1
|
Kaltsas A, Dimitriadis F, Zachariou A, Sofikitis N, Chrisofos M. Phosphodiesterase Type 5 Inhibitors in Male Reproduction: Molecular Mechanisms and Clinical Implications for Fertility Management. Cells 2025; 14:120. [PMID: 39851548 PMCID: PMC11763789 DOI: 10.3390/cells14020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
Phosphodiesterases, particularly the type 5 isoform (PDE5), have gained recognition as pivotal regulators of male reproductive physiology, exerting significant influence on testicular function, sperm maturation, and overall fertility potential. Over the past several decades, investigations have expanded beyond the original therapeutic intent of PDE5 inhibitors for erectile dysfunction, exploring their broader reproductive implications. This narrative review integrates current evidence from in vitro studies, animal models, and clinical research to clarify the roles of PDEs in effecting the male reproductive tract, with an emphasis on the mechanistic pathways underlying cyclic nucleotide signaling, the cellular specificity of PDE isoform expression, and the effects of PDE5 inhibitors on Leydig and Sertoli cell functions. Although certain findings suggest potential improvements in sperm motility, semen parameters, and a more favorable biochemical milieu for spermatogenesis, inconsistencies in study design, limited sample sizes, and inadequate long-term data temper definitive conclusions. Addressing these gaps through standardized protocols, larger and more diverse patient cohorts, and explorations of mechanistic biomarkers could pave the way for incorporating PDE5 inhibitors into evidence-based fertility treatment strategies. In the future, such targeted approaches may inform individualized regimens, optimize male reproductive outcomes, and refine the clinical application of PDE5 inhibitors as part of comprehensive male fertility management.
Collapse
Affiliation(s)
- Aris Kaltsas
- Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Fotios Dimitriadis
- Department of Urology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Athanasios Zachariou
- Laboratory of Spermatology, Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.)
| | - Nikolaos Sofikitis
- Laboratory of Spermatology, Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.)
| | - Michael Chrisofos
- Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| |
Collapse
|
2
|
Bester B, Koslowa K, Gronau AC, Mietens A, Nowell C, Whittaker MR, Pilatz A, Wagenlehner F, Exintaris B, Middendorff R. The oxytocin antagonist cligosiban reduces human prostate contractility: Implications for the treatment of benign prostatic hyperplasia. Br J Pharmacol 2024; 181:2869-2885. [PMID: 38676555 DOI: 10.1111/bph.16369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND AND PURPOSE With increasing life expectancy, benign prostatic hyperplasia (BPH) consequently affects more ageing men, illustrating the urgent need for advancements in BPH therapy. One emerging possibility may be the use of oxytocin antagonists to relax smooth muscle cells in the prostate, similar to the currently used (although often associated with side effects) α1-adrenoceptor blockers. EXPERIMENTAL APPROACH For the first time we used live-imaging, combined with a novel image analysis method, to investigate the multidirectional contractions of the human prostate and determine their changes in response to oxytocin and the oxytocin antagonists atosiban and cligosiban. Human prostate samples were obtained and compared from patients undergoing prostatectomy due to prostate cancer as well as from patients with transurethral resection of prostate tissue due to severe BPH. KEY RESULTS The two cohorts of tissue samples showed spontaneous multidirectional contractions, which significantly increased after the addition of oxytocin. Different to atosiban, which showed ambiguous effects of short duration, only long-acting cligosiban reliably prevented, as well as counteracted, any contractile oxytocin effect. Furthermore, cligosiban visibly reduced not only oxytocin-induced contractions, but also showed intrinsic activity to relax prostatic tissue. CONCLUSION AND IMPLICATIONS Thus, the oxytocin antagonist cligosiban could be an interesting candidate in the search for novel BPH treatment options.
