1
|
Kaya Kurt T, Suzen A, Ozdemir C, Edgunlu T, Kurt M, Gungormus R. CYP19 and ESR2 polymorphisms as potential culprits in cryptorchidism. J Pediatr Urol 2025; 21:497-503. [PMID: 39732582 DOI: 10.1016/j.jpurol.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/20/2024] [Accepted: 12/09/2024] [Indexed: 12/30/2024]
Abstract
INTRODUCTION Cryptorchidism impairs sperm development and increases the risk of infertility and testicular cancer. Estrogen signalling is critical for proper descent of the testicles, and hormonal imbalances play a role in cryptorchidism. CYP19, also known as aromatase, encodes an enzyme that converts testosterone, a male sex hormone, into estradiol, the main form of estrogen. While estrogen receptors can be activated by estrogen, CYP19 plays an important role in regulating local estrogen levels in tissues such as the testes, as it affects cellular processes controlled by estrogen receptors. OBJECTIVE We aimed to investigate the relationship between polymorphisms in the CYP19 (rs2414096) and ESR2 (rs4986938) and susceptibility to cryptorchidism. STUDY DESIGN We genotyped CYP19 (rs2414096) and ESR2 (rs4986938) polymorphisms using PCR-RFLP in DNA isolated from blood samples of cryptorchid children (n = 41) and healthy controls (n = 42). The differences in genotype and allele frequencies between the cryptorchidism and control groups were calculated using the chi-square (χ2). RESULTS In cryptorchidism patients, genotypes (p < 0.05) and allele frequencies (p < 0.05) of CYP19 (rs2414096) and ESR2 (rs4986938) polymorphisms showed significant differences compared to controls. CYP19 (rs2414096) and ESR2 (rs4986938), the AA genotype and A allele frequency may be risk factors for cryptorchidism, while the GG genotype and G allele may be protective against cryptorchidism. DISCUSSION Our study provides compelling evidence for a significant association between polymorphisms in the CYP19 (rs2414096) and ESR2 (rs4986938) polymorphisms and cryptorchidism susceptibility. These findings extend previous research implicating genetic factors in testicular descent but go further by identifying specific polymorphisms associated with increased risk. While previous studies have suggested a role for estrogen imbalance in cryptorchidism, our results provide concrete genetic evidence supporting this hypothesis. The relatively small sample size necessitates replication in larger cohorts to further validate our findings. Additionally, functional studies are warranted to elucidate the precise mechanisms by which these genetic variants influence cryptorchidism risk. Despite these limitations, our results represent a significant step in unravelling the complex aetiology of this common birth defect. CONCLUSION Our findings show that polymorphisms in CYP19 (rs2414096) and ESR2 (rs4986938), which play a role in estrogen production, are significantly associated with cryptorchidism susceptibility, highlighting the potential role of estrogen pathway variations in testicular descent.
Collapse
Affiliation(s)
- Tubanur Kaya Kurt
- Muğla Sıtkı Koçman University, Faculty of Medicine, Department of Pediatric Surgery, Muğla, Turkey
| | - Alev Suzen
- Muğla Sıtkı Koçman University, Faculty of Medicine, Department of Pediatric Surgery, Muğla, Turkey.
| | - Cilem Ozdemir
- Muğla Sıtkı Koçman University, Graduate School of Natural and Applied Sciences, Department of Bioinformatics, Muğla, Turkey
| | - Tuba Edgunlu
- Muğla Sıtkı Koçman University, Faculty of Medicine, Department of Medical Biology, Muğla, Turkey
| | - Muhammed Kurt
- Muğla Sıtkı Koçman University, Faculty of Medicine, Department of Pediatric Surgery, Muğla, Turkey
| | - Ramazan Gungormus
- Muğla Sıtkı Koçman University, Faculty of Medicine, Department of Pediatric Surgery, Muğla, Turkey
| |
Collapse
|
2
|
Bornman MS, Aneck-Hahn NH. EDCs and male urogenital cancers. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:521-553. [PMID: 34452696 DOI: 10.1016/bs.apha.2021.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Male sex determination and sexual differentiation occur between 6-12 weeks of gestation. During the "male programming window" the fetal testes start to produce testosterone that initiates the development of the male reproductive tract. Exposure to endocrine disrupting chemicals (EDCs) able to mimic or disrupt steroid hormone actions may disrupt testicular development and adversely impact reproductive health at birth, during puberty and adulthood. The testicular dysgenesis syndrome (TDS) occurs as a result inhibition of androgen action on fetal development preceding Sertoli and Leydig cell dysfunction and may result from direct or epigenetic effects. Hypospadias, cryptorchidism and poor semen quality are elements of TDS, which may be considered a risk factor for testicular germ cell cancer (TGCC). Exposure to estrogen or estrogenic EDCs results in developmental estrogenization/estrogen imprinting in the rodent for prostate cancer (PCa). This can disrupt prostate histology by disorganization of the epithelium, prostatic intraepithelial neoplasia (PIN) lesions, in particular high-grade PIN (HGPIN) lesions which are precursors of prostatic adenocarcinoma. These defects persist throughout the lifespan of the animal and later in life estrogen exposure predispose development of cancer. Exposure of pregnant dams to vinclozolin, a competitive anti-androgen, and results in prominent, focal regions of inflammation in all exposed animals. The inflammation closely resembles human nonbacterial prostatitis that occurs in young men and evidence indicates that inflammation plays a central role in the development of PCa. In conclusion, in utero exposure to endocrine disrupters may predispose to the development of TDS, testicular cancer (TCa) and PCa and are illustrations of Developmental Origins of Health and Disease (DOHaD).
