1
|
Atkin SL, Butler AE, Jamialahmadi T, Sahebkar A. PCSK7 levels in women with and without PCOS. J Clin Transl Endocrinol 2024; 38:100376. [PMID: 39691660 PMCID: PMC11650127 DOI: 10.1016/j.jcte.2024.100376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/28/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024] Open
Affiliation(s)
- Stephen L. Atkin
- Royal College of Surgeons in Ireland, PO Box 15503, Adliya, Bahrain
| | | | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Mao S, Wu C, Feng G, Li Y, Sun B, Guo Y, Deng M, Liu D, Liu G. Selection and Regulatory Network Analysis of Differential CircRNAs in the Hypothalamus of Goats with High and Low Reproductive Capacity. Int J Mol Sci 2024; 25:10479. [PMID: 39408808 PMCID: PMC11476610 DOI: 10.3390/ijms251910479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
The objectives of this investigation were to identify differentially expressed circular RNAs (circRNAs) in the hypothalamus of goats with high and low prolificacy and construct a circRNA-mRNA regulatory network to uncover key potential circRNAs that influence goat prolificacy. Transcriptome analysis was performed on hypothalamus samples from low-prolificacy (n = 5) and high-prolificacy (n = 6) Chuanzhong black goats to identify circRNAs that influence prolificacy in these goats. Differential expression analysis identified a total of 205 differentially expressed circRNAs, comprising 100 upregulated and 105 downregulated circRNAs in the high-prolificacy group compared with the low-prolificacy group. Enrichment analysis of these differentially expressed circRNAs indicated significant enrichment in Gene Ontology terms associated with mammalian oogenesis, negative regulation of neurotransmitter secretion, reproductive developmental processes, hormone-mediated signaling pathways, and negative regulation of hormone secretion. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis highlighted significant enrichment in the oxytocin signaling pathway, GnRH signaling pathway, and hormone-mediated oocyte maturation. The hypothalamus of low- and high-prolificacy goats contains circular RNAs (circRNAs), including chicirc_063269, chicirc_097731, chicirc_017440, chicirc_049641, chicirc_008429, chicirc_145057, chicirc_030156, chicirc_109497, chicirc_030156, chicirc_176754, and chicirc_193363. Chuanzhong black goats have the potential to influence prolificacy by modulating the release of serum hormones from the hypothalamus. A circRNA-miRNA regulatory network was constructed, which determined that miR-135a, miR-188-3p, miR-101-3p, and miR-128-3p may interact with differentially expressed circRNAs, thereby regulating reproductive capacity through the hypothalamic-pituitary-gonadal axis. The results of this study enhance our knowledge of the molecular mechanisms that regulate prolificacy in Chuanzhong black goats at the hypothalamic level.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Zhang J, Goods BA, Pattarawat P, Wang Y, Haining T, Zhang Q, Shalek AK, Duncan FE, Woodruff TK, Xiao S. An ex vivo ovulation system enables the discovery of novel ovulatory pathways and nonhormonal contraceptive candidates†. Biol Reprod 2023; 108:629-644. [PMID: 36708230 PMCID: PMC10106841 DOI: 10.1093/biolre/ioad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/15/2022] [Accepted: 01/18/2023] [Indexed: 01/29/2023] Open
Abstract
Ovulation is an integral part of women's menstrual cycle and fertility. Understanding the mechanisms of ovulation has broad implications for the treatment of anovulatory diseases and the development of novel contraceptives. Now, few studies have developed effective models that both faithfully recapitulate the hallmarks of ovulation and possess scalability. We established a three-dimensional encapsulated in vitro follicle growth (eIVFG) system that recapitulates folliculogenesis and produces follicles that undergo ovulation in a controlled manner. Here, we determined whether ex vivo ovulation preserves molecular signatures of ovulation and demonstrated its use in discovering novel ovulatory pathways and nonhormonal contraceptive candidates through a high-throughput ovulation screening. Mature murine follicles from eIVFG were induced to ovulate ex vivo using human chorionic gonadotropin and collected at 0, 1, 4, and 8 hours post-induction. Phenotypic analyses confirmed key ovulatory events, including cumulus expansion, oocyte maturation, follicle rupture, and luteinization. Single-follicle RNA-sequencing analysis revealed the preservation of ovulatory genes and dynamic transcriptomic profiles and signaling. Soft clustering identified distinct gene expression patterns and new pathways that may critically regulate ovulation. We further used this ex vivo ovulation system to screen 21 compounds targeting established and newly identified ovulatory pathways. We discovered that proprotein convertases activate gelatinases to sustain follicle rupture and do not regulate luteinization and progesterone secretion. Together, our ex vivo ovulation system preserves molecular signatures of ovulation, presenting a new powerful tool for studying ovulation and anovulatory diseases as well as for establishing a high-throughput ovulation screening to identify novel nonhormonal contraceptives for women.
