Androgen receptor (AR) within prostatic mesenchymal cells, with the absence of AR in the epithelium, is still sufficient to induce prostate development. AR in the luminal epithelium is required to express the secretory markers associated with differentiation. Nkx3.1 is expressed in the epithelium in early prostatic embryonic development and expression is maintained in the adult. Induction of the mouse prostate gland by the embryonic mesenchymal cells results in the organization of a sparse basal layer below the luminal epithelium with rare neuroendocrine cells that are interdispersed within this basal layer. The human prostate shows similar glandular organization; however, the basal layer is continuous. The strong inductive nature of embryonic prostatic and bladder mesenchymal cells is demonstrated in grafts where embryonic stem (ES) cells are induced to differentiate and organize as a prostate and bladder, respectively. Further, the ES cells can be driven by the correct embryonic mesenchymal cells to form epithelium that differentiates into secretory prostate glands and differentiated bladders that produce uroplakin. This requires the ES cells to mature into endoderm that gives rise to differentiated epithelium. This process is control by transcription factors in both the inductive mesenchymal cells (AR) and the responding epithelium (FoxA1 and Nkx3.1) that allows for organ development and differentiation. In this review, we explore a molecular mechanism where the pattern of transcription factor expression controls cell determination, where the cell is assigned a developmental fate and subsequently cell differentiation, and where the assigned cell now emerges with it's own unique character.
Collapse
Affiliation(s)
- Robert J Matusik
- Department of Urologic Surgery, Vanderbilt University Medical Center, A-1302 Medical Center North, 1161 21st Ave South, Nashville, TN 37232 2765, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ishibashi T, Thambirajah AA, Ausió J. MeCP2 preferentially binds to methylated linker DNA in the absence of the terminal tail of histone H3 and independently of histone acetylation. FEBS Lett 2008; 582:1157-62. [PMID: 18339321 DOI: 10.1016/j.febslet.2008.03.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2008] [Revised: 03/03/2008] [Accepted: 03/04/2008] [Indexed: 11/29/2022]
Abstract
Methyl CpG binding protein 2 (MeCP2) is a basic protein that contains a DNA methyl binding domain. The mechanism by which the highly positive charge of MeCP2 and its ability to bind methylated DNA contribute to the specificity of its binding to chromatin has long remained elusive. In this paper, we show that MeCP2 binds to nucleosomes in a very similar way to linker histones both in vitro and in vivo. However, its binding specificity strongly depends on DNA methylation. We also observed that as with linker histones, this binding is independent of the core histone H3 N-terminal tail and is not affected by histone acetylation.
Collapse
Affiliation(s)
- Toyotaka Ishibashi
- Department of Biochemistry and Microbiology, The Center for Biomedical Research, University of Victoria, Victoria, BC, Canada V8W 3P6
| | | | | |
Collapse
|
16
|
Multiple ING1 and ING2 genes in Xenopus laevis and evidence for differential association of thyroid hormone receptors and ING proteins to their promoters. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1779:152-63. [DOI: 10.1016/j.bbagrm.2007.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 12/01/2007] [Accepted: 12/04/2007] [Indexed: 11/18/2022]
|