1
|
Qian L, Zhu Y, Deng C, Liang Z, Chen J, Chen Y, Wang X, Liu Y, Tian Y, Yang Y. Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family in physiological and pathophysiological process and diseases. Signal Transduct Target Ther 2024; 9:50. [PMID: 38424050 PMCID: PMC10904817 DOI: 10.1038/s41392-024-01756-w] [Citation(s) in RCA: 76] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family (PGC-1s), consisting of three members encompassing PGC-1α, PGC-1β, and PGC-1-related coactivator (PRC), was discovered more than a quarter-century ago. PGC-1s are essential coordinators of many vital cellular events, including mitochondrial functions, oxidative stress, endoplasmic reticulum homeostasis, and inflammation. Accumulating evidence has shown that PGC-1s are implicated in many diseases, such as cancers, cardiac diseases and cardiovascular diseases, neurological disorders, kidney diseases, motor system diseases, and metabolic disorders. Examining the upstream modulators and co-activated partners of PGC-1s and identifying critical biological events modulated by downstream effectors of PGC-1s contribute to the presentation of the elaborate network of PGC-1s. Furthermore, discussing the correlation between PGC-1s and diseases as well as summarizing the therapy targeting PGC-1s helps make individualized and precise intervention methods. In this review, we summarize basic knowledge regarding the PGC-1s family as well as the molecular regulatory network, discuss the physio-pathological roles of PGC-1s in human diseases, review the application of PGC-1s, including the diagnostic and prognostic value of PGC-1s and several therapies in pre-clinical studies, and suggest several directions for future investigations. This review presents the immense potential of targeting PGC-1s in the treatment of diseases and hopefully facilitates the promotion of PGC-1s as new therapeutic targets.
Collapse
Affiliation(s)
- Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Yanli Zhu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Chao Deng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Zhenxing Liang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East, Zhengzhou, 450052, China
| | - Junmin Chen
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Ying Chen
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Xue Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Yanqing Liu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Ye Tian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Yang Yang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, 710021, China.
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| |
Collapse
|
2
|
Oleic acid promotes atherosclerosis via multiple pathophysiological mechanisms. JOURNAL OF BIO-X RESEARCH 2021. [DOI: 10.1097/jbr.0000000000000117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
3
|
Chong H, Wei Z, Na M, Sun G, Zheng S, Zhu X, Xue Y, Zhou Q, Guo S, Xu J, Wang H, Cui L, Zhang CY, Jiang X, Wang D. The PGC-1α/NRF1/miR-378a axis protects vascular smooth muscle cells from FFA-induced proliferation, migration and inflammation in atherosclerosis. Atherosclerosis 2020; 297:136-145. [PMID: 32120345 DOI: 10.1016/j.atherosclerosis.2020.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 01/19/2020] [Accepted: 02/07/2020] [Indexed: 01/26/2023]
Abstract
BACKGROUND AND AIMS Atherosclerosis (AS) is the leading cause of cardiovascular diseases. PGC-1α is a key regulator of cellular energy homeostasis, but its role in AS remains debatable. METHODS AND RESULTS In our study, PGC-1α was shown to be significantly decreased in the media of human atherosclerotic vessels. To explore whether miRNAs might be regulated by PGC-1α in vascular smooth muscle cells (VSMCs), microarray analysis was performed. Microarray and Pearson's correlation analysis showed that PGC-1α and miR-378a were positively correlated in vivo and in vitro. As an upstream co-activator, PGC-1α was found to regulate miR-378a through binding to the transcriptional factor NRF1 in VSMCs. Therefore, the decreased expression of PGC-1α might account for suppression of miR-378a in VSMCs in AS. Furthermore, IGF1 and TLR8, two genes known to be aberrantly up-regulated in atherogenic vessels, were identified as direct targets of miR-378a. In vitro up-regulation of miR-378a markedly inhibited free fatty acid (FFA)-induced VSMC proliferation, migration and inflammation through targeting IGF1 and TLR8. CONCLUSIONS These findings highlight the protective role of the PGC-1α/NRF1/miR-378a regulatory axis in AS progression and suggest miR-378a as potential therapeutic target for AS treatment.