Collapse
Affiliation(s)
- Jiyang Zhang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ, USA
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Brittany A Goods
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Pawat Pattarawat
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ, USA
| | - Yingzheng Wang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ, USA
| | - Tessa Haining
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Alex K Shalek
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- The Institute for Medical Science and Engineering, Department of Chemistry, Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Teresa K Woodruff
- Department of Obstetrics and Gynecology, Michigan State University, East Lansing, MI, USA
| | - Shuo Xiao
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
4
|
Chen SY, Schenkel FS, Melo ALP, Oliveira HR, Pedrosa VB, Araujo AC, Melka MG, Brito LF. Identifying pleiotropic variants and candidate genes for fertility and reproduction traits in Holstein cattle via association studies based on imputed whole-genome sequence genotypes. BMC Genomics 2022; 23:331. [PMID: 35484513 PMCID: PMC9052698 DOI: 10.1186/s12864-022-08555-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 04/12/2022] [Indexed: 02/06/2023] Open
Abstract
Background Genetic progress for fertility and reproduction traits in dairy cattle has been limited due to the low heritability of most indicator traits. Moreover, most of the quantitative trait loci (QTL) and candidate genes associated with these traits remain unknown. In this study, we used 5.6 million imputed DNA sequence variants (single nucleotide polymorphisms, SNPs) for genome-wide association studies (GWAS) of 18 fertility and reproduction traits in Holstein cattle. Aiming to identify pleiotropic variants and increase detection power, multiple-trait analyses were performed using a method to efficiently combine the estimated SNP effects of single-trait GWAS based on a chi-square statistic. Results There were 87, 72, and 84 significant SNPs identified for heifer, cow, and sire traits, respectively, which showed a wide and distinct distribution across the genome, suggesting that they have relatively distinct polygenic nature. The biological functions of immune response and fatty acid metabolism were significantly enriched for the 184 and 124 positional candidate genes identified for heifer and cow traits, respectively. No known biological function was significantly enriched for the 147 positional candidate genes found for sire traits. The most important chromosomes that had three or more significant QTL identified are BTA22 and BTA23 for heifer traits, BTA8 and BTA17 for cow traits, and BTA4, BTA7, BTA17, BTA22, BTA25, and BTA28 for sire traits. Several novel and biologically important positional candidate genes were strongly suggested for heifer (SOD2, WTAP, DLEC1, PFKFB4, TRIM27, HECW1, DNAH17, and ADAM3A), cow (ANXA1, PCSK5, SPESP1, and JMJD1C), and sire (ELMO1, CFAP70, SOX30, DGCR8, SEPTIN14, PAPOLB, JMJD1C, and NELL2) traits. Conclusions These findings contribute to better understand the underlying biological mechanisms of fertility and reproduction traits measured in heifers, cows, and sires, which may contribute to improve genomic evaluation for these traits in dairy cattle. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08555-z.
Collapse
Affiliation(s)
- Shi-Yi Chen
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907-2041, USA.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Flavio S Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Ana L P Melo
- Department of Reproduction and Animal Evaluation, Rural Federal University of Rio de Janeiro, Seropédica, RJ, 23897-000, Brazil
| | - Hinayah R Oliveira
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907-2041, USA.,Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Victor B Pedrosa
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907-2041, USA.,Department of Animal Sciences, State University of Ponta Grossa, Ponta Grossa, PR, 84030-900, Brazil
| | - Andre C Araujo
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907-2041, USA
| | - Melkaye G Melka
- Department of Animal and Food Science, University of Wisconsin River Falls, River Falls, WI, 54022, USA
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907-2041, USA. .,Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
5
|
Pankhurst MW, Dillingham PW, Peña AS. Proteolytic activation of anti-Müllerian hormone is suppressed in adolescent girls. Endocrine 2022; 76:189-197. [PMID: 34988934 DOI: 10.1007/s12020-021-02955-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/24/2021] [Indexed: 01/04/2023]
Abstract
PURPOSE The ratio of the anti-Müllerian hormone (AMH) precursor (proAMH) to active AMH (AMHN,C) is higher in childhood than in adulthood but has never been quantified during adolescence. The ratio of proAMH to total AMH (AMH prohormone index, API) was examined during the puberty in healthy girls. The API was also compared between girls with and without polycystic ovary syndrome (PCOS) to determine if there were differences that could assist in PCOS diagnosis during adolescence. METHODS Total AMH and proAMH were measured by immunoassay in a single-centre, cross-sectional observational study; 61 controls and 29 girls with PCOS were included in the study (age range 8-21 years). The API was calculated as proAMH as a percentage of total AMH. Differences in API between control and PCOS subjects and across age-groups were examined by Welch's ANOVA. The relationship between API and a range of metabolic parameters was examined by Pearson correlation. RESULTS The API in healthy females increased between the ages of 10~15 years and declined from 15~20 years (p < 0.001). The API was negatively correlated with body mass index in the control (p = 0.04) and PCOS groups (p = 0.007). The API was associated with factors related to adiposity and lipid metabolism. The API was not significantly different in control girls and girls with PCOS. CONCLUSIONS Higher API during adolescence suggests that proteolytic activation of proAMH is suppressed during this life stage. API was not different between control girls and girls with PCOS indicating that it is not useful in diagnosis of PCOS during adolescence.