Collapse
Affiliation(s)
- Beatrix Bester
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Kristina Koslowa
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Ann-Catherine Gronau
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Andrea Mietens
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Cameron Nowell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Melbourne, Victoria, Australia
| | - Michael R Whittaker
- Drug Discovery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Melbourne, Victoria, Australia
| | - Adrian Pilatz
- Department of Urology, Pediatric Urology, and Andrology, Justus-Liebig-University, Giessen, Germany
| | - Florian Wagenlehner
- Department of Urology, Pediatric Urology, and Andrology, Justus-Liebig-University, Giessen, Germany
| | - Betty Exintaris
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Melbourne, Victoria, Australia
| | - Ralf Middendorff
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
3
|
Zhao H, Yu Y, Mei C, Zhang T, Kang Y, Li N, Huang D. Effect of C-Type Natriuretic Peptide (CNP) on Spermatozoa Maturation in Adult Rat Epididymis. Curr Issues Mol Biol 2023; 45:1681-1692. [PMID: 36826053 PMCID: PMC9955803 DOI: 10.3390/cimb45020108] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
C-type natriuretic peptide (CNP) is highly expressed in male reproductive tissues, such as the epididymis. The aim of this study is to explore the role of CNP in the maturation of rat epididymal spermatozoa. First, the expression levels of CNP and its specific natriuretic peptide receptor-B (NPR-B) were detected in various tissues of rats and epididymis at different stages after birth. Then a castrated rat model was established to analyze the relationship between testosterone and CNP/NPR-B expression in the epididymis. Finally, CNP and different inhibitors (NPR-B inhibitors, cGMP inhibitors) were used to incubate epididymal sperm in vitro to examine sperm mobility and expression of sperm maturation-related factors. The results showed CNP/NPR-B mRNAs were expressed in all tissues of rats, but were extremely highly expressed in male genital ducts (seminal vesicle, prostate and epididymis). The expression of CNP/NPR-B in epididymis was the highest at birth and the fifth week after birth. In the epididymis, CNP/NPR-B were highly expressed in the caput and located in the epididymal epithelial cells. After castration, the expression of CNP/NPR-B decreased sharply and was restored quickly after testosterone supplementation. In vitro, CNP could significantly promote the acquisition of epididymal sperm motility through the NPR-B/cGMP pathway and induce the expression of sperm maturation-related factors (such as Bin1b, Catsper 1, Dnah17, Fertilin). This study shows that CNP plays a role in epididymal sperm maturation. The mechanism of CNP is to promote the acquisition of epididymal sperm fluidity through the NPR-B/cGMP signaling pathway and also to regulate sperm maturation-related genes. Moreover, the expression of CNP/NPR-B was regulated by testosterone.
Collapse
Affiliation(s)
- Hu Zhao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (H.Z.); (Y.Y.); (C.M.); (T.Z.); (Y.K.); (N.L.)
- Department of Human Anatomy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuejin Yu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (H.Z.); (Y.Y.); (C.M.); (T.Z.); (Y.K.); (N.L.)
| | - Chunlei Mei
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (H.Z.); (Y.Y.); (C.M.); (T.Z.); (Y.K.); (N.L.)
| | - Tianyu Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (H.Z.); (Y.Y.); (C.M.); (T.Z.); (Y.K.); (N.L.)
| | - Yafei Kang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (H.Z.); (Y.Y.); (C.M.); (T.Z.); (Y.K.); (N.L.)
| | - Na Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (H.Z.); (Y.Y.); (C.M.); (T.Z.); (Y.K.); (N.L.)
| | - Donghui Huang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (H.Z.); (Y.Y.); (C.M.); (T.Z.); (Y.K.); (N.L.)