Collapse
Affiliation(s)
- M S Bornman
- Environmental Chemical Pollution and Health Research Unit, Faculty of Health Sciences, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa.
| | - N H Aneck-Hahn
- Environmental Chemical Pollution and Health Research Unit, Faculty of Health Sciences, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa; Environmental Chemical Pollution and Health Research Unit, Faculty of Health Sciences, School of Medicine, Department of Urology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
3
|
Bai X, Tang Y, Li Q, Liu D, Liu G, Fan X, Liu Z, Yu S, Tang T, Wang S, Li L, Zhou K, Zheng Y, Liu Z. An Integrated Analysis of Network Pharmacology, Molecular Docking, and Experiment Validation to Explore the New Candidate Active Component and Mechanism of Cuscutae Semen-Mori Fructus Coupled-Herbs in Treating Oligoasthenozoospermia. Drug Des Devel Ther 2021; 15:2059-2089. [PMID: 34040346 PMCID: PMC8139735 DOI: 10.2147/dddt.s307015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/20/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE One of the most common types of male infertility is recognized as oligoasthenozoospermia (OA), characterized by low sperm count and quality in males. As a traditional Chinese medicine (TCM), Cuscutae Semen-Mori Fructus coupled-herbs (CSMFCH) has been known to act a curative effect on OA for thousands of years. Nevertheless, the substantial basis and molecular mechanism of CSMFCH in treating OA remain elusive. METHODS Herein, an integrated approach, including network pharmacology, molecular docking, and experiment validation, was utilized to reveal the new candidate active component and mechanism of CSMFCH in treating OA. RESULTS The results show that kaempferol is the most significant bioactive component of CSMFCH on OA. The mechanism and targets of CSMFCH against OA are relevant to hormone regulation, oxidant stress, and reproductive promotion. In order to validate network pharmacology results, molecular docking and experiment validation were conducted. In detail, molecular docking was employed to verify the strong binding interactions between kaempferol and the core targets. UHPLC-Q-Orbitrap-MS was used to identify kaempferol in the CSMFCH extract. In vitro and in vivo experiments further proved CSMFCH and kaempferol could enhance the mouse Leydig (TM3) and mouse Sertoli (TM4) cell viability, improve the male reproductive organ weights, sperm quality, and decrease testis tissue damage in the OA mouse model induced by CP. CONCLUSION Our results not only identify the new candidate active component of CSMFCH in treating OA but also provide new insights into the mechanisms of CSMFCH against OA.
Collapse
Affiliation(s)
- Xue Bai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yibo Tang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Qiang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Dan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Guimin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Xiaolei Fan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Zhejun Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Shujun Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Tian Tang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Shuyan Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Lingru Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Kailin Zhou
- School of Humanities, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yanfei Zheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Zhenquan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| |
Collapse
|
4
|
Li F, Chen Q, Yang Y, Li M, Zhang L, Yan Z, Zhang J, Wang K. ESR1 as a recurrence-related gene in intrahepatic cholangiocarcinoma: a weighted gene coexpression network analysis. Cancer Cell Int 2021; 21:225. [PMID: 33865377 PMCID: PMC8052670 DOI: 10.1186/s12935-021-01929-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Background Intrahepatic cholangiocarcinoma (iCCA) is the second most common malignant hepatic tumor and has a high postoperative recurrence rate and a poor prognosis. The key roles of most tumor recurrence-associated molecules in iCCA remain unclear. This study aimed to explore hub genes related to the postsurgical recurrence of iCCA. Method Differentially expressed genes (DEGs) between iCCA samples and normal liver samples were screened from The Cancer Genome Atlas (TCGA) database and used to construct a weighted gene coexpression network. Module-trait correlations were calculated to identify the key module related to recurrence in iCCA patients. Genes in the key module were subjected to functional enrichment analysis, and candidate hub genes were filtered through coexpression and protein–protein interaction (PPI) network analysis. Validation studies were conducted to detect the “real” hub gene. Furthermore, the biological functions and the underlying mechanism of the real hub gene in iCCA tumorigenesis and progression were determined via in vitro experiments. Results A total of 1019 DEGs were filtered and used to construct four coexpression modules. The red module, which showed the highest correlations with the recurrence status, family history, and day to death of patients, was identified as the key module. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses demonstrated that genes in the red module were enriched in genes and pathways related to tumorigenesis and tumor progression. We performed validation studies and identified estrogen receptor 1 (ESR1), which significantly impacted the prognosis of iCCA patients, as the real hub gene related to the recurrence of iCCA. The in vitro experiments demonstrated that ESR1 overexpression significantly suppressed cell proliferation, migration, and invasion, whereas ESR1 knockdown elicited opposite effects. Further investigation into the mechanism demonstrated that ESR1 acts as a tumor suppressor by inhibiting the JAK/STAT3 signaling pathway. Conclusions ESR1 was identified as the real hub gene related to the recurrence of iCCA that plays a critical tumor suppressor role in iCCA progression. ESR1 significantly impacts the prognosis of iCCA patients and markedly suppresses cholangiocarcinoma cell proliferation, migration and invasion by inhibiting JAK/STAT3 signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-01929-5.