Collapse
Affiliation(s)
- Michael W Pankhurst
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Peter W Dillingham
- Department of Mathematics and Statistics, University of Otago, Dunedin, New Zealand
| | - Alexia S Peña
- Discipline of Paediatrics, The University of Adelaide Robinson Research Institute, Adelaide, SA, Australia.
- Department of Endocrine and Diabetes, Women's and Children's Hospital, North Adelaide, SA, Australia.
| |
Collapse
|
6
|
Pankhurst MW, Shorakae S, Rodgers RJ, Teede HJ, Moran LJ. Efficacy of predictive models for polycystic ovary syndrome using serum levels of two antimüllerian hormone isoforms (proAMH and AMHN,C). Fertil Steril 2017; 108:851-857.e2. [DOI: 10.1016/j.fertnstert.2017.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/24/2017] [Accepted: 08/07/2017] [Indexed: 10/18/2022]
|
7
|
Dam PTM, Jang YJ, Kim JY, Choi SG, Park JI, Seo YW, Chun SY. Expression of aldo-keto reductase family 1, member C14 during ovulation in the rat. Endocr J 2017; 64:797-805. [PMID: 28701684 DOI: 10.1507/endocrj.ej17-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The potent androgen 5α-dihydrotestosterone is metabolized to the weak androgen 5α-androstane-3α, 17β-diol (3α-diol) by the enzyme aldo-keto reductase family 1, member C14 (Akr1c14) in rodents. The purpose of the present study was to investigate the regulation of Akr1c14 expression during the ovulatory process in rat ovaries. Northern blot analysis revealed that treatment of immature rats with equine chorionic gonadotropin resulted in lowered Akr1c14 expression, whereas subsequent treatment with human chorionic gonadotropin (hCG) increased ovarian Akr1c14 expression within 3 h. In situ hybridization analysis showed that Akr1c14 mRNA was localized in granulosa cells of growing follicles before hCG treatment, but it was also expressed in granulosa cells of preovulatory follicles after hCG treatment. Akr1c14 protein expression increased after 6 h of hCG treatment and was sustained at high levels until 12 h. The levels of 3α-diol in preovulatory follicles isolated from ovaries in vivo were fluctuated by hCG treatment; decreased at 6 h and increased at 9 h. Human CG-induced Akr1c14 expression was suppressed by treatment with the progesterone receptor antagonist RU486, but not with the cyclooxygenase inhibitor indomethacin. Taken together, these findings demonstrate the induction of Akr1c14 by hCG in granulosa cells of rat preovulatory follicles that was regulated by progesterone receptor antagonist.