Collapse
Affiliation(s)
- Hoshun Chong
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Thoracic and Cardiovascular Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, China; State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, China
| | - Zhe Wei
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, China
| | - Muhan Na
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, China
| | - Gongrui Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, China
| | - Shasha Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, China
| | - Xiyu Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Thoracic and Cardiovascular Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, China
| | - Yunxing Xue
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Thoracic and Cardiovascular Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, China
| | - Qing Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Thoracic and Cardiovascular Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, China
| | - Shanjun Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, China
| | - Jinhong Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, China
| | - Haoquan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, China
| | - Le Cui
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, China
| | - Chen-Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, China
| | - Xiaohong Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Thoracic and Cardiovascular Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, China; State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, China.
| | - Dongjin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Thoracic and Cardiovascular Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, China; State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, China; Institute of Cardiothoracic Vascular Disease, Nanjing University, China.
| |
Collapse
|
4
|
Li W, Zhi W, Liu F, He Z, Wang X, Niu X. Atractylenolide I restores HO-1 expression and inhibits Ox-LDL-induced VSMCs proliferation, migration and inflammatory responses in vitro. Exp Cell Res 2017; 353:26-34. [PMID: 28274716 DOI: 10.1016/j.yexcr.2017.02.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/21/2017] [Accepted: 02/27/2017] [Indexed: 12/25/2022]
Abstract
Pathogenesis of atherosclerosis is characterized by the proliferation and migration of vascular smooth muscle cells (VSMCs) and inflammatory lesions. The aim of this study is to elucidate the effect of atractylenolide I (AO-I) on smooth muscle cell inflammation, proliferation and migration induced by oxidized modified low density lipoprotein (Ox-LDL). Here, We found that atractylenolide I inhibited Ox-LDL-induced VSMCs proliferation and migration in a dose-dependent manner, and decreased the production of inflammatory cytokines and the expression of monocyte chemoattractant protein-1 (MCP-1) in VSMCs. The study also identified that AO-I prominently inhibited p38-MAPK and NF-κB activation. More importantly, the specific heme oxygenase-1 (HO-1) inhibitor zinc protoporphyrin (ZnPP) IX partially abolished the beneficial effects of atractylenolide I on Ox-LDL-induced VSMCs. Furthermore, atractylenolide I blocked the foam cell formation in macrophages induced by Ox-LDL. In summary, inhibitory roles of AO-I in VSMCs proliferation and migration, lipid peroxidation and subsequent inflammatory responses might contribute to the anti-atherosclerotic property of AO-I.
Collapse
Affiliation(s)
- Weifeng Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China.
| | - Wenbing Zhi
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Fang Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Zehong He
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Xiuei Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Xiaofeng Niu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China.
| |
Collapse
|
5
|
Fang Z, Li P, Jia W, Jiang T, Wang Z, Xiang Y. miR-696 plays a role in hepatic gluconeogenesis in ob/ob mice by targeting PGC-1α. Int J Mol Med 2016; 38:845-52. [DOI: 10.3892/ijmm.2016.2659] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 06/14/2016] [Indexed: 11/06/2022] Open
|
6
|
Kadlec AO, Chabowski DS, Ait-Aissa K, Gutterman DD. Role of PGC-1α in Vascular Regulation: Implications for Atherosclerosis. Arterioscler Thromb Vasc Biol 2016; 36:1467-74. [PMID: 27312223 DOI: 10.1161/atvbaha.116.307123] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/02/2016] [Indexed: 11/16/2022]
Abstract
Mitochondrial dysfunction results in high levels of oxidative stress and mitochondrial damage, leading to disruption of endothelial homeostasis. Recent discoveries have clarified several pathways, whereby mitochondrial dysregulation contributes to endothelial dysfunction and vascular disease burden. One such pathway centers around peroxisome proliferator receptor-γ coactivator 1α (PGC-1α), a transcriptional coactivator linked to mitochondrial biogenesis and antioxidant defense, among other functions. Although primarily investigated for its therapeutic potential in obesity and skeletal muscle differentiation, the ability of PGC-1α to alter a multitude of cellular functions has sparked interest in its role in the vasculature. Within this context, recent studies demonstrate that PGC-1α plays a key role in endothelial cell and smooth muscle cell regulation through effects on oxidative stress, apoptosis, inflammation, and cell proliferation. The ability of PGC-1α to affect these parameters is relevant to vascular disease progression, particularly in relation to atherosclerosis. Upregulation of PGC-1α can prevent the development of, and even encourage regression of, atherosclerotic lesions. Therefore, PGC-1α is poised to serve as a promising target in vascular disease. This review details recent findings related to PGC-1α in vascular regulation, regulation of PGC-1α itself, the role of PGC-1α in atherosclerosis, and therapies that target this key protein.