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518063, China
- Correspondence: ; Tel.: +86-188-7226-2607
| |
Collapse
|
4
|
Seidensticker M, Tasch S, Mietens A, Exintaris B, Middendorff R. Treatment of benign prostatic hyperplasia and abnormal ejaculation: live imaging reveals tamsulosin - but not tadalafil - induced dysfunction of prostate, seminal vesicles and epididymis. Reproduction 2022; 164:291-301. [PMID: 36173812 DOI: 10.1530/rep-22-0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/29/2022] [Indexed: 11/08/2022]
Abstract
In brief One of the most commonly prescribed benign prostatic hyperplasia (BPH) pharmacotherapies, the alpha1-adrenergic blocker tamsulosin, is frequently discontinued, especially by younger patients due to ejaculatory disorders, often without feedback to the attending physician. Using a newly developed ex vivo system simulating sympathetic effects on the most relevant structures for the emission phase of ejaculation, that is seminal vesicles, prostate and the most distal part of the cauda epididymidis, we elucidated that tamsulosin fundamentally disturbed the obligatory noradrenaline-induced contractions in each of these structures which differed to an alternative pharmacotherapy, the PDE5 inhibitor tadalafil. Abstract Structures responsible for the emission phase of ejaculation are the seminal vesicles, the most distal part of the cauda epididymidis and the newly characterized prostate excretory ducts. The emission phase is mainly regulated by the sympathetic nervous system through alpha1-adrenergic receptor activation by noradrenaline at the targeted organs. BPH treatment with alpha1A-adrenergic antagonists such as tamsulosin is known to result in ejaculation dysfunction, often leading to discontinuation of therapy. Mechanisms of this disturbance remain unclear. We established a rodent model system to predict drug responses in tissues involved in the emission phase of ejaculation. Imitating the therapeutic situation, prostate ducts, seminal vesicles and the distal cauda epididymal duct were pre-incubated with the smooth muscle cell-relaxing BPH drugs tadalafil, a novel BPH treatment option, and tamsulosin in an ex vivo time-lapse imaging approach. Afterwards, noradrenergic responses in the relevant structures were investigated to simulate sympathetic activation. Noradrenaline-induced strong contractions ultimately lead to secretion in structures without pre-treatment. Contractions were abolished by tamsulosin in prostate ducts and seminal vesicles and significantly decreased in the epididymal duct. Such effects were not observed with tadalafil pre-treatment. Data visualized a serious dysfunction of each organ involved in emission by affecting alpha1-adrenoceptors localized at the relevant structures but not by targeting smooth muscle cell-localized PDE5 by tadalafil. Our model system reveals the mechanism of tamsulosin resulting in adverse effects during ejaculation in patients treated for BPH. These adverse effects on contractility do not apply to tadalafil treatment. This new knowledge translates directly to clinical medicine.
Collapse
Affiliation(s)
- Mathias Seidensticker
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Sabine Tasch
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Andrea Mietens
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Betty Exintaris
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Melbourne, Victoria, Australia
| | - Ralf Middendorff
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
5
|
Jin S, Xiang P, Liu J, Yang Y, Hu S, Sheng J, He Q, Yu W, Han W, Jin J, Peng J. Activation of cGMP/PKG/p65 signaling associated with PDE5-Is downregulates CCL5 secretion by CD8 + T cells in benign prostatic hyperplasia. Prostate 2019; 79:909-919. [PMID: 30958912 PMCID: PMC6593656 DOI: 10.1002/pros.23801] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 02/28/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Benign prostatic hyperplasia (BPH) is the most common urological disease in elderly men, but the underlying pathophysiological mechanisms are complex and not fully understood. Phosphodiesterase type 5 inhibitors (PDE5-Is) used to treat BPH could upregulate the cyclic guanosine monophosphate (cGMP)-dependent protein kinase G (PKG) signaling, which was shown to blunt inflammation in the prostate. Our previous findings indicate that CD8+ T cells promote the proliferation of BPH epithelial cells (BECs) in low androgen conditions through secretion of CCL5; however, the role of the cGMP/PKG pathway in the process is unclear. METHODS Paraffin-embedded tissues were used for expression quantity of CD8+ T cells, CCL5, cyclin D1, and PDE5 protein by immunohistology in prostate specimens which were/were not treated with finasteride 5 mg daily for at least 6 months before surgery. BPH-1 cells were cocultured with or without CD8 + T cells or PDE5-Is in low androgen conditions for 4 days. The conditioned media, BPH-1 cells, and CD8 + T cells were harvested for the subsequent experiments. The quantitative polymerase chain reaction was used for assaying the level of messenger RNA expression of CCL5. CCL5 in the conditioned media was detected by the enzyme-linked immunosorbent assay. The effect of PDE5-Is on cocultured BPH-1/CD8 + T-cell proliferation was detected by the cell counting kit-8. A high-fat diet (HFD)-induced prostatic hyperplasia rat model was used to investigate the effect of cGMP/PKG activation in CD8 + T cells in vivo. RESULTS CD8+ T-cell infiltration into human BPH tissues was positively correlated with the expression of CCL5, cyclin D1, and PDE5, whereas in an HFD-induced prostatic hyperplasia rat model, the activation of the cGMP/PKG signaling by a PDE5-I could suppress the CD8 + T-cell infiltration and the CCL5 and cyclin D1 expression. Furthermore, the activation of the cGMP/PKG pathway inhibited CCL5 secretion by CD8 + T cells by downregulating nuclear factor-κB p65 phosphorylation, which reduced the growth of BPH-1 through CCL5/STAT5/CCND1 signaling. CONCLUSIONS Our results indicate that the upregulation of the cGMP/PKG/p65 signaling reduces CCL5 secretion in CD8 + T cells, which in turn decreases the proliferation of BECs in low androgen conditions, suggesting that the combination of 5α reductase inhibitors lowering androgen levels and PDE5-Is may be a novel, more effective treatment for BPH patients.