Collapse
Affiliation(s)
- Phuong T M Dam
- School of Biological Sciences and Biotechnology, Faculty of Life Science, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - You-Jee Jang
- School of Biological Sciences and Biotechnology, Faculty of Life Science, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Ja-Yeon Kim
- School of Biological Sciences and Biotechnology, Faculty of Life Science, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Seul-Gee Choi
- School of Biological Sciences and Biotechnology, Faculty of Life Science, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Jae-Il Park
- Animal Facility of Aging Science, Korea Basic Science Institute, Gwangju 61186, Republic of Korea
| | - Young-Woo Seo
- Animal Facility of Aging Science, Korea Basic Science Institute, Gwangju 61186, Republic of Korea
| | - Sang-Young Chun
- School of Biological Sciences and Biotechnology, Faculty of Life Science, Chonnam National University, Gwangju 500-757, Republic of Korea
| |
Collapse
|
8
|
Jin H, Won M, Shin E, Kim HM, Lee K, Bae J. EGR2 is a gonadotropin-induced survival factor that controls the expression of IER3 in ovarian granulosa cells. Biochem Biophys Res Commun 2017; 482:877-882. [PMID: 27890615 DOI: 10.1016/j.bbrc.2016.11.127] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 11/23/2016] [Indexed: 01/14/2023]
Abstract
Pituitary gonadotropins are key hormones that orchestrate the growth and development of ovarian follicles. However, limited information is available on intra-ovarian factors that mediate the actions of gonadotropins. In this study, we identified that the early growth response 2 gene (EGR2) is a gonadotropin-inducible gene in granulosa cells of rats and humans. Analysis of consensus EGR-binding elements (EBEs) showed that the immediate early response 3 gene (IER3) is a novel transcriptional target gene of EGR2 as confirmed by the luciferase assay, electrophoretic mobility-shift assay (EMSA), chromatin immunoprecipitation (ChIP), and western blot analysis. Overexpression of EGR2 promoted survival of KGN human granulosa-derived cells in which IER3 acts as a mediator; knockdown of EGR2 induced death in KGN cells. Additionally, EGR2 was found to regulate the expression of myeloid cell leukemia 1 (MCL-1), which belongs to the BCL-2 family of proteins regulating cell survival. Thus, this study identified a novel signaling axis, comprised of gonadotropins-EGR2-IER3, which is important for the survival of granulosa cells during folliculogenesis.
Collapse
Affiliation(s)
- Hanyong Jin
- School of Pharmacy, Chung-Ang University, Seoul 06974, South Korea
| | - Miae Won
- Department of Pharmacy, CHA University, Seongnam 13488, South Korea
| | - Eunkyoung Shin
- School of Pharmacy, Chung-Ang University, Seoul 06974, South Korea
| | - Hong-Man Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Jeehyeon Bae
- School of Pharmacy, Chung-Ang University, Seoul 06974, South Korea.
| |
Collapse
|
9
|
Variation in circulating antimüllerian hormone precursor during the periovulatory and acute postovulatory phases of the human ovarian cycle. Fertil Steril 2016; 106:1238-1243.e2. [PMID: 27362611 DOI: 10.1016/j.fertnstert.2016.06.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/25/2016] [Accepted: 06/03/2016] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To determine whether the relative quantity of circulating AMH precursor (proAMH) declines relative to levels of the active form (AMHN,C) in the periovulatory phase of the ovarian cycle. DESIGN Longitudinal study. SETTING Local community. PATIENT(S) Sixteen women aged between 18 to 30 years with regular menstrual cycles between 25 to 35 days long. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Serum concentrations of proAMH and total AMH (proAMH and AMHN,C combined) measured by immunoassay, with relative levels of proAMH expressed as the AMH prohormone index (API = [ProAMH]/[Total AMH] × 100). RESULT(S) The mean API in the 11 eligible women fell from 20.7 during the luteinizing hormone (LH) surge period to 18.7 during the acute postsurge period. No statistically significant differences in the API were observed among samples taken at single time points in the early follicular, midfollicular, midluteal, and late luteal phases. CONCLUSION(S) This study suggests that activation of AMH by proteolytic enzymes is largely stable throughout the ovarian cycle. However, there is a subtle but robust decrease in the level of proAMH relative to AMHN,C in the acute postovulatory period. This may indicate that periovulatory increases in prohormone convertases cause increases in proAMH cleavage rates. Alternatively, rapid changes in the hierarchy of follicle developmental stages during ovulation may result in changes in the relative ratios of proAMH and AMHN,C.
Collapse
|
10
|
McLennan IS, Pankhurst MW. Anti-Müllerian hormone is a gonadal cytokine with two circulating forms and cryptic actions. J Endocrinol 2015; 226:R45-57. [PMID: 26163524 DOI: 10.1530/joe-15-0206] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/10/2015] [Indexed: 12/23/2022]
Abstract
Anti-Müllerian hormone (AMH) is a multi-faceted gonadal cytokine. It is present in all vertebrates with its original function in phylogeny being as a regulator of germ cells in both sexes, and as a prime inducer of the male phenotype. Its ancient functions appear to be broadly conserved in mammals, but with this being obscured by its overt role in triggering the regression of the Müllerian ducts in male embryos. Sertoli and ovarian follicular cells primarily release AMH as a prohormone (proAMH), which forms a stable complex (AMHN,C) after cleavage by subtilisin/kexin-type proprotein convertases or serine proteinases. Circulating AMH is a mixture of proAMH and AMHN,C, suggesting that proAMH is activated within the gonads and putatively by its endocrine target-cells. The gonadal expression of the cleavage enzymes is subject to complex regulation, and the preliminary data suggest that this influences the relative proportions of proAMH and AMHN,C in the circulation. AMH shares an intracellular pathway with the bone morphogenetic protein (BMP) and growth differentiation factor (GDF) ligands. AMH is male specific during the initial stage of development, and theoretically should produce male biases throughout the body by adding a male-specific amplification of BMP/GDF signalling. Consistent with this, some of the male biases in neuron number and the non-sexual behaviours of mice are dependent on AMH. After puberty, circulating levels of AMH are similar in men and women. Putatively, the function of AMH in adulthood maybe to add a gonadal influence to BMP/GDF-regulated homeostasis.