Collapse
Affiliation(s)
- Fengwei Li
- Department of Hepatic Surgery (II) of the Eastern Hepatobiliary Surgery Hospital, Navy Medical University, (Second Military Medical University), #225 Changhai Road, Shanghai, 200438, China
| | - Qinjunjie Chen
- Department of Hepatic Surgery (IV) of the Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai, China
| | - Yang Yang
- Department of Hepatic Surgery (VI) of the Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai, China
| | - Meihui Li
- Department of Obstetrics and Gynecology, Changhai Hospital, Naval Military Medical University, #168, Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Lei Zhang
- Department of Hepatic Surgery (II) of the Eastern Hepatobiliary Surgery Hospital, Navy Medical University, (Second Military Medical University), #225 Changhai Road, Shanghai, 200438, China
| | - Zhenlin Yan
- Department of Hepatic Surgery (IV) of the Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai, China
| | - Junjie Zhang
- Department of Obstetrics and Gynecology, Changhai Hospital, Naval Military Medical University, #168, Changhai Road, Yangpu District, Shanghai, 200433, China.
| | - Kui Wang
- Department of Hepatic Surgery (II) of the Eastern Hepatobiliary Surgery Hospital, Navy Medical University, (Second Military Medical University), #225 Changhai Road, Shanghai, 200438, China.
| |
Collapse
|
5
|
Bai X, Tang Y, Li Q, Chen Y, Liu D, Liu G, Fan X, Ma R, Wang S, Li L, Zhou K, Zheng Y, Liu Z. Network pharmacology integrated molecular docking reveals the bioactive components and potential targets of Morinda officinalis-Lycium barbarum coupled-herbs against oligoasthenozoospermia. Sci Rep 2021; 11:2220. [PMID: 33500463 PMCID: PMC7838196 DOI: 10.1038/s41598-020-80780-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023] Open
Abstract
Oligoasthenozoospermia (OA) is one of the most common types of male infertility affecting sperm count and sperm motility. Unfortunately, it is difficult for existing drugs to fundamentally improve the sperm quality of OA patients, because the pathological mechanism of OA has not been fully elucidated yet. Morinda officinalis-Lycium barbarum coupled-herbs (MOLBCH), as traditional Chinese Medicines, has been widely used for treating OA over thousands of years, but its molecular mechanism is still unclear. For this purpose, we adopted a comprehensive approach integrated network pharmacology and molecular docking to reveal the bioactive components and potential targets of MOLBCH against OA. The results showed that MOLBCH alleviated apoptosis, promoted male reproductive function, and reduced oxidant stress in the treatment of OA. Ohioensin-A, quercetin, beta-sitosterol and sitosterol were the key bioactive components. Androgen receptor (AR), Estrogen receptor (ESR1), Mitogen-activated protein kinase 3 (MAPK3), RAC-alpha serine/threonine-protein kinase (AKT1), Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were the core potential targets. PI3K/Akt signaling pathway, prostate cancer, AGE-RAGE signaling pathway in diabetic complications were the most representative pathways. Moreover, molecular docking was performed to validate the strong binding interactions between the obtained core components and targets. These observations provide deeper insight into the pathogenesis of OA and can be used to design new drugs and develop new therapeutic instructions to treat OA.
Collapse
Affiliation(s)
- Xue Bai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yibo Tang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qiang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yafei Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Guimin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaolei Fan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ru Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Shuyan Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Lingru Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Kailin Zhou
- School of Humanities, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yanfei Zheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Zhenquan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
6
|
Chevalier N, Hinault C, Clavel S, Paul-Bellon R, Fenichel P. GPER and Testicular Germ Cell Cancer. Front Endocrinol (Lausanne) 2020; 11:600404. [PMID: 33574796 PMCID: PMC7870790 DOI: 10.3389/fendo.2020.600404] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
The G protein-coupled estrogen receptor (GPER), also known as GPR30, is a widely conserved 7-transmembrane-domain protein which has been identified as a novel 17β-estradiol-binding protein that is structurally distinct from the classic oestrogen receptors (ERα and ERβ). There are still conflicting data regarding the exact role and the natural ligand of GPER/GPR30 in reproductive tracts as both male and female knock-out mice are fertile and have no abnormalities of reproductive organs. Testicular germ cell cancers (TGCCs) are the most common malignancy in young males and the most frequent cause of death from solid tumors in this age group. Clinical and experimental studies suggested that estrogens participate in the physiological and pathological control of male germ cell proliferation. In human seminoma cell line, while 17β-estradiol (E2) inhibits in vitro cell proliferation through an ERβ-dependent mechanism, an impermeable E2 conjugate (E2 coupled to BSA), in vitro cell proliferation is stimulated by activating ERK1/2 and protein kinase A through a membrane GPCR that we further identified as GPER/GPR30. The same effect was observed with low but environmentally relevant doses of BPA, an estrogenic endocrine disrupting compound. Furthermore, GPER/GPR30 is specifically overexpressed in seminomas but not in non-seminomas and this overexpression is correlated with an ERβ-downregulation. This GPER/GPR30 overexpression could be linked to some genetic variations, as single nucleotide polymorphisms, which was also reported in other hormone-dependent cancers. We will review here the implication of GPER/GPR30 in TGCCs pathophysiology and the arguments to consider GPER/GPR30 as a potential therapeutic target in humans.
Collapse
Affiliation(s)
- Nicolas Chevalier
- Université Côte d’Azur, CHU, INSERM U1065, C3M, Nice, France
- Université Côte d’Azur, INSERM U1065, C3M, Nice, France
- *Correspondence: Nicolas Chevalier, ;
| | - Charlotte Hinault
- Université Côte d’Azur, CHU, INSERM U1065, C3M, Nice, France
- Université Côte d’Azur, INSERM U1065, C3M, Nice, France
| | | | | | - Patrick Fenichel
- Université Côte d’Azur, CHU, INSERM U1065, C3M, Nice, France
- Université Côte d’Azur, INSERM U1065, C3M, Nice, France
| |
Collapse
|
7
|
Fénichel P, Chevalier N. Is Testicular Germ Cell Cancer Estrogen Dependent? The Role of Endocrine Disrupting Chemicals. Endocrinology 2019; 160:2981-2989. [PMID: 31617897 DOI: 10.1210/en.2019-00486] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/11/2019] [Indexed: 11/19/2022]
Abstract
Testicular germ cell cancer (TGCC) is the most frequent cancer of the young male, with an increasing incidence worldwide. The pathogenesis and reasons for this increase remain unknown. However, epidemiological and experimental data have suggested that, similar to genital malformations and sperm impairment, it could result from the interaction of genetic and environmental factors including fetal exposure to endocrine-disrupting chemicals (EDCs) with estrogenic effects. In this review, we analyze the expression of classic and nonclassic estrogen receptors by TGCC cells, the way they may influence germ cell proliferation induced by EDCs, and discuss how this estrogen dependency supports the developmental and environmental hypothesis.