Collapse
Affiliation(s)
- Andrew O Kadlec
- From the Department of Physiology (A.O.K., D.D.G.), Division of Cardiology, Department of Medicine (D.S.C., K.A.-A., D.D.G.), and Cardiovascular Center (A.O.K., D.S.C., K.A.-A., D.D.G.), Medical College of Wisconsin, Milwaukee; and Department of Veterans Administration Medical Center, Milwaukee, WI (D.D.G.)
| | - Dawid S Chabowski
- From the Department of Physiology (A.O.K., D.D.G.), Division of Cardiology, Department of Medicine (D.S.C., K.A.-A., D.D.G.), and Cardiovascular Center (A.O.K., D.S.C., K.A.-A., D.D.G.), Medical College of Wisconsin, Milwaukee; and Department of Veterans Administration Medical Center, Milwaukee, WI (D.D.G.)
| | - Karima Ait-Aissa
- From the Department of Physiology (A.O.K., D.D.G.), Division of Cardiology, Department of Medicine (D.S.C., K.A.-A., D.D.G.), and Cardiovascular Center (A.O.K., D.S.C., K.A.-A., D.D.G.), Medical College of Wisconsin, Milwaukee; and Department of Veterans Administration Medical Center, Milwaukee, WI (D.D.G.)
| | - David D Gutterman
- From the Department of Physiology (A.O.K., D.D.G.), Division of Cardiology, Department of Medicine (D.S.C., K.A.-A., D.D.G.), and Cardiovascular Center (A.O.K., D.S.C., K.A.-A., D.D.G.), Medical College of Wisconsin, Milwaukee; and Department of Veterans Administration Medical Center, Milwaukee, WI (D.D.G.).
| |
Collapse
|
7
|
Harvey RE, Coffman KE, Miller VM. Women-specific factors to consider in risk, diagnosis and treatment of cardiovascular disease. ACTA ACUST UNITED AC 2015; 11:239-257. [PMID: 25776297 DOI: 10.2217/whe.14.64] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the era of individualized medicine, gaps in knowledge remain about sex-specific risk factors, diagnostic and treatment options that might reduce mortality from cardiovascular disease (CVD) and improve outcomes for both women and men. In this review, contributions of biological mechanisms involving the sex chromosomes and the sex hormones on the cardiovascular system will be discussed in relationship to the female-specific risk factors for CVD: hypertensive disorders of pregnancy, menopause and use of hormonal therapies for contraception and menopausal symptoms. Additionally, sex-specific factors to consider in the differential diagnosis and treatment of four prevalent CVDs (hypertension, stroke, coronary artery disease and congestive heart failure) will be reviewed with emphasis on areas where additional research is needed.