Collapse
Affiliation(s)
- Ian S McLennan
- Department of AnatomyUniversity of Otago, PO Box 913, Dunedin 9054, New Zealand
| | - Michael W Pankhurst
- Department of AnatomyUniversity of Otago, PO Box 913, Dunedin 9054, New Zealand
| |
Collapse
|
11
|
Wang Y, Wang XH, Fan DX, Zhang Y, Li MQ, Wu HX, Jin LP. PCSK6 regulated by LH inhibits the apoptosis of human granulosa cells via activin A and TGFβ2. J Endocrinol 2014; 222:151-60. [PMID: 24860148 DOI: 10.1530/joe-13-0592] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mammalian proprotein convertases (PCs) play an important role in folliculogenesis, as they proteolytically activate a variety of substrates such as the transforming growth factor beta (TGFβ) superfamily. PC subtilism/kexin 6 (PCSK6) is a member of the PC family and is ubiquitously expressed and implicated in many physiological and pathological processes. However, in human granulosa cells, the expression of the PC family members, their hormonal regulation, and the function of PCs are not clear. In this study, we found that PCSK6 is the most highly expressed PC family member in granulosa cells. LH increased PCSK6 mRNA level and PCSK6 played an anti-apoptosis function in KGN cells. Knockdown of PCSK6 not only increased the secretion of activin A and TGFβ2 but also decreased the secretion of follistatin, estrogen, and the mRNA levels of FSH receptor (FSHR) and P450AROM (CYP19A1). We also found that, in the KGN human granulosa cell line, TGFβ2 and activin A could promote the apoptosis of KGN cells and LH could regulate the follistatin level. These data indicate that PCSK6, which is regulated by LH, is highly expressed in human primary granulosa cells of pre-ovulatory follicles and plays important roles in regulating a series of downstream molecules and apoptosis of KGN cells.
Collapse
Affiliation(s)
- Ying Wang
- Laboratory for Reproductive ImmunologyHospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, No. 413, Zhaozhou Road, Shanghai 200011, ChinaShanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, ChinaDepartment of Reproductive MedicineShanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No. 536, Changle Road, Shanghai 200040, ChinaLaboratory for Reproductive ImmunologyHospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, No. 413, Zhaozhou Road, Shanghai 200011, ChinaShanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, ChinaDepartment of Reproductive MedicineShanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No. 536, Changle Road, Shanghai 200040, China
| | - Xiao-Hui Wang
- Laboratory for Reproductive ImmunologyHospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, No. 413, Zhaozhou Road, Shanghai 200011, ChinaShanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, ChinaDepartment of Reproductive MedicineShanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No. 536, Changle Road, Shanghai 200040, ChinaLaboratory for Reproductive ImmunologyHospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, No. 413, Zhaozhou Road, Shanghai 200011, ChinaShanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, ChinaDepartment of Reproductive MedicineShanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No. 536, Changle Road, Shanghai 200040, China
| | - Deng-Xuan Fan
- Laboratory for Reproductive ImmunologyHospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, No. 413, Zhaozhou Road, Shanghai 200011, ChinaShanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, ChinaDepartment of Reproductive MedicineShanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No. 536, Changle Road, Shanghai 200040, ChinaLaboratory for Reproductive ImmunologyHospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, No. 413, Zhaozhou Road, Shanghai 200011, ChinaShanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, ChinaDepartment of Reproductive MedicineShanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No. 536, Changle Road, Shanghai 200040, China
| | - Yuan Zhang
- Laboratory for Reproductive ImmunologyHospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, No. 413, Zhaozhou Road, Shanghai 200011, ChinaShanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, ChinaDepartment of Reproductive MedicineShanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No. 536, Changle Road, Shanghai 200040, ChinaLaboratory for Reproductive ImmunologyHospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, No. 413, Zhaozhou Road, Shanghai 200011, ChinaShanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, ChinaDepartment of Reproductive MedicineShanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No. 536, Changle Road, Shanghai 200040, China
| | - Ming-Qing Li
- Laboratory for Reproductive ImmunologyHospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, No. 413, Zhaozhou Road, Shanghai 200011, ChinaShanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, ChinaDepartment of Reproductive MedicineShanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No. 536, Changle Road, Shanghai 200040, ChinaLaboratory for Reproductive ImmunologyHospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, No. 413, Zhaozhou Road, Shanghai 200011, ChinaShanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, ChinaDepartment of Reproductive MedicineShanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No. 536, Changle Road, Shanghai 200040, China