Collapse
Affiliation(s)
- Song Jin
- Department of UrologyPeking University First Hospital and Institute of Urology, Peking UniversityBeijingChina
- National Research Center for Genitourinary OncologyBeijingChina
- Beijing Key Laboratory of Urogenital Diseases (male)Molecular Diagnosis and Treatment CenterBeijingChina
| | - Peng Xiang
- Department of UrologyPeking University First Hospital and Institute of Urology, Peking UniversityBeijingChina
- National Research Center for Genitourinary OncologyBeijingChina
- Beijing Key Laboratory of Urogenital Diseases (male)Molecular Diagnosis and Treatment CenterBeijingChina
| | - Jie Liu
- Department of UrologyPeking University First Hospital and Institute of Urology, Peking UniversityBeijingChina
- National Research Center for Genitourinary OncologyBeijingChina
- Beijing Key Laboratory of Urogenital Diseases (male)Molecular Diagnosis and Treatment CenterBeijingChina
| | - Yang Yang
- Department of UrologyPeking University First Hospital and Institute of Urology, Peking UniversityBeijingChina
- National Research Center for Genitourinary OncologyBeijingChina
- Beijing Key Laboratory of Urogenital Diseases (male)Molecular Diagnosis and Treatment CenterBeijingChina
| | - Shuai Hu
- Department of UrologyPeking University First Hospital and Institute of Urology, Peking UniversityBeijingChina
- National Research Center for Genitourinary OncologyBeijingChina
- Beijing Key Laboratory of Urogenital Diseases (male)Molecular Diagnosis and Treatment CenterBeijingChina
| | - Jindong Sheng
- Department of UrologyPeking University First Hospital and Institute of Urology, Peking UniversityBeijingChina
- National Research Center for Genitourinary OncologyBeijingChina
- Beijing Key Laboratory of Urogenital Diseases (male)Molecular Diagnosis and Treatment CenterBeijingChina
| | - Qun He
- Department of UrologyPeking University First Hospital and Institute of Urology, Peking UniversityBeijingChina
- National Research Center for Genitourinary OncologyBeijingChina
- Beijing Key Laboratory of Urogenital Diseases (male)Molecular Diagnosis and Treatment CenterBeijingChina
| | - Wei Yu
- Department of UrologyPeking University First Hospital and Institute of Urology, Peking UniversityBeijingChina
- National Research Center for Genitourinary OncologyBeijingChina
- Beijing Key Laboratory of Urogenital Diseases (male)Molecular Diagnosis and Treatment CenterBeijingChina
| | - Wenke Han
- Department of UrologyPeking University First Hospital and Institute of Urology, Peking UniversityBeijingChina
- National Research Center for Genitourinary OncologyBeijingChina
- Beijing Key Laboratory of Urogenital Diseases (male)Molecular Diagnosis and Treatment CenterBeijingChina
| | - Jie Jin
- Department of UrologyPeking University First Hospital and Institute of Urology, Peking UniversityBeijingChina
- National Research Center for Genitourinary OncologyBeijingChina
- Beijing Key Laboratory of Urogenital Diseases (male)Molecular Diagnosis and Treatment CenterBeijingChina
| | - Jing Peng
- Department of UrologyPeking University First Hospital and Institute of Urology, Peking UniversityBeijingChina
- National Research Center for Genitourinary OncologyBeijingChina
- Beijing Key Laboratory of Urogenital Diseases (male)Molecular Diagnosis and Treatment CenterBeijingChina
| |
Collapse
|
6
|
Drobnis EZ, Nangia AK. Phosphodiesterase Inhibitors (PDE Inhibitors) and Male Reproduction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1034:29-38. [PMID: 29256125 DOI: 10.1007/978-3-319-69535-8_5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The nonspecific PDE inhibitors, particularly the methylxanthines: caffeine, pentoxifylline (PTX), and theophylline, are known to stimulate sperm motility in vitro and have been used to treat sperm prior to insemination. The in vivo effects are less dramatic. A beneficial effect of caffeine, which is a constituent of some medications, remains controversial. Very high doses of