Collapse
Affiliation(s)
- Ronée E Harvey
- Department of Physiology & Biomedical, Engineering, Medical Sciences 4-20, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - Kirsten E Coffman
- Department of Physiology & Biomedical, Engineering, Medical Sciences 4-20, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - Virginia M Miller
- Department of Physiology & Biomedical, Engineering, Medical Sciences 4-20, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA.,Department of Surgery, Medical Sciences, 4-20, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| |
Collapse
|
8
|
Xue Y, Wei Z, Ding H, Wang Q, Zhou Z, Zheng S, Zhang Y, Hou D, Liu Y, Zen K, Zhang CY, Li J, Wang D, Jiang X. MicroRNA-19b/221/222 induces endothelial cell dysfunction via suppression of PGC-1α in the progression of atherosclerosis. Atherosclerosis 2015; 241:671-81. [PMID: 26117405 DOI: 10.1016/j.atherosclerosis.2015.06.031] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 05/29/2015] [Accepted: 06/15/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is a master regulator of cellular energy metabolism that is associated with many cardiovascular diseases, including atherosclerosis. However, the role and underling regulatory mechanisms of PGC-1α in the pathogenesis of atherosclerosis are not completely understood. Here, we identified the microRNAs that post-transcriptionally regulate PGC-1α production and their roles in the pathogenesis of atherosclerosis. METHODS AND RESULTS A significant down-regulation of PGC-1α protein was observed in human atherosclerotic vessel samples. Using microarray and bioinformatics analyses, PGC-1α was identified as a common target gene of miR-19b-3p, miR-221-3p and miR-222-3p, which are mainly located in the intima of atherosclerotic vessels. In vitro induction of miR-19b-3p, miR-221-3p and miR-222-3p by the inflammatory cytokines TNFα and IFNγ may affect PGC-1α protein production and consequently result in mitochondrial dysfunction in Human Aortic Endothelial Cells (HAECs). The overexpression of miR-19b-3p, miR-221-3p and miR-222-3p in HAECs caused intracellular ROS accumulation, which led to cellular apoptosis. CONCLUSION Taken together, these results demonstrate that PGC-1α plays a protective role against the vascular complications of atherosclerosis. Moreover, the posttranscriptional regulation of PGC-1α by miR-19b/221/222 was unveiled, which provides a novel mechanism in which a panel of microRNAs can modulate endothelial cell apoptosis via the regulation mitochondrial function.
Collapse
Affiliation(s)
- Yunxing Xue
- Department of Thoracic and Cardiovascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhe Wei
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), Nanjing University School of Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu, China
| | - Hanying Ding
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), Nanjing University School of Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu, China
| | - Qiang Wang
- Department of Thoracic and Cardiovascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhen Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), Nanjing University School of Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu, China
| | - Shasha Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), Nanjing University School of Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu, China
| | - Yujing Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), Nanjing University School of Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu, China
| | - Dongxia Hou
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), Nanjing University School of Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu, China
| | - Yuchen Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), Nanjing University School of Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu, China
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), Nanjing University School of Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu, China
| | - Chen-Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), Nanjing University School of Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu, China
| | - Jing Li
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), Nanjing University School of Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu, China.
| | - Dongjin Wang
- Department of Thoracic and Cardiovascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaohong Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Advanced Institute for Life Sciences (NAILS), Nanjing University School of Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu, China.
| |
Collapse
|
9
|
Huang X, Jin Y, Zhou D, Xu G, Huang J, Shen L. IQGAP1 modulates the proliferation and migration of vascular smooth muscle cells in response to estrogen. Int J Mol Med 2015; 35:1460-6. [PMID: 25777140 DOI: 10.3892/ijmm.2015.2134] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/25/2015] [Indexed: 11/06/2022] Open
Abstract
Vascular smooth muscle cell (VSMC) proliferation and migration has been proven to be a critical event in the development of varicosity. Variations in estrogen levels, a pathological event related to age and pregnancy, play a role in the pathogenesis of varicosity. Previous studies have reported a different response of VSMCs following estrogen stimulation. However, the exact mechanisms involved have not yet been elucidated. In the present study, we examined the responses of lesion and normal VSMCs treated with 10(-8) M 17β-estradiol (E2) for 24 h. A differential effect of exposure to E2 was observed in these cells. IQ-domain GTPase-activating protein 1 (IQGAP1), a scaffold protein, was overexpressed in the lesion VSMCs and was shown to modulate VSMC proliferation and migration in response to E2. Furthermore, the increased expression of IQGAP1 was found to be intimately associated with a high activity of estrogen receptor α (ERα), which has been implicated in the regulation of VSMC physiological function. Additionally, we found that two critical kinases, Akt and extracellular signal-regulated kinase (ERK), mediated the activation of ERα and VSMC proliferation. According to our results, we thus concluded that high levels of IQGAP1 in VSMCs regulate the physiological reaction of the cells in response to estrogen exposure, and that kinases are involved in the process by mediating ERα activation. In view of the essential role of IQGAP1 in the physiological function of VSMCs, targeting this molecule may prove to be a promising strategy for the treatment of varicosity.