| | - Hai-Xia Wu
- Laboratory for Reproductive ImmunologyHospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, No. 413, Zhaozhou Road, Shanghai 200011, ChinaShanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, ChinaDepartment of Reproductive MedicineShanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No. 536, Changle Road, Shanghai 200040, China
| | - Li-Ping Jin
- Laboratory for Reproductive ImmunologyHospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, No. 413, Zhaozhou Road, Shanghai 200011, ChinaShanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, ChinaDepartment of Reproductive MedicineShanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No. 536, Changle Road, Shanghai 200040, ChinaLaboratory for Reproductive ImmunologyHospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, No. 413, Zhaozhou Road, Shanghai 200011, ChinaShanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghai 200011, ChinaDepartment of Reproductive MedicineShanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No. 536, Changle Road, Shanghai 200040, China
| |
Collapse
|
12
|
Kwok SC, Chakraborty D, Soares MJ, Dai G. Relative expression of proprotein convertases in rat ovaries during pregnancy. J Ovarian Res 2013; 6:91. [PMID: 24330629 PMCID: PMC3874651 DOI: 10.1186/1757-2215-6-91] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 12/06/2013] [Indexed: 11/29/2022] Open
Abstract
Background Proprotein convertases are a family of serine proteinases that are related to bacterial subtilisin and yeast kexin. They are involved in posttranslational processing of the precursors of a vast number of cellular proteins. With the exception of PC1/3, the relative expression levels of the proprotein convertases in the ovary during pregnancy have not been reported. The purpose of this study is to determine by real-time PCR the relative expression levels of all nine proprotein convertases in rat ovaries during pregnancy and at 3 days postpartum. Methods RNA was extracted from ovaries at Day 0, 4, 9, 11, 13, 15, 18, and 20 of pregnancy as well as 3 days postpartum. Relative expression levels of Pcsk1, Pcsk2, Furin, Pcsk4, Pcsk5, Pcsk6, Pcsk7, Mbtps1 and Pcsk9 were determined with real-time PCR. Results were reported as fold-change over the level at Day 0 of pregnancy. Results Results showed that Pcsk1 and Pcsk6 were upregulated as gestation advanced, in parallel with an observed increase in relaxin transcript. Pcsk2 showed downregulation as gestation advanced, while Pcsk5 showed relatively higher levels in early pregnancy and postpartum, but lower level in mid-pregnancy. On the other hand, Furin, Pcsk4, Pcsk7, Mbtps1 and Pcsk9 showed little change of expression throughout gestation. Conclusion PC1/3 (PCSK1) and PACE4 (PCSK6) may play an important role in proprotein processing in the ovary during late pregnancy.
Collapse
Affiliation(s)
- Simon Cm Kwok
- ORTD, Albert Einstein Medical Center, 5501 Old York Road, Philadelphia, PA 19141-3098, USA.
| | | | | | | |
Collapse
|
13
|
Yang X, Wang Q, Gao Z, Zhou Z, Peng S, Chang WL, Lin HY, Zhang W, Wang H. Proprotein convertase furin regulates apoptosis and proliferation of granulosa cells in the rat ovary. PLoS One 2013; 8:e50479. [PMID: 23418414 PMCID: PMC3572104 DOI: 10.1371/journal.pone.0050479] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 10/24/2012] [Indexed: 12/20/2022] Open
Abstract
Folliculogenesis is tightly controlled by a series of hormones, growth factors and cytokines, many of which are secreted as proproteins and require processing by proteases before becoming functional. Furin is a member of the subtilisin-like proteases that activate large numbers of proprotein substrates and is ubiquitously expressed and implicated in many physiological and pathological processes. However, the precise role of furin during folliculogenesis has not been thoroughly investigated. The goal of the present work is to identify the role of furin in the development of granulosa cells during folliculogenesis, using immunohistochemistry, RT-PCR, Western blot and functional studies in primary cultured rat granulosa cells. Our results demonstrate that furin is highly expressed in granulosa cells and oocytes of the ovary with very limited expression in other ovarian cells such as the epithelial, stromal or theca cells. Furin siRNA significantly increases apoptosis of the granulosa cells from large antral/preovulatory follicles, in part via downregulation of the anti-apoptotic proteins, XIAP and p-AKT. On the contrary, furin siRNA markedly decreases proliferation of granulosa cells based on the downregulation of proliferation cell nuclear antigen (PCNA). Taken together, these data suggest that furin may play an important role in regulating apoptosis and proliferation of granulosa cells.