caffeine do have negative effects on fertility endpoints in men and experimental species. The specific PDE5 inhibitors, particularly sildenafil and tadalafil, are prescribed for erectile dysfunction, as well as pulmonary hypertension, lower urinary tract symptoms, and premature ejaculation. PDE5 is expressed throughout the contractile tissues of the male reproductive tract, generally increasing contractility. Some PDE5 inhibitors tend to increase circulating testosterone levels somewhat. For short-term exposure consistent with use prior to intercourse, there appears to be minimal effects on semen quality. Several large, randomized controlled trials (RCTs) in healthy men have not found adverse effects of long-term use of these drugs on semen quality. RCTs in infertile men have demonstrated a modest increase in semen quality. Animal studies at human equivalent doses (HED) have produced similar results in young males, but a study in aging male rats found progressive decreases in epididymal sperm quality accompanied by consistent degeneration of the seminal tubules suggesting that studies in older men might be warranted. A concerning study in mice found lower fertilization rates in males treated with HED of sildenafil and mated the next day to untreated females than for control males. Fertility studies in humans are needed.
Collapse
Affiliation(s)
- Erma Z Drobnis
- Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, Columbia, MO, USA
| | - Ajay K Nangia
- Department of Urology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
7
|
Mietens A, Tasch S, Stammler A, Konrad L, Feuerstacke C, Middendorff R. Time-lapse imaging as a tool to investigate contractility of the epididymal duct--effects of cGMP signaling. PLoS One 2014; 9:e92603. [PMID: 24662987 PMCID: PMC3963912 DOI: 10.1371/journal.pone.0092603] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 02/24/2014] [Indexed: 01/01/2023] Open
Abstract
The well orchestrated function of epididymal smooth muscle cells ensures transit of spermatozoa through the epididymal duct during which spermatozoa acquire motility and fertilizing capacity. Relaxation of smooth muscle cells is mediated by cGMP signaling and components of this pathway are found within the male reproductive tract. Whereas contractile function of caudal parts of the rat epididymal duct can be examined in organ bath studies, caput and corpus regions are fragile and make it difficult to mount them in an organ bath. We developed an ex vivo time-lapse imaging-based approach to investigate the contractile pattern in these parts of the epididymal duct. Collagen-embedding allowed immobilization without impeding contractility or diffusion of drugs towards the duct and therefore facilitated subsequent movie analyses. The contractile pattern was made visible by placing virtual sections through the acquired image stack to track wall movements over time. By this, simultaneous evaluation of contractile activity at different positions of the observed duct segment was possible. With each contraction translating into a spike, drug-induced alterations in contraction frequency could be assessed easily. Peristaltic contractions were also detectable and throughout all regions in the proximal epididymis we found regular spontaneous contractile activity that elicited movement of intraluminal contents. Stimulating cGMP production by natriuretic peptide ANP or inhibiting degradation of cGMP by the phosphodiesterase 5 inhibitor sildenafil significantly reduced contractile frequency in isolated duct segments from caput and corpus. RT-PCR analysis after laser-capture microdissection localized the corresponding molecules to the smooth muscle layer of the duct. Our time-lapse imaging approach proved to be feasible to assess contractile function in all regions of the epididymal duct under near physiological conditions and provides a tool to evaluate acute (side) effects of drugs and to investigate various signaling pathways.