Collapse
Affiliation(s)
- Xianchen Huang
- Department of Vascular Surgery, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu 215002, P.R. China
| | - Yiqi Jin
- Department of Vascular Surgery, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu 215002, P.R. China
| | - Dayong Zhou
- Department of Vascular Surgery, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu 215002, P.R. China
| | - Guoxiong Xu
- Department of Vascular Surgery, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu 215002, P.R. China
| | - Jian Huang
- Department of Vascular Surgery, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu 215002, P.R. China
| | - Liming Shen
- Department of Vascular Surgery, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu 215002, P.R. China
| |
Collapse
|
10
|
Zheng S, Chen X, Hong S, Long L, Xu Y, Simoncini T, Fu X. 17β-Estradiol inhibits vascular smooth muscle cell migration via up-regulation of striatin protein. Gynecol Endocrinol 2015. [PMID: 26220767 DOI: 10.3109/09513590.2015.1021325] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Striatin, an estrogen receptor (ER)-interacting protein, plays an important role in estrogen's nongenomic actions in vascular endothelial cells. However, the role of striatin in VSMCs is unknown. Here, we investigated the role of striatin in estrogen-regulated VSMCs migration. 17β-Estradiol (E2) at 10 nM largely inhibited VSMCs migration, which was reversed by the silencing of striatin expression. E2 increased striatin protein expression in a dose- and time-dependent manner. ERα agonist PPT, but not ERβ agonist DPN, mimicked the regulatory effect of E2. The regulatory effect of E2 on striatin protein expression was blocked by the pure ER antagonist ICI 182,780 or the mitogen-activated protein kinase inhibitor PD98059, but not by the phosphatidylinositol-3 kinase inhibitor wortmannin or Src inhibitor PP2, suggesting that E2 increased striatin protein expression via extracellular-signal regulated kinase 1/2 (ERK1/2). E2 resulted in phosphorylation of ERK1/2 in a time-dependent manner. The silencing of ERK1/2 largely abolished E2-enhanced striatin expression. Finally, the inhibitory effect of E2 on VSMC migration was reversed by ICI 182,780 or PD98059. Taken together, our results indicate that E2 inhibits VSMC migration by increasing striatin expression via ERα to ERK1/2 pathway, which maybe helpful to understand estrogen's anti-atherogenic effect in VSMCs.
Collapse
Affiliation(s)
- Shuhui Zheng
- a Research Center of Translational Medicine, the First Affiliated Hospital, Sun Yat-Sen University , Guangzhou , Guangdong Province , China
| | - Xi Chen
- b Department of Rehabilitation Medicine , the Third Affiliated Hospital, Sun Yat-sen University , Guangzhou , Guangdong Province , China
| | - Shubin Hong
- c Department of Endocrinology , the First Affiliated Hospital, Sun Yat-Sen University , Guangzhou , Guangdong Province , China
| | - Lingli Long
- a Research Center of Translational Medicine, the First Affiliated Hospital, Sun Yat-Sen University , Guangzhou , Guangdong Province , China
| | - Yuxia Xu
- a Research Center of Translational Medicine, the First Affiliated Hospital, Sun Yat-Sen University , Guangzhou , Guangdong Province , China
| | - Tommaso Simoncini
- d Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Reproductive Medicine and Child Development , University of Pisa , Pisa , Italy , and
| | - Xiaodong Fu
- e School of Basic Sciences, Guangzhou Medical University , Guangzhou , Guangdong Province , China
| |
Collapse
|
11
|
WANG HUAN, LIU YAN, ZHU LING, WANG WENJING, WAN ZHAOFEI, CHEN FANGYUAN, WU YAN, ZHOU JUAN, YUAN ZUYI. 17β-estradiol promotes cholesterol efflux from vascular smooth muscle cells through a liver X receptor α-dependent pathway. Int J Mol Med 2014; 33:550-8. [DOI: 10.3892/ijmm.2014.1619] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 12/23/2013] [Indexed: 11/05/2022] Open
|
12
|