Collapse
Affiliation(s)
- Patrick Fénichel
- Université Côte d'Azur, CHU de Nice, Service d'Endocrinologie, Diabétologie et Médecine de la Reproduction, Hôpital de l'Archet, France
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, INSERM U1065/UNS, Centre Méditerranéen de Médecine Moléculaire, Equipe, France
| | - Nicolas Chevalier
- Université Côte d'Azur, CHU de Nice, Service d'Endocrinologie, Diabétologie et Médecine de la Reproduction, Hôpital de l'Archet, France
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, INSERM U1065/UNS, Centre Méditerranéen de Médecine Moléculaire, Equipe, France
| |
Collapse
|
8
|
Qiao J, Han B. Diseases caused by mutations in luteinizing hormone/chorionic gonadotropin receptor. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 161:69-89. [PMID: 30711030 DOI: 10.1016/bs.pmbts.2018.09.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Accumulating evidence showed that the luteinizing hormone/chorionic gonadotropin receptor (LHCGR) is an essential regulator of sexual development and reproduction from zebrafish to human. Activating and inactivating mutations of LHCGR gene have been identified from patients of different phenotypes. Familial male-limited precocious puberty, Leydig cell hypoplasia, and empty follicle syndrome are caused by LHCGR mutations. More than 50 mutations have been reported from subjects of different ethnic backgrounds. Functional analyses of the mutant LHCGR revealed multiple defects, including cell surface expression, ligand binding, and signaling. The difference of the two native ligands and signaling pathway activated by LHCGR are illustrated. Potential therapeutic implications from the analyses of the naturally occurring LHCGR mutations, such as pharmacological chaperones, are highlighted.
Collapse
Affiliation(s)
- Jie Qiao
- Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | - Bing Han
- Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
9
|
Epigenetics and testicular germ cell tumors. Gene 2018; 661:22-33. [PMID: 29605605 DOI: 10.1016/j.gene.2018.03.072] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/07/2018] [Accepted: 03/21/2018] [Indexed: 11/20/2022]
|
10
|
Polymorphism in the Alternative Donor Site of the Cryptic Exon of LHCGR: Functional Consequences and Associations with Testosterone Level. Sci Rep 2017; 7:45699. [PMID: 28367994 PMCID: PMC5377329 DOI: 10.1038/srep45699] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 03/03/2017] [Indexed: 11/09/2022] Open
Abstract
Selective splicing is a feature of luteinizing hormone receptor (LHCGR). A cryptic exon (LHCGR-exon 6A) was found to be derived from alternative splicing in intron 6 of the LHCGR gene, which including two transcripts LHCGR-exon 6A-long and LHCGR-exon 6A-short. We addressed the functional consequences of SNP rs68073206, located at the +5 position of an alternative 5′ splice donor site, and observed its association with male infertility in the subjects with azoospermia, oligoasthenozoospermia and normozoospermia. The translation product of splicing variant LHCGR-exon 6A was expressed in the cytoplasm and exhibited no affinity with [125I]-hCG. No dominant negative effect was observed in cells co-expressed with LHCGR-exon 6A and wild-type LHCGR. The long transcript (LHCGR-exon 6A-long) was significantly elevated in the granulosa cells with G/G genotypes, which could be reproduced in vitro by mini-gene construct transfection. Genotyping analysis showed no association between rs68073206 and male infertility. However, this polymorphism was significantly associated with testosterone levels in normozoospermic subjects (n = 210). In conclusion, SNP rs68073206 in the splicing site of the cryptic exon 6A of the LHCGR gene affect the splicing pattern in the gene, which may play a role in the modulation of the LHCGR sensitivity in the gonads.
Collapse
|
11
|
Bang AK, Nordkap L, Almstrup K, Priskorn L, Petersen JH, Rajpert-De Meyts E, Andersson AM, Juul A, Jørgensen N. Dynamic GnRH and hCG testing: establishment of new diagnostic reference levels. Eur J Endocrinol 2017; 176:379-391. [PMID: 28077499 DOI: 10.1530/eje-16-0912] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/05/2016] [Accepted: 01/11/2017] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Gonadotropin-releasing hormone (GnRH) and human chorionic gonadotropin (hCG) stimulation tests may be used to evaluate the pituitary and testicular capacity. Our aim was to evaluate changes in follicular-stimulating hormone (FSH), luteinizing hormone (LH) and testosterone after GnRH and hCG stimulation in healthy men and assess the impact of six single nucleotide polymorphisms on the responses. DESIGN GnRH and hCG stimulation tests were performed on 77 healthy men, 18-40 years (reference group) at a specialized andrology referral center at a university hospital. The potential influence of the tests was illustrated by results from 45 patients suspected of disordered hypothalamic-pituitary-gonadal axis. METHODS Baseline, stimulated, relative and absolute changes in serum FSH and LH were determined by ultrasensitive TRIFMA, and testosterone was determined by LC-MS/MS. RESULTS For the reference group, LH and FSH increased almost 400% and 40% during GnRH testing, stimulated levels varied from 4.4 to 58.8 U/L and 0.2 to 11.8 U/L and FSH decreased in nine men. Testosterone increased approximately 110% (range: 18.7-67.6 nmol/L) during hCG testing. None of the polymorphisms had any major impact on the test results. Results from GnRH and hCG tests in patients compared with the reference group showed that the stimulated level and absolute increase in LH showed superior identification of patients compared with the relative increase, and the absolute change in testosterone was superior in identifying men with Leydig cell insufficiency, compared with the relative increase. CONCLUSIONS We provide novel reference ranges for GnRH and hCG test in healthy men, which allows future diagnostic evaluation of hypothalamic-pituitary-gonadal disorders in men.