Collapse
Affiliation(s)
- Andrea Mietens
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Sabine Tasch
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Angelika Stammler
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Lutz Konrad
- Department of Gynecology and Obstetrics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Caroline Feuerstacke
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Ralf Middendorff
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
8
|
Thong A, Müller D, Feuerstacke C, Mietens A, Stammler A, Middendorff R. Neutral endopeptidase (CD10) is abundantly expressed in the epididymis and localized to a distinct population of epithelial cells--its relevance for CNP degradation. Mol Cell Endocrinol 2014; 382:234-243. [PMID: 24099862 DOI: 10.1016/j.mce.2013.09.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 09/21/2013] [Accepted: 09/22/2013] [Indexed: 12/30/2022]
Abstract
Neutral endopeptidase (NEP, metallo-endopeptidase EC 3.4.24.11; enkephalinase, neprilysin, CD10, CALLA) represents a major regulator of bioactivity of natriuretic peptides. C-type natriuretic peptide (CNP) is present in high levels in epididymis and seminal plasma. However, detailed expression pattern and CNP-related function of NEP in the epididymis are unknown. Comparison of NEP protein levels in various organs revealed an extremely high expression in human and mouse epididymis. NEP was localized exclusively to apical (luminal) parts of epithelial cells. In man, strong NEP-immunoreactivity was associated with epithelia of efferent ducts and the epididymal duct including stereocilia. Segment-by-segment analysis in mouse revealed a distinct distribution along the epididymal duct. We also found the CNP receptor guanylyl cyclase B (GC-B) in epithelial cells of the epididymal duct. Two different NEP inhibitors decreased CNP degradation and increased CNP/GC-B-induced cGMP production by epididymal membranes, suggesting a functional involvement of NEP. Data indicate an important, previously neglected, role of NEP for regulation of luminal factors in the epididymis and suggest a novel role for CNP/GC-B in the epididymal epithelium, presumably in context of local water balance.
Collapse
Affiliation(s)
- Arief Thong
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, 35385 Giessen, Germany
| | - Dieter Müller
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, 35385 Giessen, Germany
| | - Caroline Feuerstacke
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, 35385 Giessen, Germany
| | - Andrea Mietens
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, 35385 Giessen, Germany
| | - Angelika Stammler
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, 35385 Giessen, Germany
| | - Ralf Middendorff
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, 35385 Giessen, Germany.
| |
Collapse
|
9
|
Mietens A, Eichner G, Tasch S, Feuerstacke C, Schneider-Hüther I, Müller D, Middendorff R. Video microscopy as a tool to visualize cGMP effects on contractility and sperm transport in seminiferous tubules and the epididymal duct. BMC Pharmacol Toxicol 2013. [PMCID: PMC3765674 DOI: 10.1186/2050-6511-14-s1-p44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
10
|
Heuser A, Mecklenburg L, Ockert D, Kohler M, Kemkowski J. Selective inhibition of PDE4 in Wistar rats can lead to dilatation in testis, efferent ducts, and epididymis and subsequent formation of sperm granulomas. Toxicol Pathol 2012. [PMID: 23197197 DOI: 10.1177/0192623312463783] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Testicular tubular dilatation and degeneration and epididymal sperm granulomas were frequently seen in 4-week toxicity studies using different phosphodiesterase-4 (PDE4) inhibitors in Wistar rats, including the prototypic PDE4 inhibitor BYK169171. To investigate the pathogenesis of testicular and epididymal lesions, a time course study with BYK169171 was conducted with sequential necropsies after 7, 14, 21, and 28 days of treatment. After 7 days, a dilatation of efferent ducts and of the initial segment of the epididymis and a subacute interstitial inflammation were seen followed by a diffuse dilatation of seminiferous tubules in the testis. Dilatation and inflammation were most pronounced after 14 days. Single animals also exhibited vascular necrosis in the inflamed interstitium. Although dilatation decreased later in the study, the incidence and severity of tubular degeneration increased from 14 days onward. Sperm granulomas developed in efferent ducts and in the caput and cauda of the epididymis after 14 days. Our results demonstrate a clear time course of PDE4 inhibition-induced lesions, with dilatation preceding sperm granuloma formation. We conclude that the most likely mechanism of toxicity is a disturbance of fluid homeostasis in efferent and epididymal ducts resulting in abnormal luminal fluid and sperm contents, epithelial damage at specific sites of the excurrent duct system, sperm leakage, and granuloma formation.
Collapse
Affiliation(s)
- Anke Heuser
- Institute for Pharmacology and Preclinical Drug Safety (IPAS), Nycomed GmbH (Nycomed: A Takeda Company), Barsbüttel, Germany.
| | | | | | | | | |
Collapse
|
11
|
Janković SM, Djeković A, Bugarčić Ž, Janković SV, Lukić G, Folić M, Čanović D. Effects of aurothiomalate and gold(III) complexes on spontaneous motility of isolated human oviduct. Biometals 2012; 25:919-25. [DOI: 10.1007/s10534-012-9558-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 05/07/2012] [Indexed: 10/28/2022]
|