Doronzo G, Viretto M, Barale C, Russo I, Mattiello L, Anfossi G, Trovati M. Oleic acid increases synthesis and secretion of VEGF in rat vascular smooth muscle cells: role of oxidative stress and impairment in obesity. Int J Mol Sci 2013; 14:18861-80. [PMID: 24065093 PMCID: PMC3794811 DOI: 10.3390/ijms140918861] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/05/2013] [Accepted: 09/05/2013] [Indexed: 12/30/2022] Open
Abstract
Obesity is characterized by poor collateral vessel formation, a process involving vascular endothelial growth factor (VEGF) action on vascular smooth muscle cells (VSMC). Free fatty acids are involved in the pathogenesis of obesity vascular complications, and we have aimed to clarify whether oleic acid (OA) enhances VEGF synthesis/secretion in VSMC, and whether this effect is impaired in obesity. In cultured aortic VSMC from lean and obese Zucker rats (LZR and OZR, respectively) we measured the influence of OA on VEGF-A synthesis/secretion, signaling molecules and reactive oxygen species (ROS). In VSMC from LZR we found the following: (a) OA increases VEGF-A synthesis/secretion by a mechanism blunted by inhibitors of Akt, mTOR, ERK-1/2, PKC-beta, NADPH-oxidase and mitochondrial electron transport chain complex; (b) OA activates the above mentioned signaling pathways and increases ROS; (c) OA-induced activation of PKC-beta enhances oxidative stress, which activates signaling pathways responsible for the increased VEGF synthesis/secretion. In VSMC from OZR, which present enhanced baseline oxidative stress, the above mentioned actions of OA on VEGF-A, signaling pathways and ROS are impaired: this impairment is reproduced in VSMC from LZR by incubation with hydrogen peroxide. Thus, in OZR chronically elevated oxidative stress causes a resistance to the action on VEGF that OA exerts in LZR by increasing ROS.
Collapse
Affiliation(s)
- Gabriella Doronzo
- Internal Medicine and Metabolic Disease Unit, Department of Clinical and Biological Sciences of the University of Turin, San Luigi Gonzaga Hospital, Orbassano (Turin) 10043, Italy.
| | | | | | | | | | | | | |
Collapse
|
13
|
Wang Z, Zhang X, Chen S, Wang D, Wu J, Liang T, Liu C. Lithium chloride inhibits vascular smooth muscle cell proliferation and migration and alleviates injury-induced neointimal hyperplasia via induction of PGC-1α. PLoS One 2013; 8:e55471. [PMID: 23383200 PMCID: PMC3561220 DOI: 10.1371/journal.pone.0055471] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 12/23/2012] [Indexed: 01/08/2023] Open
Abstract
The proliferation and migration of vascular smooth muscle cells (VSMCs) contributes importantly to the development of in-stent restenosis. Lithium has recently been shown to have beneficial effects on the cardiovascular system, but its actions in VSMCs and the direct molecular target responsible for its action remains unknown. On the other hand, PGC-1α is a transcriptional coactivator which negatively regulates the pathological activation of VSMCs. Therefore, the purpose of the present study is to determine if lithium chloride (LiCl) retards VSMC proliferation and migration and if PGC-1α mediates the effects of lithium on VSMCs. We found that pretreatment of LiCl increased PGC-1α protein expression and nuclear translocation in a dose-dependent manner. MTT and EdU incorporation assays indicated that LiCl inhibited serum-induced VSMC proliferation. Similarly, deceleration of VSMC migration was confirmed by wound healing and transwell assays. LiCl also suppressed ROS generation and cell cycle progression. At the molecular level, LiCl reduced the protein expression levels or phosphorylation of key regulators involved in the cell cycle re-entry, adhesion, inflammation and motility. In addition, in vivo administration of LiCl alleviated the pathophysiological changes in balloon injury-induced neointima hyperplasia. More importantly, knockdown of PGC-1α by siRNA significantly attenuated the beneficial effects of LiCl on VSMCs both in vitro and in vivo. Taken together, our results suggest that LiCl has great potentials in the prevention and treatment of cardiovascular diseases related to VSMC abnormal proliferation and migration. In addition, PGC-1α may serve as a promising drug target to regulate cardiovascular physiological homeostasis.