Collapse
Affiliation(s)
- A Kirstine Bang
- Department of Growth and ReproductionRigshospitalet, University of Copenhagen, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC)Rigshospitalet, Denmark
| | - Loa Nordkap
- Department of Growth and ReproductionRigshospitalet, University of Copenhagen, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC)Rigshospitalet, Denmark
| | - Kristian Almstrup
- Department of Growth and ReproductionRigshospitalet, University of Copenhagen, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC)Rigshospitalet, Denmark
| | - Lærke Priskorn
- Department of Growth and ReproductionRigshospitalet, University of Copenhagen, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC)Rigshospitalet, Denmark
| | - Jørgen Holm Petersen
- Department of Growth and ReproductionRigshospitalet, University of Copenhagen, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC)Rigshospitalet, Denmark
- Department of BiostatisticsUniversity of Copenhagen, Copenhagen, Denmark
| | - Ewa Rajpert-De Meyts
- Department of Growth and ReproductionRigshospitalet, University of Copenhagen, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC)Rigshospitalet, Denmark
| | - Anna-Maria Andersson
- Department of Growth and ReproductionRigshospitalet, University of Copenhagen, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC)Rigshospitalet, Denmark
| | - Anders Juul
- Department of Growth and ReproductionRigshospitalet, University of Copenhagen, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC)Rigshospitalet, Denmark
| | - Niels Jørgensen
- Department of Growth and ReproductionRigshospitalet, University of Copenhagen, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC)Rigshospitalet, Denmark
| |
Collapse
|
12
|
|
13
|
Kölbl AC, Birk AE, Kuhn C, Jeschke U, Andergassen U. Influence of VEGFR and LHCGR on endometrial adenocarcinoma. Oncol Lett 2016; 12:2092-2098. [PMID: 27625708 DOI: 10.3892/ol.2016.4906] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 06/29/2016] [Indexed: 01/13/2023] Open
Abstract
Endometrial adenocarcinoma is a common gynecological malignancy that is usually treated by surgical resection followed by radiation. However, the frequency of remote metastasis is high. The present study aimed to investigate whether patients with endometrial adenocarcinoma exhibited a positive response to treatment with a gonadotropin-releasing hormone analogue or inhibitors of neoangiogenesis, which are applied for the treatment of other malignancies. Immunohistochemical analyses were performed using 203 paraffin-embedded tissue samples of endometrial adenocarcinomas from patients who had undergone surgery at the Department of Obstetrics and Gynecology of the Ludwig Maximilians University of Munich, Germany. The tissues were incubated with antibodies against luteinizing hormone/choriogonadotropin receptor (LHCGR) and vascular endothelial growth factor receptor 2 (VEGFR2), and evaluated by bright field microscopy. The staining was categorized according to the Immune-Reactive-Score (IRS). The IRS scores were then statistically associated with various tumor traits, including tumor size, lymph node status, metastasis, grade, expression of steroid hormone receptors and patient survival. There was a significant association between VEGFR2 expression and tumor grading and estrogen receptor-α (ERα). For LHCGR, a correlation was observed with ERα and progesterone receptor (PR). No correlations were identified between VEGFR2 or LHCGR expression and the other examined tumor traits or patient survival. The associations between VEGFR2 and ERα, and between LHCGR and ERα or PR, may be explained by the interaction of these signal transduction molecules in the regulation of cellular growth and differentiation. These mechanisms also have an important role in the formation of remote metastases, which is the main cause for tumor-associated mortality. The results of the present study suggested that patients with endometrial adenocarcinoma may benefit from treatment with inhibitors of ERα, PR, VEGFR2 or LHCGR, since it could lead to a better prognosis. However, further studies are required in order to elucidate the roles of these receptors in endometrial adenocarcinoma.
Collapse
Affiliation(s)
- Alexandra C Kölbl
- Department of Obstetrics and Gynecology, Ludwig Maximilians University of Munich, D-80337 Munich, Germany
| | - Amelie E Birk
- Department of Obstetrics and Gynecology, Ludwig Maximilians University of Munich, D-80337 Munich, Germany
| | - Christina Kuhn
- Department of Obstetrics and Gynecology, Ludwig Maximilians University of Munich, D-80337 Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, Ludwig Maximilians University of Munich, D-80337 Munich, Germany
| | - Ulrich Andergassen
- Department of Obstetrics and Gynecology, Ludwig Maximilians University of Munich, D-80337 Munich, Germany
| |
Collapse
|
14
|
Greene MH, Mai PL, Loud JT, Pathak A, Peters JA, Mirabello L, McMaster ML, Rosenberg P, Stewart DR. Familial testicular germ cell tumors (FTGCT) - overview of a multidisciplinary etiologic study. Andrology 2014; 3:47-58. [PMID: 25303766 DOI: 10.1111/andr.294] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/08/2014] [Accepted: 09/15/2014] [Indexed: 02/06/2023]
Abstract
This Review summarizes the cumulative results of the National Cancer Institute Clinical Genetics Branch Multidisciplinary Etiologic Study of Familial Testicular Germ Cell Tumors (FTGCT). Initiated 12 years ago, this protocol enrolled 724 subjects from 147 unrelated families with either ≥2 affected men (n = 90) with TGCT or a proband with bilateral TGCT and a negative family history for this cancer (n = 57). Data were collected directly from 162 subjects evaluated at the NIH Clinical Center, and 562 subjects provided information from their home communities (Field Cohort). The primary study aims included (i) ascertaining, enrolling eligible FTGCT kindred, (ii) characterizing the clinical phenotype of multiple-case families, (iii) identifying the underlying genetic mechanism for TGCT susceptibility in families, (iv) evaluating counseling, psychosocial, and behavioral issues resulting from membership in an FTGCT family, and (v) creating an annotated biospecimen repository to permit subsequent translational research studies. Noteworthy findings include (i) documenting the epidemiologic similarities between familial and sporadic TGCT, (ii) demonstrating significantly younger age-at-diagnosis for familial vs. sporadic TGCT, (iii) absence of a dysmorphic phenotype in affected family members, (iv) shifting the focus of gene discovery from a search for rare, highly penetrant susceptibility variants to the hypothesis that multiple, more common, lower penetrance genes underlie TGCT genetic risk, (v) implicating testicular microlithiasis in FTGCT risk, and (vi) observing that aberrant methylation may contribute to FTGCT risk. A clinically based, biospecimen-intensive, multidisciplinary research strategy has provided novel, valuable insights into the etiology of FTGCT, and created a research resource which will support FTGCT clinical and laboratory studies for years to come.