Collapse
Affiliation(s)
- Xiaokui Yang
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Qingxin Wang
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhiying Gao
- Department of Obstetrics and Gynecology, PLA General Hospital, Beijing, China
| | - Zhi Zhou
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
| | - Sha Peng
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Wen-Lin Chang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hai-Yan Lin
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Weiyuan Zhang
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
- * E-mail: (HW); (WZ)
| | - Hongmei Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (HW); (WZ)
| |
Collapse
|
14
|
Wei J, Ramanathan P, Thomson PC, Martin IC, Moran C, Williamson P. An Integrative Genomic Analysis of the Superior Fecundity Phenotype in QSi5 Mice. Mol Biotechnol 2012; 53:217-26. [DOI: 10.1007/s12033-012-9530-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
15
|
Antenos M, Lei L, Xu M, Malipatil A, Kiesewetter S, Woodruff TK. Role of PCSK5 expression in mouse ovarian follicle development: identification of the inhibin α- and β-subunits as candidate substrates. PLoS One 2011; 6:e17348. [PMID: 21408162 PMCID: PMC3050889 DOI: 10.1371/journal.pone.0017348] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 01/29/2011] [Indexed: 11/20/2022] Open
Abstract
Inhibin and activin are essential dimeric glycoproteins belonging to the transforming growth factor-beta (TGFβ) superfamily. Inhibin is a heterodimer of α- and β-subunits, whereas activin is a homodimer of β-subunits. Production of inhibin is regulated during the reproductive cycle and requires the processing of pro-ligands to produce mature hormone. Furin is a subtilisin-like proprotein convertase (proconvertase) that activates precursor proteins by cleavage at basic sites during their transit through the secretory pathway and/or at the cell surface. We hypothesized that furin-like proconvertases are central regulators of inhibin α- and β-subunit processing within the ovary. We analyzed the expression of the proconvertases furin, PCSK5, PCSK6, and PCSK7 in the developing mouse ovary by real-time quantitative RT-PCR. The data showed that proconvertase enzymes are temporally expressed in ovarian cells. With the transition from two-layer secondary to pre-antral follicle, only PCSK5 mRNA was significantly elevated. Activin A selectively enhanced expression of PCSK5 mRNA and decreased expression of furin and PCSK6 in cultured two-layer secondary follicles. Inhibition of proconvertase enzyme activity by dec-RVKR-chloromethylketone (CMK), a highly specific and potent competitive inhibitor of subtilisin-like proconvertases, significantly impeded both inhibin α- and β-subunit maturation in murine granulosa cells. Overexpression of PC5/6 in furin-deficient cells led to increased inhibin α- and βB-subunit maturation. Our data support the role of proconvertase PCSK5 in the processing of ovarian inhibin subunits during folliculogenesis and suggest that this enzyme may be an important regulator of inhibin and activin bioavailability.
Collapse
Affiliation(s)
- Monica Antenos
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Center for Reproductive Science, Northwestern University, Evanston, Illinois, United States of America
| | - Lei Lei
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Center for Reproductive Science, Northwestern University, Evanston, Illinois, United States of America
| | - Min Xu
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Center for Reproductive Science, Northwestern University, Evanston, Illinois, United States of America
| | - Anjali Malipatil
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Center for Reproductive Science, Northwestern University, Evanston, Illinois, United States of America
| | - Sarah Kiesewetter
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Center for Reproductive Science, Northwestern University, Evanston, Illinois, United States of America
| | - Teresa K. Woodruff
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Center for Reproductive Science, Northwestern University, Evanston, Illinois, United States of America
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
16
|
Kelty BP, Curry TE. Ovarian furin (proprotein convertase subtilisin/kexin type3): expression, localization, and potential role in ovulation in the rat. Biol Reprod 2010; 83:147-54. [PMID: 20375258 DOI: 10.1095/biolreprod.109.079947] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The process of ovulation involves weakening of the follicular wall by proteolytic enzymes. The function of FURIN (also known as PCSK3) is to activate various proteolytic enzymes. In the present study, the expression, localization, and function of FURIN were investigated in the periovulatory rat ovary. Immature female rats were injected with equine chorionic gonadotropin followed by human chorionic gonadotropin (hCG) 48 h later to stimulate ovulation. Ovaries were collected at 0, 4, 8, 12, and 24 h after hCG injection. Administration of hCG increased Furin mRNA expression in both intact ovaries and cultured ovarian follicles to maximal levels at 8 and 12 h before decreasing at 24 h. In cultured granulosa cells, Furin mRNA levels were significantly induced at 12 h after hCG. In situ hybridization of Furin mRNA demonstrated expression in the granulosa cells, with predominant expression in the theca layer. Regulation studies demonstrated that Furin mRNA was induced in residual tissue by forskolin or amphiregulin. To examine the role of FURIN in protease activation and ovulation, rats were treated with a FURIN inhibitor and oocyte release was determined. There was a 38% decrease in the number of oocytes released in ovaries treated with the FURIN inhibitor. Likewise, the FURIN inhibitor decreased the activation of MMP2. The induction of Furin mRNA after treatment with hCG, along with the decrease in MMP2 activation and oocyte release after FURIN inhibition, supports the hypothesis that FURIN is upregulated during the preovulatory period, which results in activation of proteinases associated with the breakdown of the follicular wall during ovulation.