Collapse
Affiliation(s)
- Zhuyao Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Xiwen Zhang
- Department of Cardiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China
| | - Siyu Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Danfeng Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Jun Wu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Chang Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
- * E-mail:
| |
Collapse
|
14
|
Key Fatty Acid Combinations Define Vascular Smooth Muscle Cell Proliferation and Viability. Lipids 2012; 47:1073-84. [DOI: 10.1007/s11745-012-3718-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 09/05/2012] [Indexed: 12/15/2022]
|
15
|
Miao CY, Li ZY. The role of perivascular adipose tissue in vascular smooth muscle cell growth. Br J Pharmacol 2012; 165:643-58. [PMID: 21470202 DOI: 10.1111/j.1476-5381.2011.01404.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Adipose tissue is the largest endocrine organ, producing various adipokines and many other substances. Almost all blood vessels are surrounded by perivascular adipose tissue (PVAT), which has not received research attention until recently. This review will discuss the paracrine actions of PVAT on the growth of underlying vascular smooth muscle cells (VSMCs). PVAT can release growth factors and inhibitors. Visfatin is the first identified growth factor derived from PVAT. Decreased adiponectin and increased tumour necrosis factor-α in PVAT play a pathological role for neointimal hyperplasia after endovascular injury. PVAT-derived angiotensin II, angiotensin 1-7, reactive oxygen species, complement component 3, NO and H(2) S have a paracrine action on VSMC contraction, endothelial or fibroblast function; however, their paracrine actions on VSMC growth remain to be directly verified. Factors such as monocyte chemoattractant protein-1, interleukin-6, interleukin-8, leptin, resistin, plasminogen activator inhibitor type-1, adrenomedullin, free fatty acids, glucocorticoids and sex hormones can be released from adipose tissue and can regulate VSMC growth. Most of them have been verified for their secretion by PVAT; however, their paracrine functions are unknown. Obesity, vascular injury, aging and infection may affect PVAT, causing adipocyte abnormality and inflammatory cell infiltration, inducing imbalance of PVAT-derived growth factors and inhibitors, leading to VSMC growth and finally resulting in development of proliferative vascular disease, including atherosclerosis, restenosis and hypertension. In the future, using cell-specific gene interventions and local treatments may provide definitive evidence for identification of key factor(s) involved in PVAT dysfunction-induced vascular disease and thus may help to develop new therapies. LINKED ARTICLES This article is part of a themed section on Fat and Vascular Responsiveness. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-3.
Collapse
Affiliation(s)
- Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University, Shanghai, China.
| | | |
Collapse
|
16
|
Zhang Y, Wu L, Wang Y, Zhang M, Li L, Zhu D, Li X, Gu H, Zhang CY, Zen K. Protective role of estrogen-induced miRNA-29 expression in carbon tetrachloride-induced mouse liver injury. J Biol Chem 2012; 287:14851-62. [PMID: 22393047 DOI: 10.1074/jbc.m111.314922] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Previous studies have indicated that female animals are more resistant to carbon tetrachloride (CCl(4))-induced liver fibrosis than male animals, and that estradiol (E(2)) treatment can inhibit CCl(4)-induced animal hepatic fibrosis. The underlying mechanism governing these phenomena, however, has not been fully elucidated. Here we reported the role of estrogen-induced miRNA-29 (miR-29) expression in CCl(4)-induced mouse liver injury. Hepatic miR-29 levels were differentially regulated in female and male mice during CCl(4) treatment. Specifically, the levels of miR-29a and miR-29b expression were significantly decreased in the livers of male, but not female, mice following 4 weeks of CCl(4) treatment. The down-regulation of miR-29a and miR-29b in male mouse livers correlated with the early development of liver fibrosis, as indicated by increased expressions of fibrotic markers in male mice relative to female mice. In addition, E(2) was maintained at a higher level in female mice than in male mice. In contrast to TGF-β1 that decreased miR-29a/b expression in murine hepatoma IAR20 cells and normal hepatocytes, E(2) enhanced the expression of miR-29a/b through suppression of the nuclear factor-κB (NF-κB) signal pathway, which negatively regulates miR-29 expression. Furthermore, both E(2) treatment and intravenous injection of the recombinant adenovirus expressing miR-29a/b markedly increased the miR-29a/b level and attenuated the expression of fibrotic markers in mouse livers during CCl(4) treatment, supporting the protective role of E(2)-induced miR-29 in CCl(4)-induced hepatic injury. In conclusion, our results collectively demonstrate that estrogen can inhibit CCl(4)-induced hepatic injury through the induction of hepatic miR-29.