Collapse
Affiliation(s)
- M H Greene
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Rijlaarsdam MA, Looijenga LHJ. An oncofetal and developmental perspective on testicular germ cell cancer. Semin Cancer Biol 2014; 29:59-74. [PMID: 25066859 DOI: 10.1016/j.semcancer.2014.07.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 07/17/2014] [Indexed: 12/19/2022]
Abstract
Germ cell tumors (GCTs) represent a diverse group of tumors presumably originating from (early fetal) developing germ cells. Most frequent are the testicular germ cell cancers (TGCC). Overall, TGCC is the most frequent malignancy in Caucasian males (20-40 years) and remains an important cause of (treatment related) mortality in these young men. The strong association between the phenotype of TGCC stem cell components and their totipotent ancestor (fetal primordial germ cell or gonocyte) makes these tumors highly relevant from an onco-fetal point of view. This review subsequently discusses the evidence for the early embryonic origin of TGCCs, followed by an overview of the crucial association between TGCC pathogenesis, genetics, environmental exposure and the (fetal) testicular micro-environment (genvironment). This culminates in an evaluation of three genvironmentally modulated hallmarks of TGCC directly related to the oncofetal pathogenesis of TGCC: (1) maintenance of pluripotency, (2) cell cycle control/cisplatin sensitivity and (3) regulation of proliferation/migration/apoptosis by KIT-KITL mediated receptor tyrosine kinase signaling. Briefly, TGCC exhibit identifiable stem cell components (seminoma and embryonal carcinoma) and progenitors that show large and consistent similarities to primordial/embryonic germ cells, their presumed totipotent cells of origin. TGCC pathogenesis depends crucially on a complex interaction of genetic and (micro-)environmental, i.e. genvironmental risk factors that have only been partly elucidated despite significant effort. TGCC stem cell components also show a high degree of similarity with embryonic stem/germ cells (ES) in the regulation of pluripotency and cell cycle control, directly related to their exquisite sensitivity to DNA damaging agents (e.g. cisplatin). Of note, (ES specific) micro-RNAs play a pivotal role in the crossover between cell cycle control, pluripotency and chemosensitivity. Moreover, multiple consistent observations reported TGCC to be associated with KIT-KITL mediated receptor tyrosine kinase signaling, a pathway crucially implicated in proliferation, migration and survival during embryogenesis including germ cell development. In conclusion, TGCCs are a fascinating model for onco-fetal developmental processes especially with regard to studying cell cycle control, pluripotency maintenance and KIT-KITL signaling. The knowledge presented here contributes to better understanding of the molecular characteristics of TGCC pathogenesis, translating to identification of at risk individuals and enhanced quality of care for TGCC patients (diagnosis, treatment and follow-up).
Collapse
Affiliation(s)
- Martin A Rijlaarsdam
- Department of Pathology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Leendert H J Looijenga
- Department of Pathology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
16
|
Abstract
Luteinizing hormone (LH) and human chorionic gonadotropin (hCG) are integral components of the hypothalamic-pituitary-gonadal axis, which controls sexual maturation and functionality. In the absence of signaling through their shared receptor, fetal sexual differentiation and post-natal development cannot proceed normally. Although they share a high degree of homology, the physiologic roles of these hormones are unique, governed by differences in expression pattern, biopotency and regulation. Whereas LH is a key regulator of gonadal steroidogenesis and ovulation, hCG is predominantly active in pregnancy and fetal development. Emerging evidence has revealed endogenous functions not previously ascribed to hCG, including participation in ovulation and fertilization, implantation, placentation and other activities in support of successful pregnancy. Spontaneous and induced mutations in LH, hCG and their mutual receptor have contributed substantially to our understanding of reproductive development and function. The lack of naturally occurring, functionally significant mutations in the β-subunit of hCG reinforce its putative role in establishment of pregnancy. Rescue of reproductive abnormalities resulting from aberrant gonadotropin signaling is possible in certain clinical contexts, depending on the nature of the underlying defect. By understanding the physiologic roles of LH and hCG in normal and pathologic states, we may better harness their diagnostic, prognostic and therapeutic potential.