Collapse
Affiliation(s)
- Brian P Kelty
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, 800 Rose Street, Lexington, KY 40536, USA
| | | |
Collapse
|
17
|
Delfino KR, Southey BR, Sweedler JV, Rodriguez-Zas SL. Genome-wide census and expression profiling of chicken neuropeptide and prohormone convertase genes. Neuropeptides 2010; 44:31-44. [PMID: 20006904 PMCID: PMC2814002 DOI: 10.1016/j.npep.2009.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/04/2009] [Accepted: 11/05/2009] [Indexed: 01/10/2023]
Abstract
Neuropeptides regulate cell-cell signaling and influence many biological processes in vertebrates, including development, growth, and reproduction. The complex processing of neuropeptides from prohormone proteins by prohormone convertases, combined with the evolutionary distance between the chicken and mammalian species that have experienced extensive neuropeptide research, has led to the empirical confirmation of only 18 chicken prohormone proteins. To expand our knowledge of the neuropeptide and prohormone convertase gene complement, we performed an exhaustive survey of the chicken genomic, EST, and proteomic databases using a list of 95 neuropeptide and 7 prohormone convertase genes known in other species. Analysis of the EST resources and 22 microarray studies offered a comprehensive portrait of gene expression across multiple conditions. Five neuropeptide genes (apelin, cocaine-and amphetamine-regulated transcript protein, insulin-like 5, neuropeptide S, and neuropeptide B) previously unknown in chicken were identified and 62 genes were confirmed. Although most neuropeptide gene families known in human are present in chicken, there are several gene not present in the chicken. Conversely, several chicken neuropeptide genes are absent from mammalian species, including C-RF amide, c-type natriuretic peptide 1 precursor, and renal natriuretic peptide. The prohormone convertases, with one exception, were found in the chicken genome. Bioinformatic models used to predict prohormone cleavages confirm that the processing of prohormone proteins into neuropeptides is similar between species. Neuropeptide genes are most frequently expressed in the brain and head, followed by the ovary and small intestine. Microarray analyses revealed that the expression of adrenomedullin, chromogranin-A, augurin, neuromedin-U, platelet-derived growth factor A and D, proenkephalin, relaxin-3, prepronociceptin, and insulin-like growth factor I was most susceptible (P-value<0.005) to changes in developmental stage, gender, and genetic line among other conditions studied. Our complete survey and characterization facilitates understanding of neuropeptides genes in the chicken, an animal of importance to biomedical and agricultural research.
Collapse
Affiliation(s)
- K. R. Delfino
- Department of Chemistry, University of Illinois, Urbana IL, USA
- Department of Animal Sciences, University of Illinois, Urbana IL, USA
| | - B. R. Southey
- Department of Chemistry, University of Illinois, Urbana IL, USA
- Department of Animal Sciences, University of Illinois, Urbana IL, USA
| | - J. V. Sweedler
- Department of Chemistry, University of Illinois, Urbana IL, USA
| | - S. L. Rodriguez-Zas
- Department of Animal Sciences, University of Illinois, Urbana IL, USA
- Corresponding author: , 1207 W Gregory Dr, Urbana, IL 61801, Phone 217-333-8810 Fax: 217-333-8286
| |
Collapse
|
18
|
Chrétien M, Seidah NG, Basak A, Mbikay M. Proprotein convertases as therapeutic targets. Expert Opin Ther Targets 2008; 12:1289-300. [DOI: 10.1517/14728222.12.10.1289] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|