Collapse
Affiliation(s)
- Yaqin Zhang
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology (JERC-MBB), State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University School of Life Sciences, Nanjing, Jiangsu 210093, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Patten IS, Arany Z. PGC-1 coactivators in the cardiovascular system. Trends Endocrinol Metab 2012; 23:90-7. [PMID: 22047951 DOI: 10.1016/j.tem.2011.09.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 09/25/2011] [Accepted: 09/29/2011] [Indexed: 01/16/2023]
Abstract
The beating heart consumes more ATP per weight than any other organ. The machineries required for this are many and complex. Fuel and oxygen must be transported via the vasculature, absorbed by cardiomyocytes, broken down, and regulated to match cellular demands. Much of this occurs in mitochondria, which comprise fully one third of cardiac mass. The PGC-1 proteins are transcriptional coactivators that have emerged as powerful orchestrators of these numerous processes, ensuring their proper coregulation in response to intracellular and extracellular cues. An important role for PGC-1s in cardiac function has been revealed over the past few years, and more recently interest in their role in the vasculature has been burgeoning. We review this literature, focusing on recent developments.
Collapse
Affiliation(s)
- Ian S Patten
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
18
|
Xu W, Guo T, Zhang Y, Jiang X, Zhang Y, Zen K, Yu B, Zhang CY. The inhibitory effect of dexamethasone on platelet-derived growth factor-induced vascular smooth muscle cell migration through up-regulating PGC-1α expression. Exp Cell Res 2010; 317:1083-92. [PMID: 20955697 DOI: 10.1016/j.yexcr.2010.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 09/15/2010] [Accepted: 10/09/2010] [Indexed: 11/29/2022]
Abstract
Dexamethasone has been shown to inhibit vascular smooth muscle cell (VSMC) migration, which is required for preventing restenosis. However, the mechanism underlying effect of dexamethasone remains unknown. We have previously demonstrated that peroxisome proliferator-activated receptor gamma (PPARγ) coactivator-1 alpha (PGC-1α) can inhibit VSMC migration and proliferation. Here, we investigated the role of PGC-1α in dexamethasone-reduced VSMC migration and explored the possible mechanism. We first examined PGC-1α expression in cultured rat aortic VSMCs. The results revealed that incubation of VSMCs with dexamethasone could significantly elevate PGC-1α mRNA expression. In contrast, platelet-derived growth factor (PDGF) decreased PGC-1α expression while stimulating VSMC migration. Mechanistic study showed that suppression of PGC-1α by small interfering RNA strongly abrogated the inhibitory effect of dexamethasone on VSMC migration, whereas overexpression of PGC-1α had the opposite effect. Furthermore, an analysis of MAPK signal pathways showed that dexamethasone inhibited ERK and p38 MAPK phosphorylation in VSMCs. Overexpression of PGC-1α decreased both basal and PDGF-induced p38 MAPK phosphorylation, but it had no effect on ERK phosphorylation. Finally, inhibition of PPARγ activation by a PPARγ antagonist GW9662 abolished the suppressive effects of PGC-1α on p38 MAPK phosphorylation and VSMC migration. These effects of PGC-1α were enhanced by a PPARγ agonist troglitazone. Collectively, our data indicated for the first time that one of the anti-migrated mechanisms of dexamethasone is due to the induction of PGC-1α expression. PGC-1α suppresses PDGF-induced VSMC migration through PPARγ coactivation and, consequently, p38 MAPK inhibition.
Collapse
Affiliation(s)
- Wei Xu
- School of Life Sciences, Nanjing University, Nanjing 210093, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|