Collapse
Affiliation(s)
- Janet Choi
- Department of Obstetrics and Gynecology, The Center for Women’s Reproductive Care at Columbia UniversityNew York, NYUSA
| | - Johan Smitz
- Department of Clinical Chemistry and Radioimmunology, UZ Brussel, Vrije Universiteit BrusselBrusselsBelgium
| |
Collapse
|
17
|
Chimento A, Sirianni R, Casaburi I, Pezzi V. GPER Signaling in Spermatogenesis and Testicular Tumors. Front Endocrinol (Lausanne) 2014; 5:30. [PMID: 24639669 PMCID: PMC3944538 DOI: 10.3389/fendo.2014.00030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 02/20/2014] [Indexed: 12/04/2022] Open
Abstract
Estrogens play important roles in the regulation of testis development and spermatogenesis. Moreover, several evidences suggest that estrogen signaling can be involved in testicular tumorigenesis. The physiological effects of estrogen are mediated by the classical nuclear estrogen receptors ESR1 and 2, which regulate both genomic and rapid signaling events. In the recent years, a member of the seven-transmembrane G protein-coupled receptor family, GPR30 (GPER), has been identified to promote estrogen action in target cells including testicular cells. Ours and other studies reported that GPER is expressed in normal germ cells (spermatogonia, spermatocytes, spermatids), somatic cells (Sertoli and Leydig cells), and it is also involved in mediating estrogen action during spermatogenesis and testis development. In addition, GPER seems to be involved in modulating estrogen-dependent testicular cancer cell growth. However, in this context, the effects of GPER stimulation on cell survival and proliferation appear to be cell type specific. This review summarizes the current knowledge on the functions regulated by estrogens and mediated by GPER in normal and tumor testicular cells.
Collapse
Affiliation(s)
- Adele Chimento
- Laboratory of Applied Biology, Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, Cosenza, Italy
| | - Rosa Sirianni
- Laboratory of Applied Biology, Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, Cosenza, Italy
| | - Ivan Casaburi
- Laboratory of Applied Biology, Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, Cosenza, Italy
| | - Vincenzo Pezzi
- Laboratory of Applied Biology, Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, Cosenza, Italy
- *Correspondence: Vincenzo Pezzi, Laboratory of Applied Biology, Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, Edificio Polifunzionale, Arcavacata di Rende, Cosenza 87036, Italy e-mail:
| |
Collapse
|
18
|
Handel AE, Sandve GK, Disanto G, Handunnetthi L, Giovannoni G, Ramagopalan SV. Integrating multiple oestrogen receptor alpha ChIP studies: overlap with disease susceptibility regions, DNase I hypersensitivity peaks and gene expression. BMC Med Genomics 2013; 6:45. [PMID: 24171864 PMCID: PMC4228442 DOI: 10.1186/1755-8794-6-45] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 10/23/2013] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND A wealth of nuclear receptor binding data has been generated by the application of chromatin immunoprecipitation (ChIP) techniques. However, there have been relatively few attempts to apply these datasets to human complex disease or traits. METHODS We integrated multiple oestrogen receptor alpha (ESR1) ChIP datasets in the Genomic Hyperbrowser. We analysed these datasets for overlap with DNase I hypersensitivity peaks, differentially expressed genes with estradiol treatment and regions near single nucleotide polymorphisms associated with sex-related diseases and traits. We used FIMO to scan ESR1 binding sites for classical ESR1 binding motifs drawn from the JASPAR database. RESULTS We found that binding sites present in multiple datasets were enriched for classical ESR1 binding motifs, DNase I hypersensitivity peaks and differentially expressed genes after estradiol treatment compared with those present in only few datasets. There was significant enrichment of ESR1 binding present in multiple datasets near genomic regions associated with breast cancer (7.45-fold, p = 0.001), height (2.45-fold, p = 0.002), multiple sclerosis (5.97-fold, p < 0.0002) and prostate cancer (4.47-fold, p = 0.0008), and suggestive evidence of ESR1 enrichment for regions associated with coronary artery disease, ovarian cancer, Parkinson's disease, polycystic ovarian syndrome and testicular cancer. Integration of multiple cell line ESR1 ChIP datasets also increases overlap with ESR1 ChIP-seq peaks from primary cancer samples, further supporting this approach as helpful in identifying true positive ESR1 binding sites in cell line systems. CONCLUSIONS Our study suggests that integration of multiple ChIP datasets can highlight binding sites likely to be of particular biological importance and can provide important insights into understanding human health and disease. However, it also highlights the high number of likely false positive binding sites in ChIP datasets drawn from cell lines and illustrates the importance of considering multiple independent experiments together.
Collapse
Affiliation(s)
- Adam E Handel
- Medical Research Council Functional Genomics Unit and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
- Blizard Institute, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, London, UK
| | - Geir K Sandve
- Department of Informatics, University of Oslo, Blindern, Norway
| | - Giulio Disanto
- Medical Research Council Functional Genomics Unit and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Lahiru Handunnetthi
- Medical Research Council Functional Genomics Unit and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Gavin Giovannoni
- Blizard Institute, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, London, UK
| | - Sreeram V Ramagopalan
- Medical Research Council Functional Genomics Unit and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
- Blizard Institute, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, London, UK
| |
Collapse
|
19
|
Shanmugalingam T, Soultati A, Chowdhury S, Rudman S, Van Hemelrijck M. Global incidence and outcome of testicular cancer. Clin Epidemiol 2013; 5:417-27. [PMID: 24204171 PMCID: PMC3804606 DOI: 10.2147/clep.s34430] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background Testicular cancer is a rare tumor type accounting for 1% of malignancies in men. It is, however, the most common cancer in young men in Western populations. The incidence of testicular cancer is increasing globally, although a decline in mortality rates has been reported in Western countries. It is important to identify whether the variations in trends observed between populations are linked to genetic or environmental factors. Methods Age-standardized incidence rates and age-standardized mortality rates for testicular cancer were obtained for men of all ages in ten countries from the Americas, Asia, Europe, and Oceania using the Cancer Incidence in Five Continents (CI5plus) and World Health Organization (WHO) mortality databases. The annual percent change was calculated using Joinpoint regression to assess temporal changes between geographical regions. Results Testicular cancer age-standardized incidence rates are highest in New Zealand (7.8), UK (6.3), Australia (6.1), Sweden (5.6), USA (5.2), Poland (4.9), and Spain (3.8) per 100,000 men. India, China, and Colombia had the lowest incidence (0.5, 1.3, and 2.2, respectively) per 100,000 men. The annual percent changes for overall testicular cancer incidence significantly increased in the European countries Sweden 2.4%, (2.2; 2.6); UK 2.9%, (2.2; 3.6); and Spain 5.0%, (1.7; 8.4), Australia 3.0%, (2.2; 3.7), and China 3.5%, (1.9; 5.1). India had the lowest overall testicular cancer incidence −1.7%, (−2.5; −0.8). Annual percent changes for overall testicular cancer mortality rates were decreasing in all study populations, with the greatest decline observed in Sweden −4.2%, (−4.8; −3.6) and China −4.9%, (−6.5; −3.3). Conclusion Testicular cancer is increasing in incidence in many countries; however, mortality rates remain low and most men are cured. An understanding of the risks and long-term side effects of treatment are important in managing men with this disease.
Collapse
Affiliation(s)
- Thurkaa Shanmugalingam
- King's College London, School of Medicine, Division of Cancer Studies, Cancer Epidemiology Group, London, UK
| | | | | | | | | |
Collapse
|
20
|
Vega A, Baptissart M, Caira F, Brugnon F, Lobaccaro JMA, Volle DH. Epigenetic: a molecular link between testicular cancer and environmental exposures. Front Endocrinol (Lausanne) 2012; 3:150. [PMID: 23230429 PMCID: PMC3515880 DOI: 10.3389/fendo.2012.00150] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 11/13/2012] [Indexed: 11/13/2022] Open
Abstract
In the last decades, studies in rodents have highlighted links between in utero and/or neonatal exposures to molecules that alter endocrine functions and the development of genital tract abnormalities, such as cryptorchidism, hypospadias, and impaired spermatogenesis. Most of these molecules, called endocrine disrupters exert estrogenic and/or antiandrogenic activities. These data led to the hypothesis of the testicular dysgenesis syndrome which postulates that these disorders are one clinical entity and are linked by epidemiological and pathophysiological relations. Furthermore, infertility has been stated as a risk factor for testicular cancer (TC). The incidence of TC has been increasing over the past decade. Most of testicular germ cell cancers develop through a pre-invasive carcinoma in situ from fetal germ cells (primordial germ cell or gonocyte). During their development, fetal germ cells undergo epigenetic modifications. Interestingly, several lines of evidence have shown that gene regulation through epigenetic mechanisms (DNA and histone modifications) plays an important role in normal development as well as in various diseases, including TC. Here we will review chromatin modifications which can affect testicular physiology leading to the development of TC; and highlight potential molecular pathways involved in these alterations in the context of environmental exposures.
Collapse
Affiliation(s)
- Aurelie Vega
- Génétique Reproduction et Développement, INSERM U 1103Aubière, France
- Génétique Reproduction et Développement, Clermont Université, Université Blaise PascalClermont-Ferrand, France
- Génétique Reproduction et Développement, CNRS, UMR 6293Aubière, France
- Centre de Recherche en Nutrition Humaine d’AuvergneClermont-Ferrand, France
| | - Marine Baptissart
- Génétique Reproduction et Développement, INSERM U 1103Aubière, France
- Génétique Reproduction et Développement, Clermont Université, Université Blaise PascalClermont-Ferrand, France
- Génétique Reproduction et Développement, CNRS, UMR 6293Aubière, France
- Centre de Recherche en Nutrition Humaine d’AuvergneClermont-Ferrand, France
| | - Françoise Caira
- Génétique Reproduction et Développement, INSERM U 1103Aubière, France
- Génétique Reproduction et Développement, Clermont Université, Université Blaise PascalClermont-Ferrand, France
- Génétique Reproduction et Développement, CNRS, UMR 6293Aubière, France
- Centre de Recherche en Nutrition Humaine d’AuvergneClermont-Ferrand, France
| | - Florence Brugnon
- Génétique Reproduction et Développement, INSERM U 1103Aubière, France
- Génétique Reproduction et Développement, Clermont Université, Université Blaise PascalClermont-Ferrand, France
- Génétique Reproduction et Développement, CNRS, UMR 6293Aubière, France
- Centre de Recherche en Nutrition Humaine d’AuvergneClermont-Ferrand, France
| | - Jean-Marc A. Lobaccaro
- Génétique Reproduction et Développement, INSERM U 1103Aubière, France
- Génétique Reproduction et Développement, Clermont Université, Université Blaise PascalClermont-Ferrand, France
- Génétique Reproduction et Développement, CNRS, UMR 6293Aubière, France
- Centre de Recherche en Nutrition Humaine d’AuvergneClermont-Ferrand, France
| | - David H. Volle
- Génétique Reproduction et Développement, INSERM U 1103Aubière, France
- Génétique Reproduction et Développement, Clermont Université, Université Blaise PascalClermont-Ferrand, France
- Génétique Reproduction et Développement, CNRS, UMR 6293Aubière, France
- Centre de Recherche en Nutrition Humaine d’AuvergneClermont-Ferrand, France
- *Correspondence: David H. Volle, Génétique Reproduction et Développement, INSERM U 1103, CNRS, UMR 6293, Clermont Université, 24 avenue des Landais, BP 80026, 63171 Aubière Cedex, France. e-mail:
| |
Collapse
|